liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 47 of 47
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bugnet, M
    et al.
    University of Poitiers, France .
    Mauchamp, V
    University of Poitiers, France .
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jaouen, M
    University of Poitiers, France .
    Cabioch, T
    University of Poitiers, France .
    Contribution of core-loss fine structures to the characterization of ion irradiation damages in the nanolaminated ceramic Ti3AlC22013In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 61, no 19, p. 7348-7363Article in journal (Refereed)
    Abstract [en]

    The effect of low-energy ion irradiation on the nanolaminated Ti3AlC2 is investigated by means of X-ray diffraction, transmission electron microscopy, electron energy loss and X-ray absorption spectroscopy. The chemical sensitivity and local order probing from core-loss edges provide new insights into the structural modifications induced under irradiation. From the analysis of the C K energy loss near-edge structure and Al K X-ray absorption near-edge structure by ab initio calculations, the influence of the layered structure of this compound on the irradiation damage is demonstrated, and damage is found to be preferentially localized in the aluminum planes of the structure. On the basis of comparisons between calculations and experimental spectra, a structural model is proposed for the irradiated state. This study emphasizes the utility of core-loss fine structure analysis to enhance understanding of ion irradiation-induced damage in complex crystalline materials.

  • 2.
    Edström, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sangiovanni, Davide
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Ruhr Univ Bochum, Germany.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Chirita, Valeriu
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Elastic properties and plastic deformation of TiC- and VC-based alloys2018In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 144, p. 376-385Article in journal (Refereed)
    Abstract [en]

    Transition-metal (TM) carbides are an important class of hard, protective coating materials; however, their brittleness often limits potential applications. We use density functional theory to investigate the possibility of improving ductility by forming pseudobinary cubic (MMC)-M-1-C-2 alloys, for which M-1 = Ti or V and M-2 = W or Mo. The alloying elements are chosen based on previous results showing improved ductility of the corresponding pseudobinary nitride alloys with respect to their parent compounds. While commonly-used empirical criteria do not indicate enhanced ductility in the carbide alloys, calculated stress/strain curves along known slip systems, supported by electronic structure analyses, indicate ductile behavior for VMoC. As VMoC layers are sheared along the 1 (1) over bar0 direction on {111} planes, the stress initially increases linearly up to a yield point where the accumulated stress is partially dissipated. With further increase in strain, the stress increases again until fracture occurs. A similar mechanical behavior is observed for the corresponding TM nitride VMoN, known to be a ductile ceramic material [1]. Thus, our results show that VMoC is a TM carbide alloy which may be both hard and ductile, i.e. tough. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

    The full text will be freely available from 2019-10-27 12:53
  • 3.
    Eklund, Per
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Palmquist, Jens-Petter
    Kanthal AB.
    Höwing, Jonas
    Institute of Energy Technology, Kjeller, Norway.
    Trinh, David
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    El-Raghy, Tamer
    3-ONE-2, USA.
    Högberg, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Hultman, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Ta4AlC3: Phase determination, polymorphism and deformation2007In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 55, no 14, p. 4723-4729Article in journal (Refereed)
    Abstract [en]

    Ta4AlC3, a new member of the Mn+1AXn-phase family, has been synthesized and characterized (n = 1-3, M = early transition metal, A = A-group element, and X = C and/or N). Phase determination by Rietveld refinement of synchrotron X-ray diffraction data shows that Ta4AlC3 belongs to the P63/mmc space group with a and c lattice parameters of 3.10884 ± 0.00004 Å and 24.0776 ± 0.0004 Å, respectively. This is shown to be the α-polymorph of Ta4AlC3, with the same structure as Ti4AlN3. Lattice imaging by high-resolution transmission electron microscopy demonstrates the characteristic MAX-phase stacking of α-Ta4AlC3. Three modes of mechanical deformation of α-Ta4AlC3 are observed: lattice bending, kinking and delamination. © 2007.

  • 4.
    Elofsson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Almyras, Georgios
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Lu, B.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Boyd, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Atomic arrangement in immiscible Ag-Cu alloys synthesized far-from-equilibrium2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 110, p. 114-121Article in journal (Refereed)
    Abstract [en]

    Physical attributes of multicomponent materials of a given chemical composition are determined by atomic arrangement at property-relevant length scales. A potential route to access a vast array of atomic configurations for material property tuning is by synthesis of multicomponent thin films using vapor fluxes with their deposition pattern modulated in the sub-monolayer regime. However, the applicability of this route for creating new functional materials is impeded by the fact that a fundamental understanding of the combined effect of sub-monolayer flux modulation, kinetics and thermodynamics on atomic arrangement is not available in the literature. Here we present a research strategy and verify its viability for addressing the aforementioned gap in knowledge. This strategy encompasses thin film synthesis using a route that generates multi-atomic fluxes with sub-monolayer resolution and precision over a wide range of experimental conditions, deterministic growth simulations and nanoscale micro structural probes. Investigations are focused on structure formation within the archetype immiscible Ag-Cu binary system, revealing that atomic arrangement at different length scales is governed by the arrival pattern of the film forming species, in conjunction with diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 5.
    Emmerlich, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Music, Denis
    Materials Chemistry, RWTH Aachen University, Germany.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Wilhelmsson, Ola
    Department of Materials Chemistry, Uppsala University, Uppsala, Sweden.
    Jansson, Ulf
    Department of Materials Chemistry, Uppsala University, Uppsala, Sweden.
    Schneider, Jochen M.
    Materials Chemistry, RWTH Aachen University, Germany.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Thermal stability of Ti3SiC2 thin films2007In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 55, no 4, p. 1479-1488Article in journal (Refereed)
    Abstract [en]

    The thermal stability of Ti3SiC2(0 0 0 1) thin films is studied by in situ X-ray diffraction analysis during vacuum furnace annealing in combination with X-ray photoelectron spectroscopy, transmission electron microscopy and scanning transmission electron microscopy with energy dispersive X-ray analysis. The films are found to be stable during annealing at temperatures up to ∼1000 °C for 25 h. Annealing at 1100–1200 °C results in the rapid decomposition of Ti3SiC2 by Si out-diffusion along the basal planes via domain boundaries to the free surface with subsequent evaporation. As a consequence, the material shrinks by the relaxation of the Ti3C2 slabs and, it is proposed, by an in-diffusion of O into the empty Si-mirror planes. The phase transformation process is followed by the detwinning of the as-relaxed Ti3C2 slabs into (1 1 1)-oriented TiC0.67 layers, which begin recrystallizing at 1300 °C. Ab initio calculations are provided supporting the presented decomposition mechanisms.

  • 6.
    Furlan, Andrej
    et al.
    Uppsala University, Sweden.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jonsson, Ulf
    Uppsala University, Sweden.
    Control of crystallinity in sputtered Cr–Ti–C films2013In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 61, no 17, p. 6352-6361Article in journal (Refereed)
    Abstract [en]

    The influence of Ti content on crystallinity and bonding of Cr–Ti–C thin films deposited by magnetron sputtering have been studied by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy. Our results show that binary Cr–C films without Ti exhibit an amorphous structure with two non-crystalline components; amorphous CrCx and amorphous C (a-C). The addition of 10–20 at.% Ti leads to the crystallization of the amorphous CrCx and the formation of a metastable cubic (Cr1−xTix)Cy phase. The observation was explained based on the tendency of the 3d transition metals to form crystalline carbide films. The mechanical properties of the films determined by nanoindentation and microindentation were found to be strongly dependent on the film composition in terms of hardness, elasticity modulus, hardness/elasticity ratio and crack development.

  • 7.
    Gebhardt, T
    et al.
    Rhein Westfal TH Aachen.
    Music, Denis
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    von Appen, J
    Rhein Westfal TH Aachen.
    Dronskowski, R
    Rhein Westfal TH Aachen.
    Wagner, D
    Rhein Westfal TH Aachen.
    Mayer, J
    Rhein Westfal TH Aachen.
    Schneider, J M
    Rhein Westfal TH Aachen.
    Influence of chemical composition and magnetic effects on the elastic properties of fcc Fe-Mn alloys2011In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 59, no 4, p. 1493-1501Article in journal (Refereed)
    Abstract [en]

    The influence of the Mn content on the elastic properties of face centered cubic Fe-Mn alloys was studied using the combinatorial approach. Fe-Mn thin films with a graded chemical composition were synthesized. Nanoindentation experiments were carried out to investigate the elastic properties as a function of the Mn content. As the Mn content increases from similar to 23 to similar to 39 at.%, the average bulk modulus varies from 143 to 105 GPa. Ab initio calculations served to probe the impact of magnetic effects on the elastic properties. The magnetic state description with disordered local moments yields the best agreement with the experimental results, whereas with non-magnetic and antiferromagnetic configurations the bulk modulus is overestimated. The strong impact of the magnetic configuration may be understood based on the differences in the chemical bonding and the magnetovolume effect. It is suggested that, owing to minute energy differences of competing antiferromagnetic configurations, a mixture of these with a "notional magnetic disorder" is present, which is in fact well described by the disordered local moments model. These results show that the combinatorial thin film synthesis with subsequent nanoindentation is an appropriate tool for investigating the elastic properties of Fe-Mn alloys systematically as a function of the chemical composition, to validate theoretical models.

  • 8.
    Gebhardt, Thomas
    et al.
    Rhein Westfal TH Aachen.
    Music, Denis
    Rhein Westfal TH Aachen.
    Kossmann, Daniel
    Rhein Westfal TH Aachen.
    Ekholm, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Vitos, Levente
    Royal Institute Technology, SE-75121 Uppsala, Sweden .
    Schneider, Jochen M
    Rhein Westfal TH Aachen.
    Elastic properties of fcc Fe-Mn-X (X = Al, Si) alloys studied by theory and experiment2011In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 59, no 8, p. 3145-3155Article in journal (Refereed)
    Abstract [en]

    We have studied the influence of Al and Si additions on the elastic properties of face-centered cubic (fcc) Fe-Mn random alloys with Fe/Mn ratios of 4.00 and 2.33 using ab initio calculations. When Al is added up to 8 at.% the shearing elastic constants (C-11-C-12)/2 and C-44 decrease, resulting in a drop of similar to 20% in shear and similar to 19% in Youngs modulus. In fcc Fe-Mn-Si alloys, the trends in the elastic constants are similar, but less drastic, with a similar to 7% shear and similar to 6% Youngs modulus decrease when Si is added up to 8 at.%. The Fe/Mn ratio exhibits a minor influence on the shear and Youngs modulus values at constant Al and Si contents. To assess the quality of the ab initio data Fe-Mn-Al and Fe-Mn-Si thin films with an fcc structure were combinatorially synthesized and the elastic properties measured using nanoindentation. For both systems the measured and calculated lattice parameters are in good agreement. Although the measured Youngs modulus data showed significant scatter due to the high surface roughness, they are in good agreement with the predicted values. For the Fe-Mn-Al system the calculations generally underestimate the experimental data by similar to 15%. For the Fe-Mn-Si system the calculated data are in general lower by similar to 10% than the experimentally determined values. The presented results are of relevance for multicomponent alloy design, since the effect of Si and Al addition on the elastic properties of Fe-Mn alloys can be predicted based on ab initio data.

  • 9.
    Ghafoor, Naureen
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Klenov, Dmitri O.
    FEI Co, Netherlands.
    Freitag, Bert
    FEI Co, Netherlands.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Self-organized anisotropic (Zr1-xSix)N-y nanocomposites grown by reactive sputter deposition2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 82, p. 179-189Article in journal (Refereed)
    Abstract [en]

    The physical properties of hard and superhard nanocomposite thin films are strongly dependent on their nanostructure. Here, we present the results of an investigation of nanostructural evolution and the resulting mechanical properties of (Zr1-xSix)N-y films, with 0 less than= x less than= 1 and 1 less than= y less than= 1.27, grown on MgO(0 0 1) and Al2O3(0 0 0 1) substrates at temperatures T-s = 500-900 degrees C by reactive magnetron sputter deposition from Zr and Si targets. X-ray diffraction and transmission electron microscopy (TEM) results show that there is a T-s/composition window in which stoichiometric Zr-Si-N and amorphous a-Si3N4 phases mutually segregate and self-organize into encapsulated 3-5 um wide ZrN-rich (Zr1-xSix)N columns which extend along the growth direction with a strong (002) texture. Lattice-resolved scanning TEM and energy-dispersive X-ray spectroscopy reveal that the (Zr1-xSix)N-y nanocolumns are separated by a bilayer tissue phase consisting of a thin crystalline SiNy-rich (Zr1-xSix)N-y layer with an a-Si3N4 overlayer. Incorporation of metastable SiN into NaCl-structure ZrN leads to an enhanced nanoindentation hardness H which is a function of T-s and film composition. For nanocomposites with composition (Zr(0.8)Sio(0.2))N-1.14 (10 at.% Si) H, increases from 26 GPa at 500 degrees C to 37 GPa at 900 degrees C. For comparison, the hardness of epitaxial ZrN/MgO(0 0 1) layers grown at T-s = 800 degrees C is 24 GPa. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 10.
    Hedström, Peter
    et al.
    Luleå University of Technology.
    Han, Tong-Seok
    Yonsei University.
    Almer, Jonathan
    Argonne National Laboratory.
    Lienert, Ulrich
    Argonne National Laboratory.
    Odén, Magnus
    Luleå University of Technology.
    Load partitioning between single bulk grains in a two-phase duplex stainless steel during tensile loading2010In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 58, p. 734-744Article in journal (Refereed)
    Abstract [en]

    The lattice strain tensor evolution for single bulk grains of austenite and ferrite in a duplex stainless steel during tensile loading to 0.02 applied strain has been investigated using in situ high-energy X-ray measurements and finite-element modeling. Single-grain X-ray diffraction lattice strain data for the eight austenite and seven ferrite grains measured show a large variation of residual lattice strains, which evolves upon deformation to the point where some grains with comparable crystallographic orientations have lattice strains different by 1.5 × 10−3, corresponding to a stress of 300 MPa. The finite-element simulations of the 15 measured grains in three different spatial arrangements confirmed the complex deformation constraint and importance of local grain environment.

  • 11.
    Jia, N
    et al.
    Key Lab for Anisotropy and Texture of Materials Northeastern University, Shenyang, China.
    Peng, Ru
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials .
    Wang, Y D
    Dept of Materials Science and Engineering University of Tennessee, Knoxville, USA.
    Johansson, Sten
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials .
    Liaw, P K
    Dept of Materials Science and Engineering University of Tennessee, Knoxville, USA.
    Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling2008In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 56, no 4, p. 782-793Article in journal (Refereed)
    Abstract [en]

    Microscopic incompatibility-induced stresses in a duplex stainless steel undergoing plastic deformation are elucidated using a visco-plastic self-consistent model. The model considers not only the grain-orientation-dependent stresses and phase-to-phase interactions, but also texture evolution during deformation. The parameters used for describing the micromechanical behavior of the two-phase polycrystalline material are directly derived from the neutron diffraction data. A reliable prediction of the evolution of grain orientation distributions for both phases at small deformations is achieved after considering various micromechanical interactions of the studied material. © 2007 Acta Materialia Inc.

  • 12.
    Johansson (Moverare), Johan
    et al.
    Linköping University, Department of Mechanical Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Odén, Magnus
    Linköping University, Department of Mechanical Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Zeng, Xiaohu
    Linköping University, Department of Mechanical Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Evolution of the residual stress state in a duplex stainless steel during loading1999In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 47, no 9, p. 2669-2684Article in journal (Refereed)
    Abstract [en]

    The evolution of micro- and macrostresses in a duplex stainless steel during loading has been investigated in situ by X-ray diffraction. A 1.5 mm cold-rolled sheet of alloy SAF 2304 solution treated at 1050°C was studied. Owing to differences in the coefficient of thermal expansion between the two phases, compressive residual microstresses were found in the ferritic phase and balancing tensile microstresses in the austenitic phase. The initial microstresses were almost two times higher in the transverse direction compared to the rolling direction. During loading the microstresses increase in the macroscopic elastic regime but start to decrease slightly with increasing load in the macroscopic plastic regime. For instance, the microstresses along the rolling direction in the austenite increase from 60 MPa, at zero applied load, to 110 MPa, at an applied load of 530 MPa. At the applied load of 620 MPa a decrease of the microstress to 90 MPa was observed. During unloading from the plastic regime the microstresses increase by approximately 35 MPa in the direction of applied load but remain constant in the other directions. The initial stress state influences the stress evolution and even after 2.5% plastic strain the main contribution to the microstresses originates from the initial thermal stresses. Finite element simulations show stress variations within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state.

  • 13.
    Jones, N.G.
    et al.
    Department Mat Science and Met, England .
    Humphrey, C.
    Department Mat Science and Met, England .
    Connor, L.D.
    Diamond Light Source, England .
    Wilhelmsson, O.
    Sandvik Heating Technology AB, Sweden .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Stone, H.J.
    Department Mat Science and Met, England .
    Giuliani, F.
    University of London Imperial Coll Science Technology and Med, England .
    Clegg, W.J.
    Department Mat Science and Met, England .
    On the relevance of kinking to reversible hysteresis in MAX phases2014In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 69, p. 149-161Article in journal (Refereed)
    Abstract [en]

    This paper examines the idea that reversible hysteresis in MAX phases is caused by the formation, growth and collapse of unstable, or incipient, kink bands. In situ X-ray diffraction of polycrystalline Ti3SiC2 in compression showed that residual elastic lattice strains developed during the first loading cycle and remained approximately constant afterwards. These residual strains were compressive in grains with a low Schmid factor and tensile in grains with a high Schmid factor, consistent with previous observations of plastically deformed hexagonal metals. In contrast, incipient kink bands would be expected to collapse completely, without any residual strain. Elastoplastic self-consistent simulations showed that reversible hysteresis is predicted if some grains yield by slip on the basal plane, while others remain predominantly elastic, giving both the experimentally observed magnitude of the work dissipated and its dependence on the maximum applied stress. The reversible hysteresis in single crystals was studied by cyclically indenting thin films of Ti3SiC2 and Ti3SiC2/TiC multilayers on Al2O3 substrates. The work dissipated in the multilayer films was greater than in Ti3SiC2 alone, despite the reduction in volume fraction of Ti3SiC2. Reversible hysteresis was also observed during indentation of single-crystal cubic MgO, demonstrating that this behaviour can occur if there are insufficient slip systems to accommodate the strain around the indentation. These results show that reversible hysteresis is associated with conventional dislocation flow, without the need for unstable kinking.

  • 14.
    Karlsson, Lennart
    et al.
    SECO Tools AB.
    Hörling, Anders
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Johansson, M. P.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ramanath, G.
    c Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY, USA.
    The influence of thermal annealing on residual stresses and mechanical properties of arc-evaporated TiCxN1−x (x=0, 0,15 and 0,45) thin films2002In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 50, no 20, p. 5103-5114Article in journal (Refereed)
    Abstract [en]

    We report the stress relaxation behavior of arc-evaporated TiCxN1−x thin films during isothermal annealing between 350 and 900°C. Films with x=0, 0,15 and 0,45 each having an initial compressive intrinsic stress σint = -5.4 GPa were deposited by varying the substrate bias Vs and the gas composition. Annealing above the deposition temperature leads to a steep decrease in the magnitude of σint to a saturation stress value, which is a function of the annealing temperature. The corresponding apparent activation energies for stress relaxation are Ea=2.4, 2.9, and 3.1 eV, for x=0, 0,15 and 0,45 respectively. TiC0.45N0.55 films with a lower initial stress σint = -3 GPa obtained using a high substrate bias, show a higher activation energy Ea=4.2 eV.In all the films, stress relaxation is accompanied by a decrease in defect density indicated by the decreased width of X-ray diffraction peaks and decreased strain contrast in transmission electron micrographs. Correlation of these results with film hardness and microstructure measurements indicates that the stress relaxation is a result of point-defect annihilation taking place both during short-lived metal-ion surface collision cascades during deposition, and during post-deposition annealing by thermally activated processes. The difference in Ea for the films of the same composition deposited at different Vs suggests the existence of different types of point-defect configurations and recombination mechanisms.

  • 15.
    Khatibi, Ali
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Genvad, Axel
    Sandvik Coromant AB, Materials and Processes R&D, Stockholm, Sweden.
    Göthelid, Emmanuelle
    Sandvik Coromant AB, Materials and Processes R&D, Stockholm, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Structural and Mechanical Properties of (AlxCr1-x)2+yO3-y Coatings Grown by Reactive Cathodic Arc Evaporation in As-deposited and Annealed States2013In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 61, no 13, p. 4811-4822Article in journal (Refereed)
    Abstract [en]

    Coatings of (AlxCr1-x)2+yO3-y with 0.51≤x≤0.84 and 0.1≤y≤0.5 were deposited on hard cemented carbides substrates in an industrial cathodic arc evaporation system from powder-metallurgy prepared Cr/Al targets in pure O2 and O2+N2 atmospheres. The substrate temperature and bias in all the deposition runs were 575 °C and -120 V, respectively. The composition of the coatings measured by energy dispersive x-ray spectroscopy and elastic recoil detection analysis was the same as that of the targets. Microstructure analyses performed by symmetrical X-ray diffraction and transmission electron microscopy showed that corundum, cubic or mixed-phase coatings formed depending on the Cr/Al ratio of the coatings and O2 flow per activetarget during deposition. The corundum phase was promoted by high Cr content and high O2 flow per target, while the cubic phase was mostly observed for high Al content and low O2 flow per active target. In situ annealing of the cubic coatings resulted in phase transformation from cubic to corundum completed in the temperature range of 900-1100 °C, while corundum coatings retained their structure in the same range of annealing temperatures. Nanoindentation hardness of the coatings with Cr/Al ratio < 0.4 was 26-28 GPa, regardless of the structure. Increasing the Cr content of the coatings resulted in increased hardness of 28-30 GPa for corundum coatings. Wear resistance testing in a turning operation showed that coatings of Al-Cr-O have improved resistance to crater wear at the cost of flank wear compared to TiAlN coatings.

  • 16.
    Khatibi, Ali
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sjolen, J.
    SECO Tools AB, Sweden .
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Structural and mechanical properties of Cr-Al-O-N thin films grown by cathodic arc deposition2012In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 60, no 19, p. 6494-6507Article in journal (Refereed)
    Abstract [en]

    Coatings of (CrxAl1-x)(delta)(O1-yNy)(xi) with 0.33 less than= x less than= 0.96, 0 less than= y less than= 1 and 0.63 less than= delta/xi less than= 1.30 were deposited using cathodic arc evaporation in N-2/O-2 reactive gas mixtures on 50 V negatively biased WC-10 wt.% Co substrates from different Cr and Al alloys with three different Cr/Al compositional ratios. For N-2 less than 63% of the total gas, ternary (Cr,Al)(2)O-3 films containing less than1 at.% of N forms; as determined by elastic recoil detection analysis. Increasing the N-2 fraction to 75% and above results in formation of quaternary oxynitride films. Phase analyses of the films by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy show the predominance of cubic Cr-Al-N and cubic-(Cr,Al)(2)O-3 solid solutions and secondary hexagonal alpha-(Cr,Al)(2)O-3 solid solution. High Cr and Al contents result in films with higher roughness, while high N and O contents result in smoother surfaces. Nanoindentation hardness measurements showed that Al-rich oxide or nitride films have hardness values of 24-28 GPa, whereas the oxynitride films have a hardness of similar to 30 GPa, regardless of the Cr and Al contents. Metal cutting performance tests showed that the good wear properties are mainly correlated to the oxygen-rich coatings, regardless of the cubic or corundum fractions.

  • 17.
    Kindlund, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Martinez de Olgoz, Leyre
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Barcelona, Spain.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    V0.5Mo0.5Nx/MgO(001): Composition, nanostructure, and mechanical properties as a function of film growth temperature2017In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 126, p. 194-201Article in journal (Refereed)
    Abstract [en]

    V(0.5)Mo(0.5)Nx/MgO(001) alloys with the B1-NaCI structure are grown by ultra-high-vacuum reactive magnetron sputter deposition in 5 mTorr mixed Ar/N-2 atmospheres at temperatures T-s between 100 and 900 degrees C. Alloy films grown at T-s amp;lt;= 500 degrees C are polycrystalline with a strong 002 preferred orientation; layers grown at T-s amp;gt;= 700 degrees C are epitaxial single-crystals. The N/Metal composition ratio x ranges from 1.02 +/- 0.05 with T-s = 100-500 degrees C to 0.94 +/- 0.05 at 700 degrees C to 0.64 +/- 0.05 at T-s = 900 degrees C. N loss at higher growth temperatures leads to a corresponding decrease in the relaxed lattice parameter a(0) from 4.212 A with x = 1.02 to 4.175 angstrom at x = 0.94 to 4.120 angstrom with x = 0.64. V(0.5)Mo(0.5)Nx nanoindentation hardnesses H and elastic moduli E increase with increasing T-s, from 17 +/- 3 and 323 +/- 30 GPa at 100 degrees C to 26 +/- 1 and 370 +/- 10 GPa at 900 degrees C. Both polycrystalline and single-crystal V(0.5)Mo(0.5)Nx films exhibit higher toughnesses than that of the parent binary compound VN. V(0.5)Mo(0.5)Nx films deposited at higher Ts also exhibit enhanced wear resistance. Valence-band x-ray photoelectron spectroscopy analyses reveal an increased volume density of shear-sensitive d-t(2g) d-t(2g) metallic states for V(0.5)Mo(0.5)Nx compared to VN and the density of these orbitals increases with increasing deposition temperature, i.e., with increasing N-vacancy concentration.(C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 18.
    Kindlund, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sangiovanni, Davide
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Arts and Sciences.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Chirita, Valeriu
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Department of Materials Science, Fredrick Seitz Materials Research Laboratory, University of of Illinois, Urbana, USA.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science and the Fredrick Seitz Materials Research Laboratory, University of Illinois, Urbana, USA.
    Greene, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science and the Fredrick Seitz Materials Research Laboratory, University of Illinois, Urbana, USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Vacancy-induced toughening in hard single-crystal V0.5Mo0.5Nx/MgO(001) thin films2014In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 77, p. 394-400Article in journal (Refereed)
    Abstract [en]

    Using a combination of experiments and density functional theory (DFT), we demonstrate the first example of vacancy-induced  toughening, in this case for epitaxial pseudobinary NaCl-structure substoichiometric V0.5Mo0.5Nx alloys, with N concentrations 0.55 ≤ x ≤ 1.03, grown by reactive magnetron sputter deposition. The nanoindentation hardness H(x) increases with increasing vacancy concentration from 17 GPa with x = 1.03 to 26 GPa with x = 0.55, while the elastic modulus E(x) remains essentially constant at 370 GPa. Scanning electron micrographs of indented regions show ductile plastic flow giving rise to material pile-up, rather than cracks as commonly observed for hard, but brittle, transition-metal nitrides. The increase in alloy hardness with an elastic  modulus which remains constant with decreasing x, combined with the observed material pile-up around nanoindents, DFT-calculated decrease in shear to bulk moduli ratios, and increased Cauchy pressures (C12-C44), reveals a trend toward vacancy-induced toughening. Moreover, DFT crystal orbital overlap population analyses are consistent with the above results.

  • 19.
    Kumar Yalamanchili, Phani
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Schramm, Isabella C.
    University of Saarland, Germany.
    Jimenez-Pique, E.
    University of Politecn Cataluna, Spain; CRnE UPC, Spain.
    Rogström, Lina
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Muecklich, F.
    University of Saarland, Germany.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Tuning hardness and fracture resistance of ZrN/Zr0.63Al0.37N nanoscale multilayers by stress-induced transformation toughening2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 89, p. 22-31Article in journal (Refereed)
    Abstract [en]

    Structure and mechanical properties of nanoscale multilayers of ZrN/Zr0.63Al0.37N grown by reactive magnetron sputtering on MgO (0 0 1) substrates at a temperature of 700 degrees C are investigated as a function of the Zr0.63Al0.37N layer thickness. The Zr0.63Al0.37N undergoes in situ chemical segregation into ZrN-rich and AlN-rich domains. The AlN-rich domains undergo transition from cubic to wurtzite crystal structure as a function of Zr0.63Al0.37N layer thickness. Such structural transformation allows systematic variation of hardness as well as fracture resistance of the films. A maximum fracture resistance is achieved for 2 nm thick Zr0.63Al0.37N layers where the AlN-rich domains are epitaxially stabilized in the metastable cubic phase. The metastable cubic-AlN phase undergoes stress-induced transformation to wurtzite-AlN when subjected to indentation, which results in the enhanced fracture resistance. A maximum hardness of 34 GPa is obtained for 10 nm thick Zr0.63Al0.37N layers where the wurtzite-AlN and cubic-ZrN rich domains form semi-coherent interfaces.

  • 20.
    Lai, Chung-Chuan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Meshkian, Rahele
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rivin, O.
    Nucl Research Centre Negev, Israel.
    Caspi, E. N.
    Nucl Research Centre Negev, Israel.
    Ozeri, O.
    Soreq Nucl Research Centre, Israel.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 99, p. 157-164Article in journal (Refereed)
    Abstract [en]

    Following our recent discovery of a new nanolaminated carbide, Mo2Ga2C, we herein present a detailed structural and chemical analysis of this phase based on ab initio calculations, X-ray photoelectron spectroscopy, high resolution scanning transmission electron microscopy, and neutron powder diffraction. Calculations suggest an energetically and dynamically stable structure for C in the octahedral sites between the Mo layers, with Ga bilayers - stacked in a simple hexagonal arrangement - between the Mo2C layers. The predicted elastic properties are below those of the related nanolaminate Mo2GaC. The predicted structure, including lattice parameters and atomic positions, is experimentally confirmed. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 21.
    Landälv, Ludvig
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Sandvik Coromant AB, Sweden.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Spitz, S.
    Karlsruhe Institute Technology, Germany.
    Leiste, H.
    Karlsruhe Institute Technology, Germany.
    Ulrich, S.
    Karlsruhe Institute Technology, Germany.
    Johansson-Jöesaar, Mats P
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering. SECO Tools AB, Sweden.
    Ahlgren, M.
    Sandvik Coromant AB, Sweden.
    Gothelid, E.
    Sandvik Coromant AB, Sweden.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Max Planck Institute Eisenforsch GmbH, Germany.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Stueber, M.
    Karlsruhe Institute Technology, Germany.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Structural evolution in reactive RF magnetron sputtered (Cr,Zr)2O3 coatings during annealing2017In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 131, p. 543-552Article in journal (Refereed)
    Abstract [en]

    Reactive RF-magnetron sputtering is used to grow Cr0.28Zr0.10O0.61 coatings at 500 degrees C. Coatings are annealed at 750 degrees C, 810 degrees C, and 870 degrees C. The microstructure evolution of the pseudobinary oxide compound is characterized through high resolution state of the art HRSTEM and HREDX-maps, revealing the segregation of Cr and Zr on the nm scale. The as-deposited coating comprises cc-(Cr,Zr)(2)O-3 solid solution with a Zr-rich (Zr,Cr)O-x. amorphous phase. After annealing to 750 degrees C tetragonal ZrO2 nucleates and grows from the amorphous phase. The ZrO2 phase is stabilized in its tetragonal structure at these fairly low annealing temperatures, possibly due to the small grain size (below 30 nm). Correlated with the nucleation and growth of the tetragonal-ZrO2 phase is an increase in hardness, with a maximum hardness after annealing to 750 degrees C, followed by a decrease in hardness upon coarsening, bcc metallic Cr phase formation and loss of oxygen, during annealing to 870 degrees C. The observed phase segregation opens up future design routes for pseudobinary oxides with tunable microstructural and mechanical properties. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 22.
    Lauridsen, Jonas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ljungcrantz, H
    Impact Coatings AB.
    Oberg, A
    ABB Corp Research.
    Lewin, E
    Uppsala University.
    Jansson, U
    Uppsala University.
    Flink, A
    Impact Coatings AB.
    Hogberg, H
    Impact Coatings AB.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Microstructure evolution of Ti-Si-C-Ag nanocomposite coatings deposited by DC magnetron sputtering2010In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 58, no 20, p. 6592-6599Article in journal (Refereed)
    Abstract [en]

    Nanocomposite coatings consisting of Ag and TiCx (x andlt; 1) crystallites in a matrix of amorphous SiC were deposited by high-rate magnetron sputtering from Ti-Si-C-Ag compound targets. Different target compositions were used to achieve coatings with a Si content of similar to 13 at.%, while varying the C/Ti ratio and Ag content. Electron microscopy, helium ion microscopy, X-ray photoelectron spectroscopy and X-ray diffraction were employed to trace Ag segregation during deposition and possible decomposition of amorphous SiC. Eutectic interaction between Ag and Si is observed, and the Ag forms threading grains which coarsen with increased coating thickness. The coatings can be tailored for conductivity horizontally or vertically by controlling the shape and distribution of the Ag precipitates. Coatings were fabricated with hardness in the range 10-18 GPa and resistivity in the range 77-142 mu Omega cm.

  • 23.
    Leidermark, Daniel
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Sjöström, Sören
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Tension/Compression asymmetry of a single-crystal superalloy in virgin and degraded condition2010In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 58, no 15, p. 4986-4997Article in journal (Refereed)
    Abstract [en]

    The mechanical behaviour at room temperature of a single-crystal superalloy exposed to long term ageing at elevated temperature has been investigated, a topic important for the material’s resistance to thermal-mechanical fatigue. Specimens with several different crystallographic orientations were plastically deformed in either tension or compression before and after the long term furnace exposure. While the thermally activated degradation of the microstructure causes a reduction in yield limit of up to 25% for specimens initially deformed in the |001 and |011| directions, none or only moderate reduction was seen for specimens initially deformed along the |111| direction. This can be explained by the strong correlation between yield limit reduction and the amount of γ coarsening. By introducing an isotropic degradation function in a newly developed crystal plasticity model, the constitutive behaviour of both virgin and degraded materials has been described with good agreement with the experimental results.

  • 24.
    Li, N
    et al.
    Beijing Institute of Technology.
    Wang, Y D
    Beijing Institute of Technology.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Sun, X
    Pacific NW National Lab.
    Liaw, P K
    University of Tennessee.
    Wu, G L
    Beijing Institute of Technology.
    Wang, L
    Beijing Institute of Technology.
    Cai, H N
    Beijing Institute of Technology.
    Localized amorphism after high-strain-rate deformation in TWIP steel2011In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 59, no 16, p. 6369-6377Article in journal (Refereed)
    Abstract [en]

    The microstructural features of shear localization, generated by a high-strain-rate deformation (similar to 10(5) s(-1)), of a twinning-induced plasticity (TWIP) steel containing about 17.5 wt.% Mn were well characterized by means of optical microscopy, transmission electron microscopy and electron backscatter diffraction. The high deformation rate was obtained by a ballistic impact penetration test on the TWIP steel sheet. In addition to the deformation twins observed as the main microstructural characterization in the matrix, some shear bands consisting of complex microstructures were also evidenced in the highly deformed area. Inside the shear band, there exist a large region of amorphous phase and a smooth transition zone that also contains nanocrystalline phases. The grain size decreases gradually in the transition zone, changing from a coarse scale (andgt;100 nm) to a fine scale (andlt;10 nm) adjacent to the amorphous region. The coexistence of the amorphous state and the fine-scaled nanocrystalline phase clearly suggests that melting inside the shear bands occurred, which is corroborated by calculations showing a very high rise in temperature due to localized plastic deformation and extremely rapid cooling by heat dissipation into the specimen.

  • 25.
    Lu, Jun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Holmstrom, Erik
    Sandvik Coromant RandD, Sweden.
    Antonsson, Karin H.
    Sandvik Mat Technology, Sweden.
    Grehk, Mikael
    Sandvik Mat Technology, Sweden.
    Li, Wei
    Royal Institute Technology, Sweden.
    Vitos, Levente
    Royal Institute Technology, Sweden.
    Golpayegani, Ardeshir
    Sandvik Mat Technology, Sweden.
    Stacking fault energies in austenitic stainless steels2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 111, p. 39-46Article in journal (Refereed)
    Abstract [en]

    We measure the stacking fault energy of a set of 20 at% Cr-austenitic stainless steels by means of transmission electron microscopy using the weak beam dark field imaging technique and the isolated dislocations method. The measurements are analyzed together with first principles calculations. The results show that experiment and theory agree very well for the investigated concentration range of Mn (0-8%) and Ni (11-30%). The calculations show that simultaneous relaxation of atomic and spin degrees of freedom is important in order to find the, global energy minimum for these materials. Our results clearly show the great potential of the weak beam dark field technique to obtain accurate measurements of the stacking fault energy of austenitic steels and that the reliable predictability of first principles calculations can be used to design new steels with optimized mechanical properties. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 26.
    Martinez-Perez, M L
    et al.
    ICMM, CSIC Campus de Cantoblanco, Madrid.
    Borlado, C R
    Faculty of Technology Milton Keynes.
    Mompean, F J
    ICMM, CSIC Campus de Cantoblanco, Madrid.
    Garcia-Hernandez, M
    ICMM. CSIC Campus de Cantoblanco, Madrid.
    Gil-Sevillano, J
    CEIT San Sebastian, Spain.
    Ruiz-Hervias, J
    Dept de Ciencia de Materiales Caminos, Madrid.
    Atienza, J M
    Dept de Ciencia Materiales Caminos, Madrid.
    Elices, M
    Dept de Ciencia de Materiales Caminos, Madrid.
    Peng, Ru
    Uppsala University.
    Daymond, M R
    Dept of Mech and Materials Eng Qeens University, Kingston, Canada.
    Measurement and modelling of residual stresses in straightened commercial eutectoid steel rods2005In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 53, no 16, p. 4415-4425Article in journal (Refereed)
    Abstract [en]

    Neutron strain scanning measurements on a eutectoid steel rod that has been subjected to standard industrial coiling and straightening operations are presented. Strains were determined non-destructively using two different diffractometers, one at a steady-state neutron source and the other at a pulsed spallation neutron source, with measurements made in both the ferrite and cementite components of the pearlitic microstructure. The residual stress state is explained in terms of a simplified analytical model for a two-phase material, which takes into account the successive loading operations contributing to residual stress. The results show that residual stresses generated by bending–straightening operations are significant and are likely to play an important role in the mechanical properties of the final wires.

  • 27.
    Meshkian, Rahele
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene2017In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 125, p. 476-480Article in journal (Refereed)
    Abstract [en]

    We present theoretical prediction and experimental evidence of a new MAX phase alloy, Mo2ScAlC2, with out-of-plane chemical order. Evaluation of phase stability was performed by ab initio calculations based on Density Functional Theory, suggesting that chemical order in the alloy promotes a stable phase, with a formation enthalpy of -24 meV/atom, as opposed to the predicted unstable Mo3AlC2 and Sc3AlC2. Bulk synthesis of Mo2ScAlC2 is achieved by mixing elemental powders of Mo, Sc, Al and graphite which are heated to 1700 degrees C. High resolution transmission electron microscopy reveals a chemically ordered structure consistent with theoretical predictions with one Sc layer sandwiched between two Mo-C layers. The two-dimensional derivative, the MXene, is produced by selective etching of the Al-layers in hydrofluoric acid, resulting in the corresponding chemically ordered Mo2ScC2, i.e. the first Sc-containing MXene. The here presented results expands the attainable range of MXene compositions and widens the prospects for property tuning. (C)2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 28.
    Mikula, Marian
    et al.
    Comenius University, Slovakia; Institute Mat and Machine Mech, Slovakia.
    Plasienka, Dusan
    Comenius University, Slovakia.
    Sangiovanni, Davide
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. Ruhr University of Bochum, Germany.
    Sahul, Martin
    Fac Mat Science and Technology STU, Slovakia.
    Roch, Tomas
    Comenius University, Slovakia.
    Truchly, Martin
    Comenius University, Slovakia.
    Gregor, Maros
    Comenius University, Slovakia.
    Caplovic, Lubomir
    Fac Mat Science and Technology STU, Slovakia.
    Plecenik, Andrej
    Comenius University, Slovakia.
    Kus, Peter
    Comenius University, Slovakia.
    Toughness enhancement in highly NbN-alloyed Ti-Al-N hard coatings2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 121, p. 59-67Article in journal (Refereed)
    Abstract [en]

    Obtaining high hardness combined with enhanced toughness represents one of the current challenges in material design of hard ceramic protective coatings. In this work, we combine experimental and ab initio density functional theory (DFT) analysis of the mechanical properties of Ti-Al-Nb-N coatings to validate the results of previous theoretical investigations predicting enhanced toughness in TiAIN-based systems highly alloyed (amp;gt;25 at. %) with nitrides of pentavalent VB group elements Nb, Ta, and V. As-deposited Ti1-x-yAlxNbyN coatings (y = 0 divided by 0.61) exhibit single phase cubic sodium chloride (B1) structure identified as TiAl(Nb)N solid solutions. The highest hardness,similar to 32.5 +/- 2 GPa, and the highest Youngs modulus, similar to 442 GPa, are obtained in Nb-free Ti0.46Al0.54N exhibiting pronounced 111 growth-orientation. Additions of Nb in the coatings promote texture evolution toward 200. Nanoindentation measurements demonstrate that alloying TiAlN with NbN yields significantly decreased elastic stiffness, from 442 to similar to 358 divided by 389 GPa, while the hardness remains approximately constant (between 28 +/- 2 and 31 +/- 3 GPa) for all Nb contents. DFT calculations and electronic structure analyses reveal that alloying dramatically reduces shear resistances due to enhanced d-d second-neighbor metallic bonding while retaining strong metal-N bonds which change from being primarily ionic (TiAlN) to more covalent (TiAlNbN) in nature. Overall, Nb substitutions are found to improve ductility of TiAlN-based alloys at the cost of slight losses in hardness, equating to enhanced toughness. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 29.
    Norrby, Niklas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Rogström, Lina
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Johansson Jöesaar, Mats P.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology. Seco Tools AB, Fagersta, Sweden.
    Schell, N.
    Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    In-situ x-ray scattering study of the cubic to hexagonal transformation of AlN in Ti1-xAlxN2014In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 73, p. 205-214Article in journal (Refereed)
    Abstract [en]

    In the present work, we have studied the decomposition of arc evaporated Ti0.55Al0.45N and Ti0.36Al0.64N during heat treatment in vacuum by in-situ synchrotron wide angle x-ray scattering primarily to characterize the kinetics of the phase transformation of AlN from the cubic NaCl-structure to the hexagonal wurtzite-structure. In addition, in-situ small angle x-ray scattering measurements were conducted to explore details of the wavelength evolution of the spinodal decomposition, thus providing information about the critical size of the c-AlN rich domains prior to the onset of the h-AlN transformation. We report the fractional cubic to hexagonal transformation of AlN in Ti1-xAlxN as a function of time and extract activation energies between 320 and 350 kJ/mol dependent on alloy composition. The onset of the hexagonal transformation occurs at about 50 K lower temperature in Ti0.36Al0.64N compared to Ti0.55Al0.45N where the high Al content alloy also has a significantly higher transformation rate. A critical wavelength for the cubic domains of about 13 nm was observed for both alloys. Scanning transmission electron microscopy shows a c-TiN/h-AlN microstructure with a striking morphology resemblance to the c-TiN/c-AlN microstructure present prior to the hexagonal transformation.

  • 30.
    Palisaitis, Justinas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Thermal stability of Al1−xInxN (0 0 0 1) throughout the compositional range as investigated during in situ thermal annealing in a scanning transmission electron microscope2013In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 61, no 12, p. 4683-4688Article in journal (Refereed)
    Abstract [en]

    The thermal stability of Al1−xInxN (0 ⩽ ⩽ 1) layers was investigated by scanning transmission electron microscopy (STEM) imaging, electron diffraction, and monochromated valence electron energy loss spectroscopy during in situ annealing from 750 to 950 °C. The results show two distinct decomposition paths for the layers richest in In (Al0.28In0.72N and Al0.41In0.59N) that independently lead to transformation of the layers into an In-deficient, nanocrystalline and a porous structure. The In-richest layer (Al0.28In0.72N) decomposes at 750 °C, where the decomposition process is initiated by In forming at grain boundaries and is characterized by an activation energy of 0.62 eV. The loss of In from the Al0.41In0.59N layer was initiated at 800 °C through continuous desorption. No In clusters were observed during this decomposition process, which is characterized by an activation energy of 1.95 eV. Finally, layers richest in Al (Al0.82In0.18N and Al0.71In0.29N) were found to resist thermal annealing, although the initial stages of decomposition were observed for the Al0.71In0.29N layer.

  • 31.
    Peng, Ru
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Engineering Materials.
    Jia, N
    School of Materials and Metalluryg Northeastern University, Shenyang.
    Wang, Y D
    School of Materials and Metallurgy Northeastern University, Shenyang.
    Chai, G C
    R D Sandvik Materials Technology, Sandviken.
    Johansson, Sten
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Engineering Materials.
    Wang, G
    School of Materials and Metallurgy Northeastern University, Shenyang.
    Liaw, P K
    dept of Materials Science and Engineering University of Tennessee, Knoxville.
    Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation2006In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 54, no 15, p. 3907-3916Article in journal (Refereed)
    Abstract [en]

    The development of phase stress and grain-orientation-dependent stress under uniaxial compression was investigated in a duplex stainless steel consisting of austenite and ferrite. Using in situ neutron diffraction measurements, the strain response of several h k l planes to the applied compressive stress was mapped as a function of applied stress and sample direction. Analysis based on the experimental results and elastoplastic self-consistent simulations shows that phase stresses of thermal origin further increase during elastic loading but decrease with increased plastic deformation. Grain-orientation-dependent stresses become significant in both austenite and ferrite after loading into the plastic region. After unloading from the plastic regime, a considerable intergranular stress remains in the austenitic phase and dominates over the phase stress. This study provides fundamental experimental inputs for future micromechanical modeling aiming at the evaluation and prediction of the mechanical performance of multiphase materials. © 2006 Acta Materialia Inc.

  • 32.
    Persson, Per
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Kodambaka, S.
    Department of Materials Science, the Frederick Seitz Materials Research Laboratory, University of Illinois, 104 South Goodwin Avenue, Urbana, IL 61801, United States.
    Petrov, I.
    Department of Materials Science, the Frederick Seitz Materials Research Laboratory, University of Illinois, 104 South Goodwin Avenue, Urbana, IL 61801, United States.
    Hultman, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Epitaxial Ti2AlN(0 0 0 1) thin film deposition by dual-target reactive magnetron sputtering2007In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 55, no 13, p. 4401-4407Article in journal (Refereed)
    Abstract [en]

    Ultrahigh-vacuum dual-target reactive magnetron sputtering, in a mixed Ar/N2 discharge was used to deposit epitaxial single-crystal MAX phase Ti2AlN(0 0 0 1) thin films, without seed layers, onto Al2O3(0 0 0 1) substrates kept at 1050 °C. By varying the N2 partial pressure a narrow process window was identified for the growth of single-crystal Ti2AlN. The film microstructure was characterized by a combination of X-ray diffraction, spherical aberration (Cs) corrected transmission electron microscopy (TEM), high-resolution image simulation and high-resolution scanning TEM. Nitrogen-depleted deposition conditions resulted in the concurrent formation of N-free Ti-Al intermetallics at the film/substrate interface and a steady-state growth of Ti2AlN together with N-free intermetallic phases. At higher N2 partial pressures the growth assumes a columnar epitaxial nature. 1 Å resolution of the lattice enabling location of all elements in the Ti2AlN unit cell is demonstrated. © 2007 Acta Materialia Inc.

  • 33.
    Ponomareva, A. V.
    et al.
    Natl Univ Sci and Technol MISIS, Russia.
    Ruban, A. V.
    KTH Royal Inst Technol, Sweden; Leoben Forsch GmbH, Austria.
    Mukhamedov, B. O.
    Natl Univ Sci and Technol MISIS, Russia.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Effect of multicomponent alloying with Ni, Mn and Mo on phase stability of bcc Fe-Cr alloys2018In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 150, p. 117-129Article in journal (Refereed)
    Abstract [en]

    Fe-Cr system attracts lot of attention in condensed matter physics due to its technological importance and extraordinary physics related to a non-trivial interplay between magnetic and chemical interactions. However, the effect of multicomponent alloying on the properties of Fe-Cr alloys are less studied. We have calculated the mixing enthalpy, magnetic moments, effective chemical, strain-induced and magnetic exchange interactions to investigate the alloying effect of Ni, Mn, Mo on the phase stability of the ferromagnetic bcc Fe Cr system at zero K. We demonstrate that the alloying reduces the stability of Fe-Cr alloys and expands the region of spinodal decomposition. At the same time, the mixing enthalpy in ternary Fe100-c-05CrcNi05 alloys indicates a stability of solid solution phase up to 6 at. % Cr. In Fem(100-c-07)CrNi(05)Mn(01)Mo(01) alloys, we did not find any alloy composition that has negative enthalpy of formation. Analyzing magnetic and electronic properties of the alloys and investigating magnetic, chemical and strain-induced interactions in the studied systems, we provide physically transparent picture of the main factors leading to the destabilization of the Fe-Cr solid solutions by the multicomponent alloying with Ni, Mn, Mo. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

    The full text will be freely available from 2020-03-15 13:27
  • 34.
    Sangiovanni, Davide
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Ruhr Univ Bochum, Germany.
    Inherent toughness and fracture mechanisms of refractory transition-metal nitrides via density-functional molecular dynamics2018In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 151, p. 11-20Article in journal (Refereed)
    Abstract [en]

    Hard refractory transition-metal nitrides possess unique combinations of outstanding mechanical and physical properties, but are typically brittle. Recent experimental results demonstrated that single-crystal NaCI-structure (B1) V0.5Mo0.5N pseudobinary solid solutions are both hard (similar to 20 GPa) and ductile; that is, they exhibit toughness, which is unusual for ceramics. However, key atomic-scale mechanisms underlying this inherent toughness are unknown. Here, I carry out density-functional ab initio molecular dynamics (AIMD) simulations at room temperature to identify atomistic processes and associated changes in the electronic structure which control strength, plasticity, and fracture in V0.5Mo0.5N, as well as reference B1 TiN, subject to amp;lt;001amp;gt; and amp;lt;110amp;gt; tensile deformation. AIMD simulations reveal that V0.5Mo0.5N is considerably tougher than TiN owing to its ability to (i) isotropically redistribute mechanical stresses within the elastic regime, (ii) dissipate the accumulated strain energy by activating local structural transformations beyond the yield point. In direct contrast, TiN breaks in brittle manner when applied stresses reach its tensile strength. Charge transfer maps show that the adaptive mechanical response of V0.5Mo0.5N originates from highly populated d-d metallic-states, which allow for counterbalancing the destabilization induced via tensile deformation by enabling formation of new chemical bonds. The high ionic character and electron-localization in TiN precludes the possibility of modifying bonding geometries to accommodate the accumulated stresses, thus suddenly causing materials fracture for relatively low strain values. 

    The full text will be freely available from 2020-03-26 17:47
  • 35.
    Sangiovanni, Davide Giuseppe
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Chirita, Valeriu
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration2011In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 59, no 5, p. 212-2134Article in journal (Refereed)
    Abstract [en]

    We use density functional theory calculations to explore the effects of alloying cubic TiN and VN with transition metals M = Nb, Ta, Mo, W in 50% concentrations. The obtained ternaries are predicted to become supertough as they are shown to be harder and significantly more ductile compared to the reference binaries. The primary electronic mechanism of this supertoughening effect is shown in a comprehensive electronic structure analysis of these compounds to be the increased valence electron concentration intrinsic to these ternaries. Our investigations reveal the complex nature of chemical bonding in these compounds, which ultimately explains the observed selective response to stress. The findings presented in this paper thus offer a design route for the synthesis of supertough transition metal nitride alloys via valence electron concentration tuning.

  • 36.
    Sangiovanni, Davide
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Chirita, Valeriu
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, USA.
    Effects of phase stability, lattice ordering, and electron density on plastic deformation in cubic TiWN pseudobinary transition-metal nitride alloys2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 103, p. 823-835Article in journal (Refereed)
    Abstract [en]

    We carry out density functional theory calculations to compare the energetics of layer glide, as well as stress vs. strain curves, for cubic Ti0.5W0.5N pseudobinary alloys and reference B1-structure TiN. Irrespective of the degree of ordering on the metal sublattice, the hardness and stiffness of Ti0.5W0.5, as estimated by stress strain results and resistance to layer glide, are comparable to that of the parent binary TiN, while ductility is considerably enhanced. After an initial elastic response to an applied load, the pseudobinary alloy deforms plastically, thus releasing accumulated mechanical stress. In contrast, stress continues to increase linearly with strain in TiN. Layer glide in Ti0.5W0.5N is promoted by a high valence-electron concentration which enables the formation of strong metallic bonds within the slip direction upon deformation. [1111-oriented Ti0.5W0.5N layers characterized by high local metal-sublattice ordering exhibit low resistance to slip along &lt; 110 &gt; directions due to energetically favored formation of (111) hexagonal stacking faults. This is consistent with the positive formation energy of &lt; 111 &gt;-ordered Tio.5W0.5N with respect to mixing of cubic-BI TiN and hexagonal WC-structure WN. In the cubic pseudobinary alloy, slip occurs parallel, as well as orthogonal, to the resolved applied stress at the interface between layers with the lowest friction. We suggest that analogous structural metastability (mixing cubic and hexagonal TM nitride binary phases) and electronic (high valence electron concentration) effects are responsible for the enhanced toughness recently demonstrated experimentally for cubic single-crystal pseudobinary V0.5W0.5N and V0.5MocoN epitaxial layers. (c) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 37.
    Schramm, Isabella
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Johansson Jöesaar, Mats P.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering. SECO Tools AB, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Muecklich, F.
    University of Saarland, Germany.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Impact of nitrogen vacancies on the high temperature behavior of (Ti1-xAlx)N-y alloys2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 119, p. 218-228Article in journal (Refereed)
    Abstract [en]

    Substoichiometric solid solution alloys of cubic (Ti1-xAlx)N-y with x = 0.26, 0.48 and 0.60, and y ranging from 0.93 to 0.75 were grown by cathodic arc deposition. The influence of nitrogen deficiency on their thermal stability was studied by X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy, and atom probe tomography. The nitrogen deficiency did not significantly affect the columnar growth nor the as deposited hardness. At elevated temperatures, alloys with x = 0.48 and 0.60 decompose isostructurally into cubic c-TiN and cubic c-AlN domains, which is consistent with spinodal decomposition. The decomposition is retarded by decreasing the nitrogen content, e.g. the formed isostructural domains in (Ti0.52Al0.48)N-0.92 at 900 degrees C are similar in size to (Ti0.52Al0.48)N-0.75 at 1200 degrees C. The formation of hexagonal w-AlN is shifted to higher temperatures by decreasing nitrogen content. Nucleation and growth of Al-Ti clusters in a Ti rich matrix were observed for the alloys with high Ti content, x = 0.26. These results suggest that nitrogen deficiency reduces the driving force for phase separation. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 38.
    Schramm, Isabella
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering. Saarland University, Germany.
    Pauly, C.
    Saarland University, Germany.
    Johansson Jöesaar, Mats P
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering. SECO Tools AB, Sweden.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Schmauch, J.
    Saarland University, Germany.
    Muecklich, F.
    Saarland University, Germany.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Solid state formation of Ti4AlN3 in cathodic arc deposited (Ti1-xAlx)N-y alloys2017In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 129, p. 268-277Article in journal (Refereed)
    Abstract [en]

    Reactive cathodic arc deposition was used to grow substoichiometric solid solution cubic c-(Ti1-xAlx)N-y thin films. The films were removed from the substrate and then heated in an argon environment to 1400 degrees C. Via solid state reactions, formation of MAX phase Ti4AlN3 was obtained. Additional phases such as Ti2AlN, c-TiN, w-AIN, Al5Ti2 and Al3Ti were also present during the solid state reaction. Ti4AlN3 formation was observed in samples with an Al metal fraction x amp;lt; 0.63 and a nitrogen content 0.4 amp;lt; y amp;lt; 0.6. Regardless of the initial composition, formation of Ti4AlN3 started in Ti2AlN crystal plates in the temperature range between 1200 and 1400 degrees C. Accompanying the onset of Ti4AlN3 was the presence of an intermediate structure identified as Ti6Al2N4, consisting of alternating layers of intergrown Ti2AlN and Ti4AlN3 phases with a half-unit-cell stacking. We suggest that the formation of Ti4AlN3 occurred via intercalation of aluminum and nitrogen along the basal plane accompanied by a simultaneous detwinning process. In addition we propose that this formation mechanism can be used to obtain MAX phases of high n order. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 39.
    Segersäll, Mikael
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Kontis, Paraskevas
    Department of Materials, University of Oxford, Oxford, United Kingdom.
    Pedrazzini, Stella
    Department of Materials, University of Oxford, United Kingdom.
    Bagot, Paul A.J.
    Department of Materials, University of Oxford, Oxford, United Kingdom.
    Moody, Michael P.
    Department of Materials, University of Oxford, Oxford, United Kingdom.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Reed, Roger C.
    Department of Materials, University of Oxford, Oxford, United Kingdom.
    Thermal-­Mechanical Fatigue Behaviour of a New Single Crystal Superalloy: Effects of Si and Re Alloying2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 95, p. 456-467Article in journal (Refereed)
    Abstract [en]

    The mechanical behaviour of a new single crystal superalloy suitable for power generation applications is considered. Effects of alloying with either Si or Re are elucidated. Out-of-phase thermal-mechanical fatigue is emphasised, although to clarify the effects arising some static creep deformation tests are also carried out. A significant Si-effect is found: a modest addition of 0.25 wt. % Si increases the TMF life by a factor of 2. Thinner deformation bands which traverse the γ'-phase are promoted by Si alloying, with a concomitant greater resistance to recrystallization and cracking along them. Alloying with Re, whilst improving the creep behaviour more markedly than Si, does not have such a strong effect on TMF life. The results provide insights into the composition/performance relationships relevant to the TMF performance of single crystal superalloys.

  • 40.
    Shen, Yong-Feng
    et al.
    Northeastern University, Shenyang, China.
    Wang, Yandong
    Northeastern University, Shenyang, China.
    Liu, Xiao-Peng
    Northeastern University, Shenyang, China.
    Sun, Xin
    Pacific Northwest National Laboratory, Richland, USA.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Zhang, Shu-Yan
    ISIS Facility, CCLRC Rutherford Appleton laboratory, Didcot, UK.
    Zuo, Liang
    Northeastern University, Shenyang, China.
    Liaw, Peter K.
    University of Tennessee, Knoxville, USA.
    Deformation mechanisms of a 20Mn TWIP steel investigated by in situ neutron diffraction and TEM2013In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 61, no 16, p. 6093-6106Article in journal (Refereed)
    Abstract [en]

    The deformation mechanisms and associated microstructure changes during tensile loading of an annealed twinning-induced plasticity steel with chemical composition Fe-20Mn-3Si-3Al-0.045C (wt.%) were systematically investigated using in situ time-of-flight neutron diffraction in combination with post mortem transmission electron microscopy (TEM). The initial microstructure of the investigated alloy consists of equiaxed gamma grains with the initial alpha'-phase of similar to 7% in volume. In addition to dislocation slip, twinning and two types of martensitic transformations from the austenite to alpha'- and epsilon-martensites were observed as the main deformation modes during the tensile deformation. In situ neutron diffraction provides a powerful tool for establishing the deformation mode map for elucidating the role of different deformation modes in different strain regions. The critical stress is 520 MPa for the martensitic transformation from austenite to alpha'-martensite, whereas a higher stress (>600 MPa) is required for actuating the deformation twin and/or the martensitic transformation from austenite to epsilon-martensite. Both epsilon- and alpha'-martensites act as hard phases, whereas mechanical twinning contributes to both the strength and the ductility of the studied steel. TEM observations confirmed that the twinning process was facilitated by the parent grains oriented with < 1 1 1 > or < 1 1 0 > parallel to the loading direction. The nucleation and growth of twins are attributed to the pole and self-generation formation mechanisms, as well as the stair-rod cross-slip mechanism.

  • 41.
    Tengdelius, Lina
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Nyberg, Tomas
    Department of Solid State Electronics, Uppsala University, Uppsala, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hard and elastic epitaxial ZrB2 thin films on Al2O3(0001) substrates deposited by magnetron sputtering from a ZrB2 compound target2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 111, p. 166-172Article in journal (Refereed)
    Abstract [en]

    Zirconium diboride (ZrB2) exhibits high hardness and high melting point, which is beneficial for applications in for e.g. metal cutting. However, there is limited data on the mechanical properties of ZrB2 films and no data on epitaxial films. In this study, ZrB2(0001) thin films, with thicknesses up to 1.2 μm, have been deposited on Al2O3(0001) substrates by direct current magnetron sputtering from a compound target. X-ray diffraction and transmission electron microscopy show that the films grow epitaxially with two domain types exhibiting different in-plane epitaxial relationships to the substrate. The out-of-plane epitaxial relationship was determined to ZrB2(0001)|Al2O3(0001) and the in-plane relationships of the two domains to ZrB2[100]‖Al2O3[100] and ZrB2[110]‖Al2O3[100]. Mechanical properties of the films, evaluated by nanoindentation, showed that all films exhibit hardness values above 45 GPa, a reduced Young's modulus in the range 350–400 GPa, and a high elastic recovery of 70% at an applied load of 9000 μN.

  • 42.
    Tholander, Christopher
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tasnádi, Ferenc
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
    Zukauskaitè, Agne
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg, Germany.
    Ab initio calculations and experimental study of piezoelectric YxIn1-xN thin films deposited using reactive magnetron sputter epitaxy2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 105, p. 199-206Article in journal (Refereed)
    Abstract [en]

    By combining theoretical prediction and experimental verification we investigate the piezoelectric properties of yttrium indium nitride (YxIn1-xN). Ab initio calculations show that the YxIn1-xN wurtzite phase is lowest in energy among relevant alloy structures for 0≤x≤0.5. Reactive magnetron sputter epitaxy was used to prepare thin films with Y content up to x=0.51. The composition dependence of the lattice parameters observed in the grown films is in agreement with that predicted by the theoretical calculations confirming the possibility to synthesize a wurtzite solid solution. An AlN buffer layer greatly improves the crystalline quality and surface morphology of subsequently grown YxIn1-xN films. The piezoelectric response in films with x=0.09 and x=0.14 is observed using piezoresponse force microscopy. Theoretical calculations of the piezoelectric properties predict YxIn1−xN to have comparable piezoelectric properties to ScxAl1-xN.

  • 43.
    Wang, Fei
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Holec, David
    University of Leoben, Austria.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Muecklich, Frank
    University of Saarland, Germany.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. NUST MISIS, Russia.
    Tasnadi, Ferenc
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Systematic ab initio investigation of the elastic modulus in quaternary transition metal nitride alloys and their coherent multilayers2017In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 127, p. 124-132Article in journal (Refereed)
    Abstract [en]

    We give a comprehensive overview of the elastic properties of cubic quaternary transition metal nitride alloys and coherent nitride multilayers for design of wear resistant hard coatings. The elastic stiffness constants of the alloys are calculated using the special quasirandom structure method. For multilayers with sharp interfaces we prove the applicability of a linear-elasticity approximation and show that it can be used with success instead of performing direct computationally demanding ab initio calculations. We explore the trends and the potential of multicomponent alloying in engineering the strength and ductility of both, quaternary alloys and their multilayers. We investigate X(i-x-y)TixAlyN alloys where Xis Zr, Hf, V, Nb or Ta, and present an analysis based on increasing x. We show that with increasing Ti content ductility can increase in each alloy. Elastic isotropy is observed only in (Zr,Hf,V)((i-x-y))TixAlyN alloys in the middle of the compositional triangle, otherwise a high Youngs modulus is observed along [001]. We predict that coherent TiN/X(1-x-y)TixAlyN and ZrN/X(i-x-3)TixAlyN alloy multilayers with the [111] interfacial direction show increasing ductility with increasing x, while the multilayers with the [001] orientation become more brittle. We show that the Youngs moduli variation in the parent bulk quaternary nitride alloy provide a reliable descriptor to screen the Youngs modulus of coherent multilayers in high-throughput calculations. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 44.
    Wang, Y D
    et al.
    Studsvik Neutron Research Lab Uppsala University.
    Peng, Ru
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Engineering Materials.
    Wang, X-L
    Oak Ridge National Lab Oak Ridge.
    McGreevy, R L
    Studsvik Neutron Research Lab Uppsala University.
    Grain-orientation-dependent residual stress and the effect of annealing in cold-rolled stainless steel2002In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 50, no 7, p. 1717-1734Article in journal (Refereed)
    Abstract [en]

    Cold rolling leads to a residual stress that is dependent not only on the specimen directions but also on the orientation of the grain. Neutron diffraction was used to investigate residual stresses and the effect of annealing in cold-rolled stainless steel, a two-phase material consisting of 62 vol% austenite and the rest deformation-induced martensite. The specimens were prepared by cold rolling of AISI 301 stainless steel with 48% reduction. The grain-orientation-dependent residual stress, or inter-granular stress, was determined by constructing the stress orientation distribution function, a recently developed concept, from the residual strains measured along various crystallographic directions. For the cold-rolled sample, a strong grain orientation anisotropy was observed for residual stresses in both phases. Detailed analysis of the experimental stress and texture data indicates that the observed orientation anisotropy was caused by the selective phase transformation that occurred during cold rolling. Annealing at 500░C leads to recovery, which significantly reduces the orientation anisotropy of the residual stress. The experimental data show that the recovery dynamics in the austenite and martensite phases are quite different. It appears that the overall recovery behavior in this two-phase material is driven by the martensite phase. ⌐ 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

  • 45. Wilhelmsson, O.
    et al.
    Eklund, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Högberg, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Hultman, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Jansson, U.
    Structural, electrical and mechanical characterization of magnetron-sputtered V-Ge-C thin films2008In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 56, no 11, p. 2563-2569Article in journal (Refereed)
    Abstract [en]

    V2GeC MAX-phase thin films were deposited by DC magnetron sputter epitaxy in the temperature range 450-850 °C. The MAX-phase nucleates directly on (0 0 0 l)-oriented sapphire-wafer substrates without the need for a seed layer. The films contain, however, a small fraction of binary vanadium carbide (VCx) inclusions. X-ray diffraction analysis furthermore shows that these inclusions partly consist of the ordered superstructure V8C7. The amount of Ge in the films decreases at higher temperatures, which can be attributed to Ge evaporation. At temperatures below 450 °C the films consist of polycrystalline Ge and an X-ray amorphous carbide phase attributed to VCx or V2C. No MAX-phase was observed in this temperature region. The electrical and mechanical properties of the films were characterized. © 2008 Acta Materialia Inc.

  • 46.
    Yalamanchili, Phani Kumar
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Wang, Fei
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Aboulfadl, Hisham
    University of Saarland, Germany.
    Barrirero, Jenifer
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Rogström, Lina
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Jimenez-Pique, Emilio
    University of Politecn Cataluna, Spain; CRnE UPC, Spain.
    Muecklich, Frank
    University of Saarland, Germany.
    Tasnadi, Ferenc
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Growth and thermal stability of TiN/ZrAlN: Effect of internal interfaces2016In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 121, p. 396-406Article in journal (Refereed)
    Abstract [en]

    Wear resistant hard films comprised of cubic transition metal nitride (c-TMN) and metastable c-AlN with coherent interfaces have a confined operating envelope governed by the limited thermal stability of metastable phases. However, equilibrium phases (c-TMN and wurtzite(w)-AlN) forming semicoherent interfaces during film growth offer higher thermal stability. We demonstrate this concept for a model multilayer system with TiN and ZrAlN layers where the latter is a nanocomposite of ZrN- and AlN-rich domains. The interfaces between the domains are tuned by changing the AlN crystal structure by varying the multilayer architecture and growth temperature. The interface energy minimization at higher growth temperature leads to formation of semicoherent interfaces between w-AlN and c-TMN during growth of 15 nm thin layers. Ab initio calculations predict higher thermodynamic stability of semicoherent interfaces between c-TMN and w-AlN than isostructural coherent interfaces between c-TMN and c-AlN. The combination of a stable interface structure and confinement of w-AlN to nm-sized domains by its low solubility in c-TMN in a multilayer, results in films with a stable hardness of 34 GPa even after annealing at 1150 degrees C. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • 47.
    Žukauskaitė, Agnė
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Fraunhofer Institute for Applied Solid State Physics, Freiburg, Germany.
    Tholander, Christopher
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Tasnádi, Ferenc
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Pališaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Stabilization of Wurtzite Sc0.4Al0.6N in Pseudomorphic Epitaxial ScxAl1-xN/InyAl1-yN Superlattices2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 94, p. 101-110Article in journal (Refereed)
    Abstract [en]

    Pseudomorphic stabilization in wurtzite ScxAl1-xN/AlN and ScxAl1-xN/InyAl1-yN superlattices (x=0.2, 0.3, and 0.4; y=0.2-0.72), grown by reactive magnetron sputter epitaxy was investigated. X-ray diffraction and transmission electron microscopy show that in ScxAl1-xN/AlN superlattices the compressive biaxial stresses due to positive lattice mismatch in Sc0.3Al0.7N and Sc0.4Al0.6N lead to loss of epitaxy, although the structure remains layered. For the negative lattice mismatched In-rich ScxAl1-xN/InyAl1-yN superlattices a tensile biaxial stress promotes the stabilization of wurtzite ScxAl1-xN even for the highest investigated concentration x=0.4. Ab initio calculations with fixed in-plane lattice parameters show a reduction in mixing energy for wurtzite ScxAl1-xN under tensile stress when x≥0.375 and support the experimental results.

1 - 47 of 47
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf