liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Clarke, Emily L.
    et al.
    Univ Leeds, England; Leeds Teaching Hosp NHS Trust, England.
    Revie, Craig
    FFEI Ltd, England.
    Brettle, David
    Leeds Teaching Hosp NHS Trust, England.
    Shires, Michael
    Univ Leeds, England.
    Jackson, Peter
    Leeds Teaching Hosp NHS Trust, England.
    Cochrane, Ravinder
    FFEI Ltd, England.
    Wilson, Robert
    FFEI Ltd, England.
    Mello-Thoms, Claudia
    Univ Sydney, Australia.
    Treanor, Darren
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Clinical pathology. Univ Leeds, England; Leeds Teaching Hosp NHS Trust, England.
    Development of a novel tissue-mimicking color calibration slide for digital microscopy2018In: Color Research and Application, ISSN 0361-2317, E-ISSN 1520-6378, Vol. 43, no 2, p. 184-197Article in journal (Refereed)
    Abstract [en]

    Digital microscopy produces high resolution digital images of pathology slides. Because no acceptable and effective control of color reproduction exists in this domain, there is significant variability in color reproduction of whole slide images. Guidance from international bodies and regulators highlights the need for color standardization. To address this issue, we systematically measured and analyzed the spectra of histopathological stains. This information was used to design a unique color calibration slide utilizing real stains and a tissue-like substrate, which can be stained to produce the same spectral response as tissue. By closely mimicking the colors in stained tissue, our target can provide more accurate color representation than film-based targets, whilst avoiding the known limitations of using actual tissue. The application of the color calibration slide in the clinical setting was assessed by conducting a pilot user-evaluation experiment with promising results. With the imminent integration of digital pathology into the routine work of the diagnostic pathologist, it is hoped that this color calibration slide will help provide a universal color standard for digital microscopy thereby ensuring better and safer healthcare delivery.

  • 2.
    Lindstrand, Mikael
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Sensor interpixel correlation analysis and reduction for color filter array high dynamic range image reconstruction2019In: Color Research and Application, ISSN 0361-2317, E-ISSN 1520-6378, Vol. 44, no 3, p. 335-347Article in journal (Refereed)
    Abstract [en]

    High dynamic range imaging (HDRI) by bracketing of low dynamic range (LDR) images is demanding, as the sensor is deliberately operated at saturation. This exacerbates any crosstalk, interpixel capacitance, blooming and smear, all causing interpixel correlations (IC) and a deteriorated modulation transfer function (MTF). Established HDRI algorithms exclude saturated pixels, but generally overlook IC. This work presents a calibration method to estimate the affected region from saturated pixels for a color filter array (CFA) sensor, using the native CFA as a matched filter. The method minimizes color crosstalk given a set of candidates for proximity regions, and requires no special setup. Results are shown for a 21-bit HDR output image with improved color fidelity and reduced noise. The calibration reduces IC in the LDR images and is performed only once for a given sensor. The improvement is applicable to any HDRI algorithm based on CFA image bracketing, irrespective of sensor technology. Generalizations to subsaturated and supersaturated pixels are described, facilitating a suggested irradiance-exposure dependent point spread function charge repatriation strategy.

  • 3.
    Solli, Martin
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Lenz, Reiner
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Color emotions for multi-colored images2011In: Color Research and Application, ISSN 0361-2317, E-ISSN 1520-6378, Vol. 36, no 3, p. 210-221Article in journal (Refereed)
    Abstract [en]

    We investigate the emotional response to colors in ordinary multicolored images. In psychophysical experiments, using both category scaling and interval scaling, observers are asked to judge images using three emotion factors: activity, weight, and heat. The color emotion metric was originally developed for single colors, and later extended to include pairs of colors. The same metric was recently used in image retrieval. The results show that people in general perceive color emotions for multi-colored images in similar ways, and that observer judgments correlate with the recently proposed method used in image retrieval. The intended usage is in retrieval systems publicly available on the Internet, where both the user and the viewing environment is unknown, which requires novel ways of conducting the psychophysical experiments.

  • 4.
    Zitinski Elias, Paula
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Nyström, Daniel
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Gooran, Sasan
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Color separation for improved perceived image quality in terms of graininess and gamut2017In: Color Research and Application, ISSN 0361-2317, E-ISSN 1520-6378, Vol. 42, no 4, p. 486-497Article in journal (Refereed)
    Abstract [en]

    Multi-channel printing employs additional inks to improve the perceived image quality by reducing the graininess and augmenting the printer gamut. It also requires a color separation that deals with the one-to-many mapping problem imposed when using more than three inks. The proposed separation model incorporates a multilevel halftoning algorithm, reducing the complexity of the print characterization by grouping inks of similar hues in the same channel. In addition, a cost function is proposed that weights selected factors influencing the print and perceived image quality, namely color accuracy, graininess and ink consumption. The graininess perception is qualitatively assessed using S-CIELAB, a spatial low-pass filtering mimicking the human visual system. By applying it to a large set of samples, a generalized prediction quantifying the perceived graininess is carried out and incorporated as a criterion in the color separation. The results of the proposed model are compared with the separation giving the best colorimetric match, showing improvements in the perceived image quality in terms of graininess at a small cost of color accuracy and ink consumption. (c) 2016 Wiley Periodicals, Inc.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf