liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Buyanova, Irina
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Chen, Weimin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Monemar, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Electronic Properties of Ga(In)NAs Alloys2001In: MRS Internet journal of nitride semiconductor research, ISSN 1092-5783, E-ISSN 1092-5783, Vol. 6Article in journal (Refereed)
    Abstract [en]

     A brief review on the present knowledge of the electronic properties of the Ga(In)NAs ternary and quaternary alloys is given mainly from an experimental perspective. The discussion is focused on Ga(In)NAs with low N composition (< 10 %), where a large amount of experimental work has been done. Important fundamental electronic properties of the material system are analyzed with the emphasis on the nature of the giant band gap bowing in the alloy and nitrogen-induced modifications of the electronic structure of the conduction band. The current knowledge of the key material parameters, relevant for the device applications, such as electron effective mass, recombination processes and band alignment in Ga(In)NAs/GaAs heterostructures, is also reviewed.

  • 2.
    Goldys, EM
    et al.
    Macquarie Univ, Div Informat & Commun Sci, N Ryde, NSW, Australia Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden.
    Godlewski, M
    Macquarie Univ, Div Informat & Commun Sci, N Ryde, NSW, Australia Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden.
    Paskova, Tanja
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Pozina, Galia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Monemar, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Characterization of red emission in nominally undoped hydride vapor phase epitaxy GaN2001In: MRS Internet journal of nitride semiconductor research, ISSN 1092-5783, E-ISSN 1092-5783, Vol. 6, no 1, p. art. no.-1Article in journal (Refereed)
    Abstract [en]

    We report characterization of the red emission band in hydride vapor phase epitaxial GaN using cathodoluminescence spectroscopy and imaging and time-resolved photoluminescence. The observed properties of the emission are consistent with recombination of excitons bound at close donor-acceptor pairs. The time evolution of the emission signal during electron beam irradiation supports the association of the red emission with charged centres.

  • 3.
    Monemar, Bo
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Bergman, Peder
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Dalfors, J
    Pozina, Galia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Sernelius, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics .
    Holtz, Per-Olof
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Amano, H
    Akasaki, I
    Radiative recombination in In0.15Ga0.85N/GaN multiple quantum well structures1999In: MRS Internet journal of nitride semiconductor research, ISSN 1092-5783, E-ISSN 1092-5783, Vol. 4, no 16Article in journal (Refereed)
    Abstract [en]

    We present a study of the radiative recombination in In0.15Ga0.85N/GaN multiple quantum well samples, where the conditions of growth of the InGaN quantum layers were varied in terms of growth temperature (< 800 degrees C) and donor doping. The photoluminescence peak position varies strongly (over a range as large as 0.3 eV) with delay time after pulsed excitation, but also with donor doping and with excitation intensity. The peak position is mainly determined by the Stark effect induced by the piezoelectric field. In addition potential fluctuations, originating from segregation effects in the InGaN material, from interface roughness, and the strain fluctuations related to these phenomena, play an important role, and largely determine the width of the emission. These potential fluctuations may be as large as 0.2 eV in the present samples, and appear to be important for all studied growth temperatures for the InGaN layers. Screening effects from donor electrons and excited electron-hole pairs are important, and account for a large part of the spectral shift with donor doping (an upward shift of the photoluminescence peak up to 0.2 eV is observed for a Si donor density of 2 x 10(18) cm(-3) in the well), with excitation intensity and with delay time after pulsed excitation (also shifts up to 0.2 eV). We suggest a two-dimensional model for electron- and donor screening in this case, which is in reasonable agreement with the observed data, if rather strong localization potentials of short range (of the order 100 Angstrom) are present. The possibility that excitons as well as shallow donors are impact ionized by electrons in the rather strong lateral potential fluctuations present at this In composition is discussed.

  • 4.
    Monemar, Bo
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Paskov, Plamen
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Bergman, JP
    Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Meijo Univ, Dept Elect & Elect Engn, Nagoya, Aichi, Japan Meijo Univ, High Tech Res Ctr, Nagoya, Aichi, Japan.
    Pozina, Galia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Darakchieva, Vanya
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Iwaya, M
    Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Meijo Univ, Dept Elect & Elect Engn, Nagoya, Aichi, Japan Meijo Univ, High Tech Res Ctr, Nagoya, Aichi, Japan.
    Kamiyama, S
    Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Meijo Univ, Dept Elect & Elect Engn, Nagoya, Aichi, Japan Meijo Univ, High Tech Res Ctr, Nagoya, Aichi, Japan.
    Amano, H
    Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Meijo Univ, Dept Elect & Elect Engn, Nagoya, Aichi, Japan Meijo Univ, High Tech Res Ctr, Nagoya, Aichi, Japan.
    Akasaki, I
    Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Meijo Univ, Dept Elect & Elect Engn, Nagoya, Aichi, Japan Meijo Univ, High Tech Res Ctr, Nagoya, Aichi, Japan.
    Photoluminescence in n-doped In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells2002In: MRS Internet journal of nitride semiconductor research, ISSN 1092-5783, E-ISSN 1092-5783, Vol. 7, no 7, p. 1-Article in journal (Refereed)
    Abstract [en]

    In0.1Ga0.9N/In0.01Ga0.99N multiple quantum wells (MQWs) with heavily Si-doped barriers, grown with Metal Organic Vapor Phase Epitaxy (MOVPE) at about 800(0)C, have been studied in detail with optical spectroscopy. Such structures are shown to be very sensitive to a near surface depletion field, and if no additional layer is grown on top of the MQW structure the optical spectra from the individual QWs are expected to be drastically different. For a sample with 3 near surface QWs and Si-doped barriers, only the QW most distant from the surface is observed in photoluminescence (PL). The strong surface depletion field is suggested to explain these results, so that the QWs closer to the surface cannot hold the photo-excited carriers. A similar effect of the strong depletion field is found in an LED structure where the MQW is positioned at the highly doped n-side of the pn-junction. The internal polarization induced electric field in the QWs is also rather strong, and incompletely screened by carriers transferred from the doped barriers. The observed PL emission for this QW is of localized exciton character, consistent with the temperature dependence of peak position and PL decay time. The excitonic lineshape of 35-40 meV in the QW PL is explained as caused by a combination of random alloy fluctuations and interface roughness, the corresponding localization potentials are also responsible for the localization of the excitons in the low temperature range (

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf