liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Admassie, Shimelis
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. University of Addis Ababa, Ethiopia.
    Ajjan, Fátima
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Elfwing, Anders
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Biopolymer hybrid electrodes for scalable electricity storage2016In: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 3, no 3, p. 174-185Article, review/survey (Refereed)
    Abstract [en]

    Powering the future, while maintaining a cleaner environment and a strong socioeconomic growth, is going to be one of the biggest challenges faced by mankind in the 21st century. The first step in overcoming the challenge for a sustainable future is to use energy more efficiently so that the demand for fossil fuels can be reduced drastically. The second step is a transition from the use of fossil fuels to renewable energy sources. In this sense, organic electrode materials are becoming increasingly attractive compared to inorganic electrode materials which have reached a plateau regarding performance and have severe drawbacks in terms of cost, safety and environmental friendliness. Using organic composites based on conducting polymers, such as polypyrrole, and abundant, cheap and naturally occurring biopolymers rich in quinones, such as lignin, has recently emerged as an interesting alternative. These materials, which exhibit electronic and ionic conductivity, provide challenging opportunities in the development of new charge storage materials. This review presents an overview of recent developments in organic biopolymer composite electrodes as renewable electroactive materials towards sustainable, cheap and scalable energy storage devices.

  • 2.
    Migliaccio, Ludovico
    et al.
    Univ Naples Federico II, Italy.
    Gryszel, Maciej
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Derek, Vedran
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Rudjer Boskovic Inst, Croatia.
    Pezzella, Alessandro
    Univ Naples Federico II, Italy; CNR, Italy; Natl Interuniv Consortium Mat Sci and Technol INSTM, Italy.
    Glowacki, Eric
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Aqueous photo(electro)catalysis with eumelanin thin films2018In: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 5, no 5, p. 984-990Article in journal (Refereed)
    Abstract [en]

    We report that eumelanin, the ubiquitous natural pigment found in most living organisms, is a photocatalytic material. Though the photoconductivity of eumelanin and its photochemical reactions with oxygen have been known for some time, eumelanins have not been regarded as photofaradaic materials. We find that eumelanin shows photocathodic behavior for both the oxygen reduction reaction and the hydrogen evolution reaction. Eumelanin films irradiated in aqueous solutions at pH 2 or 7 with simulated solar light photochemically reduce oxygen to hydrogen peroxide with accompanying oxidation of sacrificial oxalate, formate, or phenol. Autooxidation of the eumelanin competes with the oxidation of donors. Deposition of thin films on electrodes yields photoelectrodes with higher photocatalytic stability compared with the case of pure photocatalysis, implicating the successful extraction of positive charges from the eumelanin layer. These results open up new potential applications for eumelanin as a photocatalytically-active biomaterial, and inform the growing fundamental body of knowledge about the physical chemistry of eumelanins.

  • 3.
    Urbanaviciute, Indre
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Meng, Xiao
    Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands .
    Biler, Michal
    Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden.
    Wei, Yingfen
    Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands .
    Cornelissen, Tim D.
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Bhattacharjee, Subham
    Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
    Linares, Mathieu
    Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering. Swedish e-Science Research Centre (SeRC), Stockholm, Sweden.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Negative piezoelectric effect in an organic supramolecular ferroelectric2019In: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 6, p. 1688-1698Article in journal (Refereed)
    Abstract [en]

    The vast majority of ferroelectric materials demonstrate a positive piezoelectric effect. Theoretically, the negative piezoelectric coefficient d33 could be found in certain classes of ferroelectrics, yet in practice, the number of materials showing linear longitudinal contraction with increasing applied field (d33 < 0) is limited to few ferroelectric polymers. Here, we measure a pronounced negative piezoelectric effect in the family of organic ferroelectric small-molecular BTAs (trialkylbenzene-1,3,5-tricarboxamides), which can be tuned by mesogenic tail substitution and structural disorder. While the large- and small-signal strain in highly-ordered thin-film BTA capacitor devices are dominated by intrinsic contributions and originates from piezostriction, rising disorder introduces additional extrinsic factors that boost the large-signal d33 up to −20 pm V’1 in short-tailed molecules. Interestingly, homologues with longer mesogenic tails show a large-signal electromechanical response that is dominated by the quadratic Maxwell strain with significant mechanical softening upon polarization switching, whereas the small-signal strain remains piezostrictive. Molecular dynamics and DFT calculations both predict a positive d33 for defect-free BTA stacks. Hence, the measured negative macroscopic d33 is attributed to the presence of structural defects that enable the dimensional effect to dominate the piezoelectric response of BTA thin films.

  • 4.
    Xu, Weidong
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Nanjing Tech Univ NanjingTech, Peoples R China.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells2018In: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 5, no 2, p. 206-221Article, review/survey (Refereed)
    Abstract [en]

    The rapid development of organic solar cells (OSCs) based on non-fullerene acceptors has attracted increasing attention during the past few years, with a record power conversion efficiency of over 13% in a binary bulk heterojunction architecture. This exciting development also enables new possibilities for ternary OSCs to further enhance their efficiency and stability. This review summarizes very recent developments of ternary OSCs, with a focus on blends involving non-fullerene acceptors. We also highlight the challenges and perspectives for further development of ternary blend organic solar cells.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf