liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bigun, Josef
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Wiklund, Johan
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Multidimensional orientation estimation with applications to texture analysis and optical flow1991In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 13, no 8, p. 775-790Article in journal (Refereed)
    Abstract [en]

    The problem of detection of orientation in finite dimensional Euclidean spaces is solved in the least squares sense. In particular, the theory is developed for the case when such orientation computations are necessary at all local neighborhoods of the n-dimensional Euclidean space. Detection of orientation is shown to correspond to fitting an axis or a plane to the Fourier transform of an n-dimensional structure. The solution of this problem is related to the solution of a well-known matrix eigenvalue problem. Moreover, it is shown that the necessary computations can be performed in the spatial domain without actually doing a Fourier transformation. Along with the orientation estimate, a certainty measure, based on the error of the fit, is proposed. Two applications in image analysis are considered: texture segmentation and optical flow. An implementation for 2-D (texture features) as well as 3-D (optical flow) is presented. In the case of 2-D, the method exploits the properties of the complex number field to by-pass the eigenvalue analysis, improving the speed and the numerical stability of the method. The theory is verified by experiments which confirm accurate orientation estimates and reliable certainty measures in the presence of noise. The comparative results indicate that the proposed theory produces algorithms computing robust texture features as well as optical flow. The computations are highly parallelizable and can be used in realtime image analysis since they utilize only elementary functions in a closed form (up to dimension 4) and Cartesian separable convolutions.

  • 2.
    Danelljan, Martin
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Häger, Gustav
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Khan, Fahad
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Felsberg, Michael
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
    Discriminative Scale Space Tracking2017In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 39, no 8, p. 1561-1575Article in journal (Refereed)
    Abstract [en]

    Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5 percent in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50 percent higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.

  • 3.
    Felsberg, Michael
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    Forssen, P.-E.
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Computer Vision.
    Scharr, H.
    IEEE Computer Society, Forschungszentrum Jülich GmbH, ICG-III, 52425 Jülich, Germany.
    Channel smoothing: Efficient robust smoothing of low-level signal features2006In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 28, no 2, p. 209-222Article in journal (Refereed)
    Abstract [en]

    In this paper, we present a new and efficient method to implement robust smoothing of low-level signal features: B-spline channel smoothing. This method consists of three steps: encoding of the signal features into channels, averaging of the channels, and decoding of the channels. We show that linear smoothing of channels is equivalent to robust smoothing of the signal features if we make use of quadratic B-splines to generate the channels. The linear decoding from B-spline channels allows the derivation of a robust error norm, which is very similar to Tukey's biweight error norm. We compare channel smoothing with three other robust smoothing techniques: nonlinear diffusion, bilateral filtering, and mean-shift filtering, both theoretically and on a 2D orientation-data smoothing task. Channel smoothing is found to be superior in four respects: It has a lower computational complexity, it is easy to implement, it chooses the global minimum error instead of the nearest local minimum, and it can also be used on nonlinear spaces, such as orientation space. © 2006 IEEE.

  • 4.
    Felsberg, Michael
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Larsson, Fredrik
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Wiklund, Johan
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Wadströmer, Niclas
    FOI.
    Ahlberg, Jörgen
    Termisk Systemteknik AB.
    Online Learning of Correspondences between Images2013In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 35, no 1, p. 118-129Article in journal (Refereed)
    Abstract [en]

    We propose a novel method for iterative learning of point correspondences between image sequences. Points moving on surfaces in 3D space are projected into two images. Given a point in either view, the considered problem is to determine the corresponding location in the other view. The geometry and distortions of the projections are unknown as is the shape of the surface. Given several pairs of point-sets but no access to the 3D scene, correspondence mappings can be found by excessive global optimization or by the fundamental matrix if a perspective projective model is assumed. However, an iterative solution on sequences of point-set pairs with general imaging geometry is preferable. We derive such a method that optimizes the mapping based on Neyman's chi-square divergence between the densities representing the uncertainties of the estimated and the actual locations. The densities are represented as channel vectors computed with a basis function approach. The mapping between these vectors is updated with each new pair of images such that fast convergence and high accuracy are achieved. The resulting algorithm runs in real-time and is superior to state-of-the-art methods in terms of convergence and accuracy in a number of experiments.

  • 5.
    Moreno, Rodrigo
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Garcia, Miguel Angel
    Autonomous University of Madrid, Spain.
    Puig, Domenec
    Rovira i Virgili University, Tarragona, Spain.
    Pizarro, Luis
    Imperial College London, UK.
    Burgeth, Bernhard
    Saarland University, Saarbrücken, Germany.
    Weickert, Joachim
    Saarland University, Saarbrücken, Germany.
    On improving the efficiency of tensor voting2011In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 33, no 11, p. 2215-2228Article in journal (Refereed)
    Abstract [en]

    This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used inapplications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.

  • 6.
    Pena, Jose M
    et al.
    Linköping University, Department of Computer and Information Science, IISLAB - Laboratory for Intelligent Information Systems. Linköping University, The Institute of Technology.
    Nilsson, Roland
    Harvard University.
    On the Complexity of Discrete Feature Selection for Optimal Classification2010In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 32, no 8, p. 1517-U1522Article in journal (Refereed)
    Abstract [en]

    Consider a classification problem involving only discrete features that are represented as random variables with some prescribed discrete sample space. In this paper, we study the complexity of two feature selection problems. The first problem consists in finding a feature subset of a given size k that has minimal Bayes risk. We show that for any increasing ordering of the Bayes risks of the feature subsets (consistent with an obvious monotonicity constraint), there exists a probability distribution that exhibits that ordering. This implies that solving the first problem requires an exhaustive search over the feature subsets of size k. The second problem consists of finding the minimal feature subset that has minimal Bayes risk. In the light of the complexity of the first problem, one may think that solving the second problem requires an exhaustive search over all of the feature subsets. We show that, under mild assumptions, this is not true. We also study the practical implications of our solutions to the second problem.

  • 7.
    Terenin, Alexander
    et al.
    Imperial Coll London, England.
    Magnusson, Måns
    Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Arts and Sciences.
    Jonsson, Leif
    Linköping University, Department of Computer and Information Science. Linköping University, Faculty of Science & Engineering.
    Draper, David
    Univ Calif Santa Cruz, CA 95064 USA.
    Polya Urn Latent Dirichlet Allocation: A Doubly Sparse Massively Parallel Sampler2019In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 41, no 7, p. 1709-1719Article in journal (Refereed)
    Abstract [en]

    Latent Dirichlet Allocation (LDA) is a topic model widely used in natural language processing and machine learning. Most approaches to training the model rely on iterative algorithms, which makes it difficult to run LDA on big corpora that are best analyzed in parallel and distributed computational environments. Indeed, current approaches to parallel inference either dont converge to the correct posterior or require storage of large dense matrices in memory. We present a novel sampler that overcomes both problems, and we show that this sampler is faster, both empirically and theoretically, than previous Gibbs samplers for LDA. We do so by employing a novel Polya-urn-based approximation in the sparse partially collapsed sampler for LDA. We prove that the approximation error vanishes with data size, making our algorithm asymptotically exact, a property of importance for large-scale topic models. In addition, we show, via an explicit example, that-contrary to popular belief in the topic modeling literature-partially collapsed samplers can be more efficient than fully collapsed samplers. We conclude by comparing the performance of our algorithm with that of other approaches on well-known corpora.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf