liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bao, Qinye
    et al.
    East China Normal Univ, Peoples R China.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Wang, Chuan Fei
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Interfaces of (Ultra)thin Polymer Films in Organic Electronics2019In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, no 1, article id 1800897Article, review/survey (Refereed)
    Abstract [en]

    In this short review the energy level alignment of interfaces involving solution-processed conjugated polymer (and soluble small molecules) films is described. Some general material properties of conjugated polymers and their solution-processed films are introduced, and the basic physics involved in energy level alignment at their interfaces is then discussed. An overview of energy level bending in (ultra)thin conjugated polymer films (often referred to as "band bending") is given and the effects of ion-containing interlayers typically used in organic electronic devices such as polymer light emitting diodes and organic bulk heterojunction solar cells are explored. The review finishes by describing a few of the available computational models useful for predicting and/or modeling energy level alignment at interfaces of solution-processed polymer films and discusses their respective strengths and weaknesses.

  • 2.
    Benselfelt, Tobias
    et al.
    Department of Fiber Technology, KTH, Stockholm, Sweden.
    Nordenström, Malin
    Department of Fiber Technology, KTH, Stockholm, Sweden.
    Lindström, Stefan B
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Wågberg, Lars
    Department of Fiber Technology, KTH, Stockholm, Sweden.
    Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions: Suitable Substrates for Biointerfaces2019In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 13, no 6, article id 1900333Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibrils (CNFs) assemble into water‐resilient materials in the presence of multivalent counter‐ions. The essential mechanisms behind these assemblies are ion–ion correlation and specific ion effects. A network model shows that the interfibril attraction indirectly influences the wet modulus by a fourth power relationship to the solidity of the network (Ew ∝ φ4). Ions that induce both ion–ion correlation and specific ion effects significantly reduce the swelling of the films, and due to the nonlinear relationship dramatically increase the wet modulus. Herein, this network model is used to explain the elastoplastic behavior of wet films of 2,2,6,6‐tetramethylpiperidine‐1‐oxyl radical (TEMPO)‐oxidized, carboxymethylated, and phosphorylated CNFs in the presence of different counter‐ions. The main findings are that the aspect ratio of the CNFs influences the ductility of the assemblies, that the bivalency of phosphorylate ligands probably limits the formation of interfibril complexes with divalent ions, and that a higher charge density increases the friction between fibrils by increasing the short‐range attraction from ion–ion correlation and specific ion effects. These findings can be used to rationally design CNF materials for a variety of applications where wet strength, ductility, and transparency are important, such as biomaterials or substrates for bioelectronics.

  • 3.
    Liu, Xianjie
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Electronic Structure Characterization of Soft Semiconductors2019In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, no 16, article id 1900439Article in journal (Refereed)
    Abstract [en]

    Soft semiconductors are a class of materials that have seen increased interest in terms of both basic research and development of technology, in particular optoelectronic devices. These materials, organic semiconductors and metal halide perovskites, are defined by being more mechanically malleable than the traditional crystalline inorganic semiconductors and with thin film fabrication done at lower temperatures and often from solution. In this short perspective article, basic properties of the materials are introduced, as well as their typical applications and a number of advanced characterization techniques that offer distinct advantages for studying soft semiconductor thin films.

  • 4.
    Schiliro, Emanuela
    et al.
    CNR, Italy.
    Lo Nigro, Raffaella
    CNR, Italy.
    Roccaforte, Fabrizio
    CNR, Italy.
    Deretzis, Ioannis
    CNR, Italy.
    La Magna, Antonino
    CNR, Italy.
    Armano, Angelo
    Univ Palermo, Italy; Univ Catania, Italy.
    Agnello, Simonpietro
    CNR, Italy; Univ Palermo, Italy.
    Pecz, Bela
    HAS, Hungary.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Giannazzo, Filippo
    CNR, Italy.
    Seed-Layer-Free Atomic Layer Deposition of Highly Uniform Al2O3 Thin Films onto Monolayer Epitaxial Graphene on Silicon Carbide2019In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 6, no 10, article id 1900097Article in journal (Refereed)
    Abstract [en]

    Atomic layer deposition (ALD) is the method of choice to obtain uniform insulating films on graphene for device applications. Owing to the lack of out-of-plane bonds in the sp(2) lattice of graphene, nucleation of ALD layers is typically promoted by functionalization treatments or predeposition of a seed layer, which, in turn, can adversely affect graphene electrical properties. Hence, ALD of dielectrics on graphene without prefunctionalization and seed layers would be highly desirable. In this work, uniform Al2O3 films are obtained by seed-layer-free thermal ALD at 250 degrees C on highly homogeneous monolayer (1L) epitaxial graphene (EG) (amp;gt;98% 1L coverage) grown on on-axis 4H-SiC(0001). The enhanced nucleation behavior on 1L graphene is not related to the SiC substrate, but it is peculiar of the EG/SiC interface. Ab initio calculations show an enhanced adsorption energy for water molecules on highly n-type doped 1L graphene, indicating the high doping of EG induced by the underlying buffer layer as the origin of the excellent Al2O3 nucleation. Nanoscale current mapping by conductive atomic force microscopy shows excellent insulating properties of the Al2O3 thin films on 1L EG, with a breakdown field amp;gt; 8 MV cm(-1). These results will have important impact in graphene device technology.

    The full text will be freely available from 2020-04-18 08:23
  • 5.
    Shen, Xiaoling
    et al.
    Shaanxi Univ Sci and Technol, Peoples R China.
    Dong, Guohui
    Shaanxi Univ Sci and Technol, Peoples R China.
    Wang, Lan
    Shaanxi Univ Sci and Technol, Peoples R China.
    Ye, Liqun
    China Three Gorges Univ, Peoples R China.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Enhancing Photocatalytic Activity of NO Removal through an In Situ Control of Oxygen Vacancies in Growth of TiO22019In: Advanced Materials Interfaces, ISSN 2196-7350, article id 1901032Article in journal (Refereed)
    Abstract [en]

    Although defects play an important role in the photocatalytic activity of TiO2, the mechanism of the photocatalytic activity related to different defects remains disputable. Moreover, the reported methods to introduce defects raise the preparation cost. In this work, different types of defects including O-vacancy cluster, surface O-vacancy, and bulk O-vacancy defects are in situ introduced in TiO2 by controlling the crystallization temperature. The medium-degree crystallinity TiO2 sample mainly containing surface O-vacancies exhibits the best NO removal activity. The systematic study of photocatalytic mechanism demonstrates that the surface O-vacancies significantly promote the adsorption of H2O molecules and improve charge transfer to the adsorbed H2O forming center dot OH, thus dramatically enhancing the photocatalytic NO removal activity. On the contrary, bulk O-vacancies neither help the adsorption of H2O molecules, nor improve the charge transfer to H2O.

    The full text will be freely available from 2020-08-07 08:12
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf