liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Axin, Mikael
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Eriksson, Björn
    Parker Hannifin, Borås, Sweden.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    A Flexible Working Hydraulic System for Mobile Machines2016In: International Journal of Fluid Power, ISSN 1439-9776, Vol. 17, no 2, p. 79-89Article in journal (Other academic)
    Abstract [en]

    This paper proposes a novel working hydraulic system architecture for mobile machines. Load sensing, flow control and open-centre are merged into a generalized system description. The proposed system is configurable and the operator can realize the characteristics of any of the standard systems without compromising energy efficiency. This can be done non-discretely on-the-fly. One electrically controlled variable displacement pump supplies the system and conventional closed-centre spool valves are used. The pump control strategies are explained in detail. Experimental results demonstrate one solution to the flow matching problem and the static and dynamic differences between different control modes.

  • 2.
    Baer, Katharina
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Framework for simulation-based simultaneous system optimization for a series hydraulic hybrid vehicle2018In: International Journal of Fluid Power, ISSN 1439-9776Article in journal (Refereed)
    Abstract [en]

    Hybridisation of hydraulic drivetrains offers the potential of efficiency improvement for on – and off-road applications. To realise the advantages, a carefully designed system and corresponding control strategy are required, which are commonly obtained through a sequential design process. Addressing component selection and control parameterisation simultaneously through simulation-based optimisation allows for exploration of a large design space as well as design relations and trade-offs, and their evaluation in dynamic conditions which exist in real driving scenarios. In this paper, the optimisation framework for a hydraulic hybrid vehicle is introduced, including the simulation model for a series hybrid architecture and component scaling considerations impacting the system’s performance. A number of optimisation experiments for an on-road light-duty vehicle, focused on standard-drive-cycle-performance, illustrate the impact of the problem formulation on the final design and thus the complexity of the design problem. The designs found demonstrate both the potential of energy storage in series hybrids, via an energy balance diagram, as well as some challenges. The framework presented here provides a base for systematic evaluation of design alternatives and problem formulation aspects.

  • 3.
    Dell'Amico, Alessandro
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Modelling and experimental validation of a nonlinear proportional solenoid pressure control valve2016In: International Journal of Fluid Power, ISSN 1439-9776, Vol. 17, no 2, p. 90-101Article in journal (Refereed)
    Abstract [en]

    This paper investigates the static and dynamic behaviour of a pressure control valve with nonlinear negative characteristics. The pressure control valve has both reducing and relieving capability and is actuated by a solenoid. The static characteristics have been measured over the entire working range, covering the dynamic response of the solenoid, as well as the complete valve. A model is proposed that considers the flow as a mix of laminar and turbulent flow and flow forces with a flow angle that varies with the stroke of the spool. The model shows good agreement with measurements. The investigations show that the flow forces decrease with higher flow rates as a result of a flow angle that tends to go towards a vertical angle. This results in an increase in pressure with flow during pressure reducing mode. A linear analysis is also presented, explaining this as a negative spring constant in the low frequency range. Stability is, however, maintained.

  • 4.
    Larsson, Jonas
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Fluid and Mechanical Engineering Systems.
    Krus, Petter
    Linköping University, Department of Mechanical Engineering.
    Palmberg, Jan-Ove
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Fluid and Mechanical Engineering Systems.
    Efficient Collaborative Modelling and Simulation with Application to Wheel Loader Design2004In: International Journal of Fluid Power, ISSN 1439-9776, Vol. 5 nr 3, nov 04, no 1Article in journal (Refereed)
  • 5.
    Pettersson, Karl
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering. Driveline Systems, Volvo Construction Equipment, Eskilstuna, Sweden.
    Heybroek, Kim
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering. Emerging Technologies, Volvo Construction Equipment, Eskilstuna, Sweden.
    Mattsson, Per
    Driveline Systems, Volvo Construction Equipment, Eskilstuna, Sweden.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    A novel hydromechanical hybrid motion system for construction machines2017In: International Journal of Fluid Power, ISSN 1439-9776, Vol. 18, no 1, p. 17-28Article in journal (Refereed)
    Abstract [en]

    This paper deals with a novel type of hybrid motion system for construction machines based on a common pressure rail shared between a hydromechanical power-split transmission and secondary controlled work hydraulics. A construction machine with driveline and work functions is a complex coupled motion system and the design of an effective hybrid system needs to take both subsystems into account. Studies on energy efficient hybrid systems for construction machines have hitherto principally focused on one subsystem at a time - work hydraulics or driveline. The paper demonstrates a use case with a specific transmission concept proposal for a medium-sized wheel loader. The system is modelled and simulated using an optimal energy management strategy based on dynamic programming. The results show the benefits of a throttle-free bidirectional link between the machine's subsystems and the energy storage, while taking advantage of the complex power flows of the power-split transmission.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf