liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ballem, Mohamed A.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Zhang, Xuanjun
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics.
    Johansson, Emma M.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Córdoba, José M.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Low Temperature Nanocasting of Ultrafine Hematite Nanoparticles using Mesoporous Silica Molds2012In: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 217, p. 269-273Article in journal (Refereed)
    Abstract [en]

    Iron oxide (α-Fe2O3) nanoparticles with very small size, high crystallinity, and narrow size distribution were synthesized by infiltration of Fe(NO3)3.9H2O as an oxide precursor into mesoporous silica (SBA-15 and SBA-16) molds using a wetimpregnation technique. High resolution transmission electron microscopy shows that during the hydrothermal treatment of the precursor at 140 °C for 2 days, stable α-Fe2O3 nanoparticles inside the silica pores are formed. Subsequent leaching out of the silica template by NaOH resulted in well dispersed nanoparticles with an average diameter of ~ 4 nm.

  • 2.
    Escalera, Edwin
    et al.
    Division of Engineering Materials, Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, Luleå, Sweden..
    Ballem, Mohamed A.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Cordoba, José M.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Antti, Marta-Lena
    Division of Engineering Materials, Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, Luleå, Sweden.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Synthesis of homogeneously dispersed cobalt nanoparticles in the pores of functionalized SBA-15 silica2012In: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 221, no S1, p. 359-364Article in journal (Refereed)
    Abstract [en]

    Cobalt nanoparticles were prepared at room temperature by reducing cobalt sulfate heptahydrate with sodium borohydride and using functionalized SBA-15 mesoporous silica as a hard template. It was found that both external and internal fuctionalization of silica walls play a crucial role on the infiltration and reaction of the reagents in the silica framework. Subsequent heat treatment of the impregnated silica at 500 °C in air or nitrogen atmospheres leads to growth of crystals of the deposited cobalt and formation of cobalt and cobalt oxide nanoparticles, respectively. Dissolution of the silica template by NaOH resulted in well dispersed Co and Co3O4 nanoparticles ranging in size from 2 to 4 nm. The functionalization of the silica was studied by FTIR, N2-physisorption, and thermogravimetric techniques and the obtained nanoparticles were characterized by XRD, TEM and EDX analysis.

  • 3.
    Mouzon, Johanne
    et al.
    Division of Engineering Materials, Luleå University of Technology, Luleå, Sweden.
    Odén, Magnus
    Division of Engineering Materials, Luleå University of Technology, Luleå, Sweden.
    Alternative method to precipitation techniques for synthesizing yttrium oxide nanopowder2007In: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 177, no 2, p. 77-82Article in journal (Refereed)
    Abstract [en]

    Yttrium oxide nano-powder has been successfully synthesized by a novel approach. In the first step, a foamy structure was produced by combustion synthesis using yttrium nitrate and glycine. This was followed by the addition of sulfate ions and calcination at 1100 °C for 4 h. The sulfated and unsulfated powders were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and the Brunauer-Emmett-Teller method (BET). The sinterability of the resulting powders was also studied by dilatometry. The studies indicated that this method not only allows for producing weakly-agglomerated nano-particles, but is also a very time-efficient process in comparison to precipitation techniques. Moreover, the possibility of performing all processing steps in a fully automated batch reactor was also considered.

  • 4.
    R.V., Mangalaraja
    et al.
    University of Concepción.
    J., Mouzon
    Luleå University of Technology.
    P., Hedström
    Luleå University of Technology.
    Carlos P., Camurri
    University of Concepción.
    S., Ananthakumar
    Université Montpellier 2.
    Odén, Magnus
    Luleå University of Technology.
    Microwave assisted combustion synthesis of nanocrystalline yttria and its powder characteristics2009In: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 191, no 3, p. 309-314Article in journal (Refereed)
    Abstract [en]

     Microwave assisted combustion synthesis is used for fast and controlled processing of advanced ceramics. Single phase and sinter active nanocrystalline cubic yttria powders were successfully synthesized by microwave assisted combustion using the organic fuels urea, citric acid and glycine as reducing agents. The precursor powders were investigated by thermogravimetry (TG) and differential scanning colorimetry (DSC) analyses. The asprepared precursors and the resulting oxide powders calcined at 1100°C in oxygen atmosphere were characterized for their structure, particle size and morphology. The thermal analyses (TG/DSC), X-ray diffraction (XRD) and Fourier transform infra red (FTIR) results demonstrate the effectiveness of the microwave assisted combustion synthesis. The scanning electron microscopy (SEM) observations show the different morphologies of as-prepared powders and transmission electron microscopy (TEM) shows the particle sizes in the range of 30-100nm for calcined powders for different fuels. The results confirm that the homogeneous, nano scale yttria powders derived by microwave assisted combustion have high crystalline quality and the morphology of the as-prepared precursor powders depends on the nature of organic fuel used.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf