liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hagenbjörk, Johan
    et al.
    Linköping University, Department of Management and Engineering, Production Economics. Linköping University, Faculty of Science & Engineering.
    Blomvall, Jörgen
    Linköping University, Department of Management and Engineering, Production Economics. Linköping University, Faculty of Science & Engineering.
    Simulation and evaluation of the distribution of interest rate risk2019In: Computational Management Science, ISSN 1619-697X, E-ISSN 1619-6988, Vol. 16, no 1-2, p. 297-327Article in journal (Refereed)
    Abstract [en]

    We study methods to simulate term structures in order to measure interest rate risk more accurately. We use principal component analysis of term structure innovations to identify risk factors and we model their univariate distribution using GARCH-models with Student’s t-distributions in order to handle heteroscedasticity and fat tails. We find that the Student’s t-copula is most suitable to model co-dependence of these univariate risk factors. We aim to develop a model that provides low ex-ante risk measures, while having accurate representations of the ex-post realized risk. By utilizing a more accurate term structure estimation method, our proposed model is less sensitive to measurement noise compared to traditional models. We perform an out-of-sample test for the U.S. market between 2002 and 2017 by valuing a portfolio consisting of interest rate derivatives. We find that ex-ante Value at Risk measurements can be substantially reduced for all confidence levels above 95%, compared to the traditional models. We find that that the realized portfolio tail losses accurately conform to the ex-ante measurement for daily returns, while traditional methods overestimate, or in some cases even underestimate the risk ex-post. Due to noise inherent in the term structure measurements, we find that all models overestimate the risk for 10-day and quarterly returns, but that our proposed model provides the by far lowest Value at Risk measures.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf