liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aucoin, L
    et al.
    Department of Chemical Engineering, McMaster University, Hamilton ON, Canada.
    Griffith, CM
    University of Ottawa Eye Institute, Ottawa ON, Canada.
    Pleizier, G
    ICPET, National Research Council of Canada, Ottawa ON, Canada.
    Deslandes, Y
    ICPET, National Research Council of Canada, Ottawa ON, Canada.
    Sheardown, H
    Department of Chemical Engineering, McMaster University, Hamilton ON, Canada.
    Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations2002In: Journal of Biomaterials Science. Polymer Edition, ISSN 0920-5063, E-ISSN 1568-5624, Vol. 13, no 4, p. 447-462Article in journal (Refereed)
    Abstract [en]

    In order to facilitate the adhesion of corneal epithelial cells to a poly dimethyl siloxane (PDMS) substrate ultimately for the development of a synthetic keratoprosthesis, PDMS surfaces were modified by covalent attachment of combinations of cell adhesion and synergistic peptides derived from laminin and fibronectin. Peptides studied included YIGSR and its synergistic peptide PDSGR from laminin and the fibronectin derived RGDS and PHSRN. Surfaces were modified with combinations of peptides determined by an experimental design. Peptide surface densities, measured using 125-I labeled tyrosine containing analogs, were on the order of pmol/cm(2). Surface density varied as a linear function of peptide concentration in the reaction solution, and was different for the different peptides examined. The lowest surface density at all solution fractions was obtained with GYRGDS, while the highest density was consistently obtained with GYPDSGR. These results provide evidence that the surfaces were modified with multiple peptides. Water contact angles and XPS results provided additional evidence for differences in the chemical composition of the various surfaces. Significant differences in the adhesion of human corneal epithelial cells to the modified surfaces were noted. Statistical analysis of the experimental adhesion results suggested that solution concentration YIGSR, RGDS, and PHSRN as well as the interaction effect of YIGSR and PDSGR had a significant effect on cell interactions. Modification with multiple peptides resulted in greater adhesion than modification with single peptides only. Surface modification with a control peptide PPSRN in place of PHSRN resulted in a decrease in cell adhesion in virtually all cases. These results suggest that surface modification with appropriate combinations of cell adhesion peptides and synergistic peptides may result in improved cell surface interactions.

  • 2.
    Benesch, Johan
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Svedhem, Sofia
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Svensson, Stefan
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry.
    Valiokas, Ramunas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Liedberg, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics.
    Tengvall, Pentti
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics.
    Protein adsorption to oligo(ethylene glycol) self-assembled monolayers: Experiments with fibrinogen, heparinized plasma, and serum2001In: Journal of Biomaterials Science. Polymer Edition, ISSN 0920-5063, E-ISSN 1568-5624, Vol. 12, no 6, p. 581-597Article in journal (Refereed)
    Abstract [en]

    Low protein adsorption is believed advantageous for blood-contacting materials and ethylene glycols (EG)-based polymeric compounds are often attached to surfaces for this purpose. In the present study, the adsorption of fibrinogen, serum, and plasma were studied by ellipsometry on a series of well-defined oligo(EG) terminated alkane-thiols self-assembled on gold. The layers were prepared with compounds of the general structure HS-(CH2)15-CONH-EGn, where n = 2, 4, and 6. Methoxy-terminated tri(EG) undecanethiol and hydroxyl-terminated hexadecanethiol self-assembled monolayers (SAMs) were used as references. The results clearly demonstrate that the adsorption depends on the experimental conditions with small amounts of fibrinogen adsorbing from a single protein solution, but larger amounts of proteins from serum and plasma. The adsorption of fibrinogen and blood plasma decreased with an increasing number of EG repeats and was temperature-dependent. Significantly less serum adsorbed to methoxy tri(EG) than to hexa(EG) and more proteins remained on the latter surface after incubation in a sodium dodecyl sulfate (SDS) solution, indicating a looser protein binding to the methoxy-terminated surface. All surfaces adsorbed complement factor 3(C3) from serum and plasma, although no surface-mediated complement activation was observed. The present study points to the importance of a careful choice of the protein model system before general statements regarding the protein repellant properties of potential surfaces can be made.

  • 3.
    Duan, X
    et al.
    Department of Chemical Engineering, University of Ottawa, Canada.
    Griffith, CM
    University of Ottawa Eye Institute, Ottawa, Canada.
    Dube, MA
    Department of Chemical Engineering, University of Ottawa, Canada.
    Sheardown, H
    Departments of Chemical Engineering and Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
    Novel dendrimer based polynrethanes for PEO incorporation2002In: Journal of Biomaterials Science. Polymer Edition, ISSN 0920-5063, E-ISSN 1568-5624, Vol. 13, no 6, p. 667-689Article in journal (Refereed)
    Abstract [en]

    A series of segmented polyurethanes based on methylene diisocyanate/ poly (tetramethylene oxide) and chain extended with either ethylene diamine or butane diol in combination with a generation 2 polypropylenimine octaamine dendrimer were synthesized. For polymer synthesis, the dendrimers were protected with either t-boc or Fmoc groups and were incorporated into the polyurethane microstructure to permit further functionalization with biologically active groups. Following deprotection, the dendrimers were reacted with succinimidyl propionate polyethylene oxide (SPA-PEO) to improve the protein resistance of the polymers and to examine the potential of this technique for polymer functionalization. Different synthesis techniques were examined to optimize the incorporation of the PEO into the polymer microstructure. Incorporation of the dendrimers and the PEO were confirmed by NMR and FTIR. Gel permeation chromatography was used to examine the molecular weights of the various polyurethanes. The dendrimer incorporated polymers had significantly lower molecular weights than the ED or BDO chain extended controls, likely due to lower reactivity of the dendrimers as a result of steric factors. Following PEO reaction, the molecular weights of the resultant polymers were consistent with the levels of PEO incorporation noted by comparison of peak intensities in the NMR spectra. Due to the highly hydrophilic nature of the PEO, some migration to the polymer surface was expected. Water contact angles and XPS, used to characterize the surfaces, suggest that there was some PEO enrichment at the surface of the polymers. Adsorption of radiolabeled fibrinogen to the polymer surfaces was decreased by a factor of approximately 40% in some of the PEO incorporated polymers. There were also differences in the patterns of plasma protein adsorption on the various surfaces as evaluated by SDS PAGE and immunoblotting. Therefore, the use of dendrimers in biomaterials for incorporation of a large number of functional groups seems to be promising.

  • 4. Nimeri, Ghada
    et al.
    Augustinsson (Nilsdotter-Augustinsson), Åsa
    Linköping University, Department of Molecular and Clinical Medicine, Infectious Diseases. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Infectious Diseases in Östergötland.
    Lassen, Bo
    Stendahl, Olle
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Molecular and Clinical Medicine, Medical Microbiology.
    Öhman, Lena
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Molecular and Clinical Medicine, Infectious Diseases. Östergötlands Läns Landsting, Centre for Medicine, Department of Infectious Diseases in Östergötland.
    Elwing, Hans
    The chemiluminescence response of neutrophils on polymer surfaces made by glow discharge plasma polymerization.1994In: Journal of Biomaterials Science. Polymer Edition, ISSN 0920-5063, E-ISSN 1568-5624, Vol. 6, no 8, p. 741-749Article in journal (Refereed)
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf