liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ahmed, Heba
    et al.
    RMIT Univ, Australia.
    Yang, Xinci
    RMIT Univ, Australia.
    Ehrnst, Yemima
    RMIT Univ, Australia.
    Jeorje, Ninweh N.
    RMIT Univ, Australia.
    Marqus, Susan
    RMIT Univ, Australia.
    Sherrell, Peter C.
    RMIT Univ, Australia; Univ Melbourne, Australia.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rezk, Amgad R.
    RMIT Univ, Australia.
    Yeo, Leslie Y.
    RMIT Univ, Australia.
    Ultrafast assembly of swordlike Cu-3(1,3,5-benzenetricarboxylate)(n) metal-organic framework crystals with exposed active metal sites2020Inngår i: Nanoscale Horizons, ISSN 2055-6764, E-ISSN 2055-6756, Vol. 5, nr 7, s. 1050-1057Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Owing to their large surface area and high uptake capacity, metal-organic frameworks (MOFs) have attracted considerable attention as potential materials for gas storage, energy conversion, and electrocatalysis. Various strategies have recently been proposed to manipulate the MOF surface chemistry to facilitate exposure of the embedded metal centers at the crystal surface to allow more effective binding of target molecules to these active sites. Nevertheless, such strategies remain complex, often requiring strict control over the synthesis conditions to avoid blocking pore access, reduction in crystal quality, or even collapse of the entire crystal structure. In this work, we exploit the hydrodynamics and capillary resonance associated with acoustically-driven dynamically spreading and nebulizing thin films as a new method for ultrafast synthesis of swordlike Cu-3(1,3,5-benzenetricarboxylate)(n) (Cu-BTC) MOFs with unique monoclinic crystal structures (P2(1)/n) distinct to that obtained via conventional bulk solvothermal synthesis, with swordlike morphologies whose lengths far exceed their thicknesses. Through pulse modulation and taking advantage of the rapid solvent evaporation associated with the high nebulisation rates, we are also able to control the thicknesses of these large aspect ratio (width and length with respect to the thickness) crystals by arresting their vertical growth, which, in turn, allows exposure of the metal active sites at the crystal surface. An upshot of such active site exposure on the crystal surface is the concomitant enhancement in the conductivity of the MOF, evident from the improvement in its current density by two orders of magnitude.

  • 2.
    Grossmann, Lukas
    et al.
    Deutsches Museum, Museumsinsel 1, 80538 München, Germany. markus@lackinger.org; Technische Universität München, Physics Department, James-Franck-Strasse 1, 85748 Garching, Germany.
    Duncan, David A.
    Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK.
    Jarvis, Samuel P
    Lancaster University, Physics Department, Lancaster LA1 4YB, UK.
    Jones, Robert G
    University of Nottingham, Department of Physical Chemistry, School of Chemistry, Nottingham NG7 2RD, UK.
    De, Soumen
    Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
    Rosén, Johanna
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign.
    Schmittel, Michael
    Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
    Heckl, Wolfgang M
    Deutsches Museum, Museumsinsel 1, 80538 München, Germany. markus@lackinger.org; Technische Universität München, Physics Department, James-Franck-Strasse 1, 85748 Garching, Germany.
    Björk, Jonas
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign.
    Lackinger, Markus
    Deutsches Museum, Museumsinsel 1, 80538 München, Germany. markus@lackinger.org; Technische Universität München, Physics Department, James-Franck-Strasse 1, 85748 Garching, Germany.
    Evolution of adsorption heights in the on-surface synthesis and decoupling of covalent organic networks on Ag(111) by normal-incidence X-ray standing wave2022Inngår i: Nanoscale Horizons, ISSN 2055-6764, E-ISSN 2055-6756, Vol. 7, nr 1, s. 51-62Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Structural characterization in on-surface synthesis is primarily carried out by Scanning Probe Microscopy (SPM) which provides high lateral resolution. Yet, important fresh perspectives on surface interactions and molecular conformations are gained from adsorption heights that remain largely inaccessible to SPM, but can be precisely measured with both elemental and chemical sensitivity by Normal-Incidence X-ray Standing Wave (NIXSW) analysis. Here, we study the evolution of adsorption heights in the on-surface synthesis and post-synthetic decoupling of porous covalent triazine-phenylene networks obtained from 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TBPT) precursors on Ag(111). Room temperature deposition of TBPT and mild annealing to ~150 C result in full debromination and formation of organometallic intermediates, where the monomers are linked into reticulated networks by C-Ag-C bonds. Topologically identical covalent networks comprised of triazine vertices that are interconnected by biphenyl units are obtained by a thermally activated chemical transformation of the organometallic intermediates. Exposure to iodine vapor facilitates decoupling by intercalation of an iodine monolayer between the covalent networks and the Ag(111) surface. Accordingly, Scanning Tunneling Microscopy (STM), X-ray Photoelectron Spectroscopy (XPS) and NIXSW experiments are carried out for three successive sample stages: organometallic intermediates, covalent networks directly on Ag(111) and after decoupling. NIXSW analysis facilitates the determination of adsorption heights of chemically distinct carbon species, i.e. in the phenyl and triazine rings, and also for the organometallic carbon atoms. Thereby, molecular conformations are assessed for each sample stage. The interpretation of experimental results is informed by Density Functional Theory (DFT) calculations, providing a consistent picture of adsorption heights and molecular deformations in the networks that result from the interplay between steric hindrance and surface interactions. Quantitative adsorption heights, i.e. vertical distances between adsorbates and surface, provide detailed insight into surface interactions, but are underexplored in on-surface synthesis. In particular, the direct comparison with an in situ prepared decoupled state unveils the surface influence on the network structure, and shows that iodine intercalation is a powerful decoupling strategy.

  • 3.
    Kuruvilla, Jacob
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Farinha, Ana Paula
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Bayat, Narges
    Department of Biochemistry and Biophysics, Arrhenius laboratories, Stockholm University, Stockholm, Sweden.
    Cristobal, Susana
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Dentristy, University of the Basque Country, Leioa, Spain.
    Surface proteomics on nanoparticles, a step to simplify the rapid prototyping of nanoparticles2017Inngår i: Nanoscale Horizons, ISSN 2055-6764, E-ISSN 2055-6756, nr 1, s. 55-64Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Engineered nanoparticles for biomedical applications requireincreasing effectiveness in targeting specific cells while preservingnon-target cell’s safety. We developed a surface proteomicsmethod for a rapid and systematic analysis of the interphasebetween the nanoparticle protein corona and the targeting cellsthat could implement the rapid prototyping of nanomedicines.Native nanoparticles entering in a protein-rich liquid mediaquickly form a macromolecular structure called protein corona.This protein structure defines the physical interaction betweennanoparticles and target cells. The surface proteins compose thefirst line of interaction between this macromolecular structureand the cell surface of a target cell. We demonstrated that SUSTU(SUrface proteomics, Safety, Targeting, Uptake) provides aqualitative and quantitative analysis from the protein coronasurface. With SUSTU, the spatial dynamics of the protein coronasurface can be studied. Data from SUSTU would ascertain thenanoparticle functionalized groups exposed at destiny that couldcircumvent preliminary in vitro experiments. Therefore thismethod could implement the analysis of nanoparticle targetingand uptake capability and could be integrated into a rapidprototyping strategy which is a major challenge in nanomaterialscience. Data are available via ProteomeXchange with identifierPXD004636.

  • 4.
    Niu, Kaifeng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten. Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou China.
    Fan, Qitang
    Department of Chemistry, Philipps-Universität Marburg, Germany.
    Chi, Lifeng
    Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China; Department of Materials Science and Engineering, Macau University of Science and Technology, Macau, China.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Gottfried, J. Michael
    Department of Chemistry, Philipps-Universität Marburg, Germany.
    Björk, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Unveiling the formation mechanism of the biphenylene network2023Inngår i: Nanoscale Horizons, ISSN 2055-6764, E-ISSN 2055-6756, Vol. 8, nr 3, s. 368-376Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have computationally studied the formation mechanism of the biphenylene network via the intermolecular HF zipping, as well as identified key intermediates experimentally, on the Au(111) surface. We elucidate that the zipping process consists of a series of defluorinations, dehydrogenations, and C–C coupling reactions. The Au substrate not only serves as the active site for defluorination and dehydrogenation, but also forms C–Au bonds that stabilize the defluorinated and dehydrogenated phenylene radicals, leading to "standing" benzyne groups. Despite that the C–C coupling between the "standing" benzyne groups is identified as the rate-limiting step, the limiting barrier can be reduced by the adjacent chemisorbed benzyne groups. The theoretically proposed mechanism is further supported by scanning tunneling microscopy experiments, in which the key intermediate state containing chemisorbed benzyne groups can be observed. This study provides a comprehensive understanding towards the on-surface intermolecular HF zipping, anticipated to be instructive for its future applications.

    Fulltekst (pdf)
    fulltext
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf