liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 12 av 12
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chai, Gaoda
    et al.
    Hong Kong Univ Sci & Technol, Peoples R China.
    Zhang, Jianquan
    Hong Kong Univ Sci & Technol, Peoples R China.
    Pan, Mingao
    Hong Kong Univ Sci & Technol, Peoples R China.
    Wang, Zhen
    North Carolina State Univ, NC 27695 USA; North Carolina State Univ, NC 27695 USA.
    Yu, Jianwei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Liang, Jiaen
    Hong Kong Univ Sci & Technol, Peoples R China.
    Yu, Han
    Hong Kong Univ Sci & Technol, Peoples R China.
    Chen, Yuzhong
    Hong Kong Univ Sci & Technol, Peoples R China.
    Shang, Ao
    Hong Kong Univ Sci & Technol, Peoples R China.
    Liu, Xiyuan
    Peking Univ, Peoples R China.
    Bai, Fujin
    Hong Kong Univ Sci & Technol, Peoples R China.
    Ma, Ruijie
    Hong Kong Univ Sci & Technol, Peoples R China.
    Chang, Yuan
    Hong Kong Univ Sci & Technol, Peoples R China.
    Luo, Siwei
    Hong Kong Univ Sci & Technol, Peoples R China.
    Zeng, Anping
    Hong Kong Univ Sci & Technol, Peoples R China.
    Zhou, Hang
    Peking Univ, Peoples R China.
    Chen, Kai
    Xi An Jiao Tong Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Ade, Harald
    North Carolina State Univ, NC 27695 USA; North Carolina State Univ, NC 27695 USA.
    Yan, He
    Hong Kong Univ Sci & Technol, Peoples R China; South China Univ Technol, Peoples R China.
    Deciphering the Role of Chalcogen-Containing Heterocycles in Nonfullerene Acceptors for Organic Solar Cells2020Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 5, nr 11, s. 3415-3425Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The field of organic solar cells has experienced paradigm-shifting changes in recent years because of the emergence of nonfullerene acceptors (NFAs). It is critically important to gain more insight into the structure-property relationship of the emerging A-DAD-A-type NFAs. In this Letter, a family of NFAs named BPF-4F, BPT-4F, and BPS-4F incorporating various chalcogen-containing heterocycles, i.e., furan, thiophene, and selenophene, respectively, was designed and synthesized. These NFAs exhibited dramatic differences in their photovoltaic performances with device efficiencies of 16.8% achieved by the thiophene-based cells, which was much higher than the furan-based ones (12.6%). In addition, the selenophene-based NFA showed a red-shifted absorption relative to the furan- and thiophene-based ones and obtained a decent efficiency of 16.3% owing to an improved J(SC). The reasons why these NFAs performed differently are systematically studied by comparing their optoelectronic properties and film morphology, which provides new understandings of the molecular design of high-performance NFAs.

  • 2.
    Fu, Huiting
    et al.
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Wang, Yuming
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Meng, Dong
    Chinese Acad Sci, Peoples R China.
    Ma, Zetong
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Li, Yan
    Chinese Acad Sci, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Zhaohui
    Chinese Acad Sci, Peoples R China.
    Sun, Yanming
    Beihang Univ, Peoples R China.
    Suppression of Recombination Energy Losses by Decreasing the Energetic Offsets in Perylene Diimide-Based Nonfullerene Organic Solar Cells2018Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 3, nr 11, s. 2729-2735Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, a range of nonfullerene organic solar cells comprising two perylene diimide (PDI)-based small molecule acceptors in combination with four representative polymer donors have been investigated and compared. In addition to significant differences in the power conversion efficiency, the energy losses of photovoltaic devices vary widely for these two PDI-based acceptors when paired with different donors. The sensitive Fourier-transform photocurrent spectroscopy (FTPS) and electroluminescence (EL) measurements have been performed to quantify their respective energetic offsets (Delta(Eoffiet)) and energy losses, with the aim of understanding the distinct energy losses in the studied organic blends. By comparing these results, we find that with decreasing Delta(Eoffset), recombination loss due to the charge-transfer state absorption A both nonradiative recombination loss and radiative are suppressed; as a result, the total energy loss is decreased. These observations offer a deep understanding of how the energetic offset affects the energy losses from the viewpoint of the Shockey-Queisser limit.

  • 3.
    Karani, Arfa
    et al.
    Univ Cambridge, England.
    Yang, Le
    Univ Cambridge, England; ASTAR, Singapore.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Oxford, England.
    Futscher, Moritz H.
    AMOLF, Netherlands.
    Snaith, Henry J.
    Univ Oxford, England.
    Ehrler, Bruno
    AMOLF, Netherlands.
    Greenham, Neil C.
    Univ Cambridge, England.
    Di, Dawei
    Univ Cambridge, England.
    Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure2018Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 3, nr 4, s. 869-874Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Metal-halide perovskite-based tandem solar cells show great promise for overcoming the Shockley-Queisser single-junction efficiency limit via low-cost tandem structures, but so far, they employ conventional bottom-cell materials that require stringent processing conditions. Meanwhile, difficulty in achieving low-bandgap (amp;lt;1.1 eV) perovskites limits all-perovskite tandem cell development. Here we propose a tandem cell design based on a halide perovskite top cell and a chalcogenide colloidal quantum dot (CQD) bottom cell, where both materials provide bandgap tunability and solution processability. A theoretical efficiency of 43% is calculated for tandem-cell bandgap combinations of 1.55 (perovskite) and 1.0 eV (CQDs) under 1-sun illumination. We highlight that intersubcell radiative coupling contributes significantly (amp;gt;11% absolute gain) to the ultimate efficiency via photon recycling. We report an initial experimental demonstration of a solution-processed monolithic perovskite/CQD tandem solar cell, showing evidence for subcell voltage addition. We model that a power conversion efficiency of 29.7% is possible by combining state-of-the-art perovskite and CQD solar cells.

  • 4.
    Kiefer, David
    et al.
    Chalmers Univ Technol, Sweden.
    Giovannitti, Alexander
    Imperial Coll London, England.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Biskup, Till
    Albert Ludwigs Univ Freiburg, Germany.
    Hofmann, Anna
    Chalmers Univ Technol, Sweden.
    Koopmans, Marten
    Zernike Inst Adv Mat, Netherlands.
    Cendra, Camila
    Stanford Univ, CA 94304 USA.
    Weber, Stefan
    Albert Ludwigs Univ Freiburg, Germany.
    Koster, L. Jan Anton
    Zernike Inst Adv Mat, Netherlands.
    Olsson, Eva
    Chalmers Univ Technol, Sweden.
    Rivnay, Jonathan
    Northwestern Univ, IL 60035 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    McCulloch, Iain
    Imperial Coll London, England; Imperial Coll London, England; King Abdullah Univ Sci and Technol, Saudi Arabia.
    Muller, Christian
    Chalmers Univ Technol, Sweden.
    Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics2018Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 3, nr 2, s. 278-285Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    N-doping of conjugated polymers either requires a high dopant fraction or yields a low electrical conductivity because of their poor compatibility with molecular dopants. We explore n doping of the polar naphthalenediimide-bithiophene copolymer p(gNDI-gT2) that carries oligoethylene glycol-based side chains and show that the polymer displays superior miscibility with the benzimidazole-dimethylbenzenamine-based n-dopant N-DMBI. The good compatibility of p(gNDI-gT2) and N-DMBI results in a relatively high doping efficiency of 13% for n-dopants, which leads to a high electrical conductivity of more than 10(-1) S cm(-1) for a dopant concentration of only 10 mol % when measured in an inert atmosphere. We find that the doped polymer is able to maintain its electrical conductivity for about 20 min when exposed to air and recovers rapidly when returned to a nitrogen atmosphere. Overall, solution coprocessing of p(gNDI-gT2) and N-DMBI results in a larger thermoelectric power factor of up to 0.4 mu W K-2 m(-1) compared to other NDI-based polymers.

  • 5.
    Li, Xiansheng
    et al.
    Nanjing Univ Sci & Technol, Peoples R China.
    Haghshenas, Mahdi
    Univ Isfahan, Iran.
    Wang, Linqin
    Westlake Univ, Peoples R China.
    Huang, Jing
    Nanjing Univ Sci & Technol, Peoples R China.
    Sheibani, Esmaeil
    Univ Isfahan, Iran.
    Yuan, Shichen
    Nanjing Univ Sci & Technol, Peoples R China.
    Luo, Xin
    Nanjing Univ Sci & Technol, Peoples R China.
    Chen, Xuehan
    Nanjing Univ Sci & Technol, Peoples R China.
    Wei, Changting
    Nanjing Univ Sci & Technol, Peoples R China.
    Xiang, Hengyang
    Nanjing Univ Sci & Technol, Peoples R China.
    Baryshnikov, Glib
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sun, Licheng
    Westlake Univ, Peoples R China.
    Zeng, Haibo
    Nanjing Univ Sci & Technol, Peoples R China.
    Xu, Bo
    Nanjing Univ Sci & Technol, Peoples R China.
    A Multifunctional Small-Molecule Hole- Transporting Material Enables Perovskite QLEDs with EQE Exceeding 20%2023Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 8, nr 3, s. 1445-1454Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hole-transporting materials (HTMs) play critical roles in the device performance and stability of perovskite quantum dot light-emitting diodes (Pe-QLEDs). However, the development of small-molecule HTMs for achieving high-performance Pe-QLEDs has proven to be very challenging because of their low hole mobility and poor solvent resistance. Herein, we tailor-made a multifunc-tional small-molecule HTM, termed X10, with methoxy as the substituents, for application in Pe-QLEDs. X10 features high hole mobility, good film-forming ability, and strong solvent resistance ability as well as defect passivation effect. Subsequently, Pe-QLEDs employing X10 as HTM presented a promising external quantum efficiency (EQE) of 20.18%, which is 7-fold higher than that of the reference HTM-TCTA-based ones (EQE approximate to 2.88%). To the best of our knowledge, this is the first case in which a small-molecule HTM displays a high EQE over 20% in Pe-QLEDs. Our work provides important guidance for the rational design of multifunctional small-molecule HTMs for high-performance Pe-QLEDs.

  • 6.
    Wang, Heyong
    et al.
    Ist Italiano Tecnol, Italy.
    Treglia, Antonella
    Ist Italiano Tecnol, Italy.
    Albaqami, Munirah D.
    King Saud Univ, Saudi Arabia.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Petrozza, Annamaria
    Ist Italiano Tecnol, Italy.
    Tin-Halide Perovskites for Near-Infrared Light-Emitting Diodes2024Ingår i: ACS Energy Letters, E-ISSN 2380-8195Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Light-emitting diodes (LEDs) with different emission spectra are widely used in daily life for a variety of applications. However, due to fundamental restrictions of light-emitting materials, the development of near-infrared LEDs (NIR-LEDs) is still modest. Recently, solution-processed tin-halide perovskites (THPs) have emerged as one of the most promising light-emitting materials for NIR-LED applications. In this Perspective, we start with discussing the peculiarities of THP semiconductors and how their electronic properties affect the light emission efficiency. We then summarize the current efforts in material engineering to design and master the electronic properties of THP films. Finally we give an outlook on the future challenges and technical roadmap for tin-based perovskite LEDs.

  • 7.
    Xiong, Min
    et al.
    Nanchang Univ, Peoples R China.
    Zou, Wenjun
    Nanchang Univ, Peoples R China.
    Fan, Ke
    Hong Kong Polytech Univ, Peoples R China.
    Qin, Chaochao
    Henan Normal Univ, Peoples R China.
    Li, Sibo
    Nanchang Univ, Peoples R China.
    Fei, Linfeng
    Nanchang Univ, Peoples R China.
    Jiang, Jizhong
    Jilin Univ, Peoples R China.
    Huang, Haitao
    Hong Kong Polytech Univ, Peoples R China.
    Shen, Liang
    Jilin Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Jen, Alex K-Y
    City Univ Hong Kong, Peoples R China.
    Yao, Kai
    Nanchang Univ, Peoples R China.
    Tailoring Phase Purity in the 2D/3D Perovskite Heterostructures Using Lattice Mismatch2022Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 7, nr 1, s. 550-559Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Although the fabrication of two-dimensional (2D)/three-dimensional (3D) halide perovskite heterostructures has been employed to balance the long-term stability and high efficiency of perovskite solar cells, the formation of metastable quasi-2D perovskites remains the most serious challenge. Here, we demonstrate that large lattice mismatch derived from halide and cation differences between 2D and 3D perovskites are key to avoiding the formation of unintended 2D phases in the preparation of 2D/3D bulk heterostructure because the phase transformation becomes less thermodynamically favorable. Specifically, by employing chloride 2D perovskite (PYA)(2) PbCl4 (PYA = propargylammonium) crystals into a 3D precursor solution, we achieve a phase-pure 2D/3D heterojunction with clean type-I band alignment, which exhibits greatly reduced charge recombination. Furthermore, the incorporation of alkyne perovskites is also shown to suppress iodine diffusion and formation due to their exceptional iodine capture capacity. The resultant 2D/3D heterostructured devices exhibited enhanced efficiencies and stabilities compared with their 3D counterparts.

  • 8.
    Xu, Yalong
    et al.
    Soochow Univ, Peoples R China.
    Yuan, Jianyu
    Soochow Univ, Peoples R China.
    Liang, Shuyan
    Fudan Univ, Peoples R China.
    Chen, Jing-De
    Soochow Univ, Peoples R China.
    Xia, Yuxin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Larson, Bryon W.
    Natl Renewable Energy Lab, CO 80401 USA.
    Wang, Yusheng
    Soochow Univ, Peoples R China.
    Su, Gregory M.
    Lawrence Berkeley Natl Lab, CA 94720 USA.
    Zhang, Yannan
    Soochow Univ, Peoples R China.
    Cui, Chaohua
    Soochow Univ, Peoples R China.
    Wang, Ming
    Donghua Univ, Peoples R China.
    Zhao, Haibin
    Fudan Univ, Peoples R China.
    Ma, Wanli
    Soochow Univ, Peoples R China.
    Simultaneously Improved Efficiency and Stability in All-Polymer Solar Cells by a P-i-N Architecture2019Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 4, nr 9, s. 2277-2286Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    All-polymer organic solar cells offer exceptional stability. Unfortunately, the use of bulk heterojunction (BHJ) structure has the intrinsic challenge to control the side-chain entanglement and backbone orientation to achieve sophisticated phase separation in all-polymer blends. Here, we revealed that the P-i-N structure can outperform the BHJ ones with a nearly 50% efficiency improvement, reaching a power conversion efficiency approaching 10%. This P-i-N structure can also provide an enhanced internal electric field and remarkably stable morphology Sequential deposition under harsh thermal stress. We have further demonstrated generality of the P-i-N structure in several other all-polymer systems. Considering the adjustable polymer molecular weight and solubility, the P-i-N device structure can be more beneficial for all-polymer systems. With the design of more crystalline polymers, the antiquated P-i-N structure can further show its strength in all-polymer systems by simplified morphology control and improved carrier extraction, becoming a more favorite device structure than the dominant BHJ structure.

  • 9.
    Yuan, Shichen
    et al.
    Nanjing Univ Sci & Technol, Peoples R China.
    Fang, Tao
    Nanjing Univ Sci & Technol, Peoples R China.
    Huang, Jing
    Nanjing Univ Sci & Technol, Peoples R China.
    Li, Xiansheng
    Nanjing Univ Sci & Technol, Peoples R China.
    Wei, Changting
    Nanjing Univ Sci & Technol, Peoples R China.
    Zhou, Yihui
    Nanjing Univ Sci & Technol, Peoples R China.
    Li, Yan
    Nanjing Univ Sci & Technol, Peoples R China.
    Zheng, Xin
    Nanjing Univ Sci & Technol, Peoples R China.
    Huang, Jinhai
    East China Univ Sci & Technol, Peoples R China; East China Univ Sci & Technol, Peoples R China.
    Su, Jianhua
    East China Univ Sci & Technol, Peoples R China; East China Univ Sci & Technol, Peoples R China.
    Baryshnikov, Glib
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Choy, Wallace C. H.
    Univ Hong Kong, Peoples R China.
    Zeng, Haibo
    Nanjing Univ Sci & Technol, Peoples R China.
    Xu, Bo
    Nanjing Univ Sci & Technol, Peoples R China.
    Balancing Charge Injection via a Tailor-Made Electron-Transporting Material for High Performance Blue Perovskite QLEDs2023Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 8, nr 1, s. 818-826Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One of the great challenges in perovskite quantum dot light-emitting diodes (Pe-QLEDs) is the unbalanced charge injection that significantly hinders the device performance and stability. Herein, we tailor-made a high mobility electron-transporting material (ETM), named B2, to balance the carrier injection in blue Pe-QLEDs. B2 with a tailored asymmetric anthracenyl structure exhibits a promising electron mobility of 2.7 x 10(-4) cm(2)center dot V-1 center dot s(-1), which is almost 20 times higher than the commonly used ETM-TPBi (1.1 x 10(-5) cm(2)center dot V-1 center dot s(-1)). Subsequently, sky blue (490 nm) Pe-QLED with B2 as the ETM presented a remarkably high external quantum efficiency (EQE) of 13.17% and a low turn-on voltage of 2.2 V, which is much better than that of the TPBi-based device (EQE of 8.31% and Vturn-on of 3.2 V). In addition, B2 also demonstrated a universal application in green and deep blue Pe-QLEDs. This work provides an important guidance to rational design of high electron mobility ETMs for high-performance LEDs.

  • 10.
    Zhao, Haifeng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Elect Sci & Technol China, Peoples R China.
    Chen, Hongting
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Jinan Univ, Peoples R China.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Zhejiang Univ, Peoples R China.
    Kuang, Chaoyang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Luo, Xiyu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Tsinghua Univ, Peoples R China.
    Teng, Pengpeng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Univ Aeronaut & Astronaut, Peoples R China.
    Yin, Chunyang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zeng, Peng
    Univ Elect Sci & Technol China, Peoples R China.
    Hou, Lintao
    Jinan Univ, Peoples R China.
    Yang, Ying
    Nanjing Univ Aeronaut & Astronaut, Peoples R China.
    Duan, Lian
    Tsinghua Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Liu, Mingzhen
    Univ Elect Sci & Technol China, Peoples R China.
    High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr(3) Nanocrystals with Rationally Designed Aromatic Ligands2021Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 6, nr 7, s. 2395-2403Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Despite rapid developments of light-emitting diodes (LEDs) based on emerging perovskite nanocrystals (PeNCs), it remains challenging to achieve devices with integrated high efficiencies and high brightness because of the insulating long-chain ligands used for the PeNCs. Herein, we develop highly luminescent and stable formamidinium lead bromide PeNCs capped with rationally designed short aromatic ligands of 2-naphthalenesulfonic acid (NSA) for LEDs. Compared with commonly used oleic acid ligands, the NSA molecules not only preserve the surface properties of the PeNCs during the purification but also notably improve the electrical properties of the assembled emissive layers, ensuring efficient charge injection/transport in the devices. The resulting champion LED with electroluminescence approaching the Rec. 2020 green primary color demonstrates a high brightness of 67 115 cd cm(-2) and a peak external quantum efficiency of 19.2%. More impressively, the device shows negligibly decreased efficiency at an elevated brightness of 20 000 cd cm(-2) and a well-retained efficiency of over 10% at around 65 000 cd cm(-2), presenting a breakthrough in LEDs based on PeNCs.

  • 11.
    Zhou, Ke
    et al.
    Xi An Jiao Tong Univ, Peoples R China.
    Liu, Yanfeng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Alotaibi, Awwad
    Washington State Univ, WA 99164 USA.
    Yuan, Jian
    Xi An Jiao Tong Univ, Peoples R China.
    Jiang, Chuanxiu
    Natl Ctr Nanosci and Technol, Peoples R China.
    Xin, Jingming
    Xi An Jiao Tong Univ, Peoples R China.
    Liu, Xinfeng
    Natl Ctr Nanosci and Technol, Peoples R China.
    Collins, Brian A.
    Washington State Univ, WA 99164 USA.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Ma, Wei
    Xi An Jiao Tong Univ, Peoples R China.
    Molecular and Energetic Order Dominate the Photocurrent Generation Process in Organic Solar Cells with Small Energetic Offsets2020Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 5, nr 2, s. 589-596Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Minimizing the energetic offset between the donor (D) and acceptor (A) in organic solar cells (OSCs) is pivotal for reducing the charge-transfer (CT) loss and improving the open-circuit voltage (V-oc). This nevertheless leads to a topic of debate regarding the driving force for the charge separation in OSCs with small energetic offsets. The molecular packing geometries in the active layer determine the energetic levels and trap density, but their relationship with the driving force is seldom considered. Limited by the complicated demixing morphology and inaccurate measurements of energy levels in the prototypical bulk-heterojunction (BHJ) devices, we thereby demonstrate a concise and robust planar-heterojunction model of PM7/N2200 to investigate the origin of driving force for charge generation. It is surprising to note that the device with smaller energy offset shows higher efficiency. Further analysis reveals that a bilayer device with short-range packing PM7 exhibits smaller energetic offsets along with fewer morphological defects and traps compared to its long-range packing counterparts. This molecular packing characteristic diminishes the energetic disorder at the D/A interfaces and inhibits the trap-assisted charge recombination, contributing to the increased short-circuit current (J(SC)) and V-OC. Our results suggest that the energetic offset actually has limited influence on charge separation, while the synergetic control of molecular and energetic order is vital to the photocurrent generation and energy loss reduction in OSCs.

  • 12.
    Zhou, Ke
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Xi An Jiao Tong Univ, Peoples R China.
    Wu, Yang
    Xi An Jiao Tong Univ, Peoples R China.
    Liu, Yanfeng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhou, Xiaobo
    Xi An Jiao Tong Univ, Peoples R China.
    Zhang, Lin
    Xi An Jiao Tong Univ, Peoples R China.
    Ma, Wei
    Xi An Jiao Tong Univ, Peoples R China.
    Molecular Orientation of Polymer Acceptor Dominates Open-Circuit Voltage Losses in All-Polymer Solar Cells2019Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 4, nr 5, s. 1057-1064Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low open-circuit voltage (V-oc) induced by energy loss in organic solar cells is considered to be one of the most influencing factors limiting device performance, in which morphology of the active layer plays a crucial role in determining energy loss. By employing a bilayer structure of the P3HT:N2200 all-polymer system, we have identified the isolated impact of a molecular packing structure on device V-oc with analysis of energy loss processes. Thermal annealing and various solvents were used to control molecular orientation in P3HT:N2200 bilayer devices, in which different V-oc spanning from 0.45 to 0.54 V could be obtained. It was found that energy of charge-transfer state (E-ct) differed in these bilayer devices. Besides, increased charge recombination could be observed in bilayer devices when N2200 layers exhibited face-on orientation, which caused an additional energy loss and decreased V-oc. Our results suggest that rational control of polymer molecular orientation is essential to reduce the energy loss and ultimately achieve high V-oc in all-polymer solar cells.

1 - 12 av 12
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf