liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Burggren, Warren
    et al.
    Univ North Texas, TX USA.
    Fahlman, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering. Fdn Oceanog, Spain; Kolmarden Wildlife Pk, Sweden; Fdn Oceanog, Spain.
    Milsom, William
    Univ British Columbia, Canada.
    Breathing patterns and associated cardiovascular changes in intermittently breathing animals: (Partially) correcting a semantic quagmire2024In: Experimental Physiology, ISSN 0958-0670, E-ISSN 1469-445XArticle, review/survey (Refereed)
    Abstract [en]

    Many animal species do not breathe in a continuous, rhythmic fashion, but rather display a variety of breathing patterns characterized by prolonged periods between breaths (inter-breath intervals), during which the heart continues to beat. Examples of intermittent breathing abound across the animal kingdom, from crustaceans to cetaceans. With respect to human physiology, intermittent breathing-also termed 'periodic' or 'episodic' breathing-is associated with a variety of pathologies. Cardiovascular phenomena associated with intermittent breathing in diving species have been termed 'diving bradycardia', 'submersion bradycardia', 'immersion bradycardia', 'ventilation tachycardia', 'respiratory sinus arrhythmia' and so forth. An examination across the literature of terminology applied to these physiological phenomena indicates, unfortunately, no attempt at standardization. This might be viewed as an esoteric semantic problem except for the fact that many of the terms variously used by different authors carry with them implicit or explicit suggestions of underlying physiological mechanisms and even human-associated pathologies. In this article, we review several phenomena associated with diving and intermittent breathing, indicate the semantic issues arising from the use of each term, and make recommendations for best practice when applying specific terms to particular cardiorespiratory patterns. Ultimately, we emphasize that the biology-not the semantics-is what is important, but also stress that confusion surrounding underlying mechanisms can be avoided by more careful attention to terms describing physiological changes during intermittent breathing and diving. What is the topic of this review? This review examines the rather confusing semantics that has been used to describe patterns in the field of cardiorespiratory physiology as it applies to intermittent breathing, particularly in diving species. What advances does it highlight? This review highlights the various cardiorespiratory phenomena associated with intermittent breathing and diving. It highlights the semantic issues associated with describing each and offers a rationale for standardizing terms based on underlying mechanisms to reduce confusion and advance the study of cardiorespiratory phenomena in both medical and comparative physiological investigations.

  • 2.
    Fahlman, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering. Global Diving Res SL, Spain; Fdn Oceanog Comunidad Valenciana, Spain; Kolmarden Wildlife Pk, Sweden.
    Cardiorespiratory adaptations in small cetaceans and marine mammals2023In: Experimental Physiology, ISSN 0958-0670, E-ISSN 1469-445XArticle, review/survey (Refereed)
    Abstract [en]

    The dive response, or the master switch of life, is probably the most studied physiological trait in marine mammals and is thought to conserve the available O-2 for the heart and brain. Although generally thought to be an autonomic reflex, several studies indicate that the cardiovascular changes during diving are anticipatory and can be conditioned. The respiratory adaptations, where the aquatic breathing pattern resembles intermittent breathing in land mammals, with expiratory flow exceeding 160 litres s(-1) has been measured in cetaceans, and where exposure to extreme pressures results in alveolar collapse (atelectasis) and recruitment upon ascent. Cardiorespiratory coupling, where breathing results in changes in heart rate, has been proposed to improve gas exchange. Cardiorespiratory coupling has also been reported in marine mammals, and in the bottlenose dolphin, where it alters both heart rate and stroke volume. When accounting for this respiratory dependence on cardiac function, several studies have reported an absence of a diving-related bradycardia except during dives that exceed the duration that is fuelled by aerobic metabolism. This review summarizes what is known about the respiratory physiology in marine mammals, with a special focus on cetaceans. The cardiorespiratory coupling is reviewed, and the selective gas exchange hypothesis is summarized, which provides a testable mechanism for how breath-hold diving vertebrates may actively prevent uptake of N-2 during routine dives, and how stress results in failure of this mechanism, which results in diving-related gas emboli.

  • 3.
    Lindenberger, Marcus
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Cardiology in Linköping.
    Länne, Toste
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Slower lower limb blood pooling in young women with orthostatic intolerance.2015In: Experimental Physiology, ISSN 0958-0670, E-ISSN 1469-445X, Vol. 100, no 1, p. 2-11Article in journal (Refereed)
    Abstract [en]

    NEW FINDINGS: What is the central question of this study? Orthostatic stress is mostly caused by venous blood pooling in the lower limbs. Venous distension elicits sympathetic responses, and increased distension speed enhances the cardiovascular response. We examine whether lower limb blood pooling rate during lower body negative pressure is linked to orthostatic intolerance. What is the main finding and its importance? A similar amount of blood was pooled in the lower limb, but at a slower rate in women who developed signs of orthostatic intolerance. The difference in blood pooling rate increased with orthostatic stress and was most prominent at a presyncope-inducing level of lower body negative pressure. The findings have implications for the pathophysiology as well as treatment of orthostatic intolerance. Vasovagal syncope is common in young women, but its aetiology remains elusive. Orthostatic stress-induced lower limb blood pooling is linked with central hypovolaemia and baroreceptor unloading. Venous distension in the arm elicits a sympathetic response, which is enhanced with more rapid distension. Our aim was to study both the amount and the speed of lower limb pooling during orthostatic stress and its effects on compensatory mechanisms to maintain cardiovascular homeostasis in women with orthostatic intolerance. Twenty-seven healthy women, aged 20-27 years, were subjected to a lower body negative pressure (LBNP) of 11-44 mmHg. Five women developed symptoms of vasovagal syncope (orthostatic intolerant) and were compared with the remaining women, who tolerated LBNP well (orthostatic tolerant). Lower limb blood pooling, blood flow and compensatory mobilization of venous capacitance blood were measured. Lower body negative pressure induced equal lower limb blood pooling in both groups, but at a slower rate in orthostatic intolerant women (e.g. time to 50% of total blood pooling, orthostatic intolerant 44 ± 7 s and orthostatic tolerant 26 ± 2 s; P < 0.001). At presyncope-inducing LBNP, the mobilization of venous capacitance blood was both reduced (P < 0.05) and much slower in orthostatic intolerant women (P = 0.0007). Orthostatic intolerant women elicited blunted arterial vasoconstriction at low-grade LBNP, activating only cardiopulmonary baroreceptors, while orthostatic tolerant women responded with apparent vasoconstriction (P < 0.0001). In conclusion, slower lower limb blood pooling could contribute to orthostatic intolerance in women. Mobilization of venous capacitance blood from the peripheral to the central circulation was both slower and decreased; furthermore, reduced cardiopulmonary baroreceptor sensitivity was found in women who developed orthostatic intolerance. Further studies including women who experience syncope in daily life are needed.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf