liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Benosman, Mourad
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology. Tlemcen University, Algeria.
    Bereksi-reguig, Fethi
    Tlemcen University, Algeria.
    Salerud, Göran
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Analysis of ECG-trunk muscle signal amplitude and heart rate relationship2013In: Journal of Medical Engineering & Technology, ISSN 0309-1902, E-ISSN 1464-522X, Vol. 37, no 7, p. 449-455Article in journal (Refereed)
    Abstract [en]

    The objective of this paper is to investigate if bioelectrical signals, generated from trunk muscles identified in an electrocardiogram (ECG) signal presented in this paper as ECG-Trunk Muscles Signals amplitude (Ecg-TMSA) are correlated with Heart rate (HR) during different levels of physical activity and also if Ecg-TMSA is not influenced by mental activity. HR and Ecg-TMSA were derived from ECG in 14 subjects when walking and jogging at different treadmill velocities from 4–10 (km h−1). The mean relationship for all 14 subjects was HR = (42.3 ± 0.2) + (45.3 ± 2.8) Ecg-TMSA, r2 = 0.91. The result of one individual data points example for a 21 min experiment was (r2 = 0.93, p < 0.0001, n = 336). The obtained results show a linear relationship between Ecg-TMSA and HR. Moreover, the Ecg-TMSA was not affected by mental activity

  • 2.
    Pettersson, Erik
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Anderson, Chris
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    Henricsson, Joachim
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Falk, Magnus
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in West Östergötland, Research & Development Unit in Local Health Care.
    Validation of phototesting for estimation of individual skin ultraviolet sensitivity based on a lengthwise attenuating ultraviolet B field.2015In: Journal of Medical Engineering & Technology, ISSN 0309-1902, E-ISSN 1464-522X, Vol. 39, no 2, p. 91-8Article in journal (Refereed)
    Abstract [en]

    Conventional skin UV-sensitivity phototesting is based on semi-quantitative assessment of minimal erythema dose (MED). This study demonstrates a method for quantitative MED determination, using a lengthwise attenuating UVB-field combined with tissue viability imaging (TiVi). The study aim was to investigate the agreement between MED acquired by traditional phototest and by the new method. Forty-seven voluntary subjects underwent phototesting with a traditional phototest and with the new technique. Test reading, carried out after 24 h, showed moderate agreement between the methods when assessed with TiVi (Kappa value=0.46) and visually (Kappa value=0.48). For the new method, no systematic differences were seen between outcomes assessed with TiVi or visually (95% CI for the mean difference=-1.6-2.0). In conclusion, the results give promising support for the concept of achieving a more precise MED estimation by combining continuous attenuating UV fields with new available bioengineering technology.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf