liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abtahi, Jahan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Orthopaedics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Maxillofacial Unit.
    Agholme, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Orthopaedics. Linköping University, Faculty of Health Sciences.
    Sandberg, Olof
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Aspenberg, Per
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping. Linköping University, Department of Clinical and Experimental Medicine, Orthopaedics. Linköping University, Faculty of Health Sciences.
    Bisphosphonate-induced osteonecrosis of the jaw in a rat model arises first after the bone has become exposed. No primary necrosis in unexposed bone2012In: Journal of Oral Pathology & Medicine, ISSN 0904-2512, E-ISSN 1600-0714, Vol. 41, no 6, p. 494-499Article in journal (Refereed)
    Abstract [en]

    J Oral Pathol Med (2012) 41: 494499 Background: Bisphosphonate-related osteonecrosis of the jaw was first described to start with sterile osteocyte death, similar to osteonecrosis in other parts of the skeleton. The typical chronic osteomyelitis was thought to develop when the dead bone was exposed to the oral cavity. An alternative explanation would be that the chronic osteomyelitis is a result of a bisphosphonate-related inability of infected bony lesions to heal. We tested the hypothesis that primary osteocyte death is not necessary for the development of jaw osteonecrosis. Material and methods: Forty rats were randomly allocated to four groups of 10. All animals underwent unilateral molar extraction and received the following drug treatments: Group I, controls with no drug treatment; Group II, 200 mu g/kg per day alendronate; Groups III and IV, 200 mu g/kg per day alendronate and 1 mg/kg of dexamethasone. All rats were euthanized after 14 days. Presence of osteonecrosis was determined by clinical and histological observations for groups IIII. For group IV, osteocyte viability at the contralateral uninjured site was examined using lactate dehydrogenase histochemistry (LDH). Results: All animals in the alendronate plus dexamethasone groups developed large ONJ-like lesions. Lactate dehydrogenase staining showed viable osteocytes in the contralateral jaw with no tooth extraction. No signs of osteonecosis were seen in the other groups. Conclusion: Bisphosphonates and dexamethasone caused no osteocyte death in uninjured bone, but large ONJ-like lesions after tooth extraction. Osteonecrosis of the jaw appears to arise first after the bone has been exposed. Possibly, bisphosphonates hamper the necessary resorption of bone that has become altered because of infection.

  • 2.
    Ansell, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Jedlinski, Adam
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping.
    Johansson, Ann-Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Roberg, Karin
    Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping. Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science.
    Epidermal growth factor is a biomarker for poor cetuximab response in tongue cancer cells2016In: Journal of Oral Pathology & Medicine, ISSN 0904-2512, E-ISSN 1600-0714, Vol. 45, no 1, p. 9-16Article in journal (Refereed)
    Abstract [en]

    Background: Epidermal growth factor receptor (EGFR) is a target for treatment in tongue cancer. Here, EGFR ligands were evaluated for their potential uses as predictive biomarkers of cetuximab treatment response.

    Methods: In three tongue cancer cell lines the influences of epidermal growth factor (EGF), amphiregulin (AR), and epiregulin (EPR) on tumour cell proliferation and cetuximab response were evaluated by the addition of recombinant human (rh) proteins or the siRNA-mediated downregulation of endogenous ligand production.

    Results: EGF or AR downregulation suppressed the proliferation of all investigated cell lines. Furthermore, all cell lines displayed increased cetuximab resistance upon the addition of rhEGF, whereas EGF silencing resulted in an improved cetuximab response in one cell line.

    Conclusions: Our data suggest that EGF and AR are critical components of the EGFR signalling network required for full proliferative potential. Moreover, EGF is a potential predictive biomarker of poor cetuximab response and a possible treatment target.

  • 3.
    Farnebo, Lovisa
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of ENT - Head and Neck Surgery UHL.
    Jerhammar, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences.
    Ceder, Rebecca
    Institute of Environmental Medicine, Division of Biochemical Toxicology and Experimental Cancer Research, Karolinska Institute, Stockholm, Sweden.
    Grafström, Roland C
    Institute of Environmental Medicine, Division of Biochemical Toxicology and Experimental Cancer Research, Karolinska Institute, Stockholm, Sweden.
    Vainikka, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences.
    Thunell, Lena
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Grénman, Reidar
    Medical Biochemistry, University of Turku, Finland.
    Johansson, Ann-Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences.
    Combining factors on protein and gene level to predict radioresponse in head and neck cancer cell lines2011In: Journal of Oral Pathology & Medicine, ISSN 0904-2512, E-ISSN 1600-0714, Vol. 40, no 10, p. 739-746Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Radiotherapy is the main therapy for head and neck squamous cell carcinoma (HNSCC); however, treatment resistance and local recurrence are significant problems, highlighting the need for predictive markers. In this study, we evaluated selected proteins, mutations, and single nucleotide polymorphisms (SNPs) involved in apoptosis, cell proliferation, and DNA repair alone or combined as predictive markers for radioresponse in 42 HNSCC cell lines.

    METHODS: The expression of epidermal growth factor receptor, survivin, Bax, Bcl-2, Bcl-XL, cyclooxygenase-2, and heat shock protein 70 was analyzed by ELISA. Furthermore, mutations and SNPs in the p53 gene as well as SNPs in the MDM2, XRCC1, and XRCC3 genes were analyzed for their relation to radioresponse. To enable the evaluation of the predictive value of several factors combined, each cell line was allocated points based on the number of negative points (NNP) system, and the NNP sum was correlated with radioresponse.

    RESULTS: Survivin was the only factor that alone was significantly correlated with the intrinsic radiosensitivity (r=0.36, p=0.02). The combination of survivin, Bax, Bcl-2, Bcl-XL, cyclooxygenase-2, and the p53 Arg72Pro polymorphism was found to most strongly correlate with radioresponse (r=0.553, p<0.001).

    CONCLUSION: These data indicate that the intrinsic radiosensitivity of 42 HNSCC cell lines can be predicted by a panel of factors on both the protein and gene levels. Moreover, among the investigated factors, survivin was the most promising biomarker of radioresponse.

  • 4.
    Jedlinski, Adam
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of ENT - Head and Neck Surgery UHL.
    Ansell, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences.
    Johansson, Ann-Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of ENT - Head and Neck Surgery UHL.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of ENT - Head and Neck Surgery UHL.
    EGFR status and EGFR ligand expression influence the treatment response of head and neck cancer cell lines2013In: Journal of Oral Pathology & Medicine, ISSN 0904-2512, E-ISSN 1600-0714, Vol. 42, no 1, p. 26-36Article in journal (Refereed)
    Abstract [en]

    Background: Combination treatment (chemoradiotherapy) is the standard treatment for locally advanced head and neck squamous cell carcinoma (HNSCC); however, treatment resistance and local recurrence are significant problems. A high level of epidermal growth factor receptor (EGFR) has been associated with a more aggressive phenotype as well as decreased responsiveness to radio- or chemotherapy. We examined the role of EGFR status and EGFR ligand expression for the treatment response. Methods: Intrinsic sensitivity to radiotherapy, cisplatin, and cetuximab treatments was investigated in 25 HNSCC cell lines. EGFR gene copy number, mRNA and protein expression, EGFR and Akt phosphorylation status, and mRNA expression of the EGFR ligands were analyzed using quantitative PCR and ELISA and assessed for their impact on treatment sensitivity. Results: Different treatment modalities yielded great diversity in outcome; of note, cetuximab treatment stimulated growth in one cell line. When treatments were combined primarily additive effects were observed. While radioresistance tended to be associated with a high level of phosphorylated EGFR (pEGFR; P = 0.09), cetuximab-resistant cells had low levels of pEGFR (P = 0.13). The three most cetuximab-sensitive cell lines had high EGFR gene copy numbers. Furthermore, cetuximab treatment response was significantly correlated with epiregulin mRNA expression (r = -0.408, P = 0.043). Cisplatin-resistant tumor cells expressed significantly lower levels of EGFR protein (P = 0.04) compared to cisplatin-sensitive cells and tended to have lower levels of phosphorylated Akt (pAkt; P = 0.13) and lower expression levels of amphiregulin (P = 0.18). Conclusions: Epidermal growth factor receptor status and ligand expression influence the treatment sensitivity of HNSCC cells and may be useful as predictive markers.

  • 5.
    Jedlinski, Adam
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping.
    Garvin, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Johansson, Ann-Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Edqvist, Per-Henrik
    Uppsala University, Uppsala, Sweden.
    Pontén, Fredrik
    Uppsala University, Uppsala, Sweden.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping.
    Cetuximab sensitivity of head and neck squamous cell carcinoma xenografts is associated with treatment-induced reduction of EGFR, pEGFR, and pSrc2017In: Journal of Oral Pathology & Medicine, ISSN 0904-2512, E-ISSN 1600-0714, no 9, p. 717-724Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The aim of this study was to validate in vitro drug sensitivity testing of head and neck squamous cell carcinoma (HNSCC)cell lines in an in vivo xenograft model, and to identify treatment-induced changes in the EGFR signaling pathway that could be used as markersfor cetuximab treatment response.

    METHODS: The in vitro cetuximab sensitivity of two HNSCC cell lines, UT-SCC-14 and UTSCC-45, was assessed using a crystal violet assay. In order to determine the corresponding in vivo sensitivity, UT-SCC-14 and UT-SCC-45 xenografts were generated in female BALB/c (nu/nu) nude mice. Mice were given three injections of intraperitoneal cetuximab or PBS and the tumor volume was recorded continuously. The expression of epidermal growth factor receptor (EGFR), phosphorylated EGFR (pEGFR), phosphorylated Src (pSrc), and Ki67 was investigated by immunohistochemistry.

    RESULTS: The treatment sensitive UT-SCC-14 cells were found to have an intrinsic cetuximab sensitivity (ICmabS) of 0.15 whereas the ICmabS of the insensitive cell line UT-SCC-45 was 0.78. The corresponding size ratio between untreated and cetuximab treated xenografts was 0.22 and 0.83 for UT-SCC-14 and UT-SCC-45, respectively. UT-SCC-14 cells had a higher baseline expression of pEGFR as compared to UT-SCC-45. Furthermore, in UT-SCC-14 xenografts there was a decrease in EGFR, pEGFR and pSrc upon cetuximab treatment. In contrast, a slight cetuximab-induced increase in EGFR, pEGFR and pSrc was observed in treatment-resistant UT-SCC-45 xenografts.

    CONCLUSIONS: The in vitro treatment sensitivity was reproduced in the in vivo model and cetuximab sensitivity was found to associate with a treatment-induced reduction in pEGFR and pSrc.

  • 6.
    Johansson, Ann-Charlotte
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    La Fleur, Linnea
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping. Linköping University, Faculty of Medicine and Health Sciences.
    Melissaridou, Styliani
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping.
    The relationship between EMT, CD44(high)/EGFR(low) phenotype, and treatment response in head and neck cancer cell lines2016In: Journal of Oral Pathology & Medicine, ISSN 0904-2512, E-ISSN 1600-0714, Vol. 45, no 9, p. 640-646Article in journal (Refereed)
    Abstract [en]

    BackgroundHead and neck squamous cell carcinoma (HNSCC) tumors are often therapy resistant and may originate from cancer stem cells or tumor cells with an epithelial-to-mesenchymal transition (EMT) phenotype. The aim of this study was to characterize HNSCC cell lines with regard to EMT profile and to investigate the influence of EMT on the response to treatment. MethodsmRNA expression of the EMT-associated genes CDH1 (E-cadherin), CDH2 (N-cadherin), FOXC2, TWIST1, VIM (vimentin), and FN1 (fibronectin) was determined using quantitative real-time PCR. Cell morphology and migration were investigated by phase-contrast microscopy and Boyden chamber assay, respectively. The cell surface expression of CD44 and epidermal growth factor receptor (EGFR) was examined by flow cytometry. The response to radiotherapy, cetuximab, and dasatinib was assessed by crystal violet staining. ResultsA total of 25 cell lines investigated differed greatly with regard to EMT phenotype. Cell lines with an EMT expression profile showed a mesenchymal morphology and a high migratory capacity. In addition, they exhibited a high cell surface expression of CD44 and a low expression of EGFR, a pattern previously associated with stemness. When the EMT inducer transforming growth factor- (TGF-) was added to non-EMT cells, changes in treatment responses were observed. Moreover, the expression of TWIST1 was found to correlate with radioresistance. ConclusionsThe data presented in this report suggest that EMT is associated with a CD44(high)/EGFR(low) phenotype and possibly negative impact on radiotherapy response in HNSCC cell lines.

  • 7.
    Sundelin, Kaarina
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of ENT - Head and Neck Surgery UHL.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of ENT - Head and Neck Surgery UHL.
    Grénman, Reidar
    Department of Otorhinolaryngology – Head and Neck Surgery and Department of Medical Biochemistry, University Hospital and University of Turku, Turku, Finland.
    Håkansson, Leif
    Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Oncology UHL.
    Effects of cisplatin, interferon-alpha and 13-cis retinoic acid on the expression of Fas (CD95), intercellular adhesion molecule-1 (ICAM-1) and epidermal growth factor receptor (EGFR) in oral cancer cell lines2007In: Journal of Oral Pathology & Medicine, ISSN 0904-2512, E-ISSN 1600-0714, Vol. 36, no 3, p. 177-183Article in journal (Refereed)
    Abstract [en]

    Background: Previous studies showed that many chemotherapeutic agents can induce immuno-suppression at therapeutic drug concentrations whereas low drug doses induce immuno-augmentation.

    Methods: The effect of low-dose cisplatin, interferon-alpha, and 13-cis retinoic acid on receptors involved in immune-mediated apoptosis (Fas/CD95), cell growth (epidermal growth factor receptor) and lymphocyte adhesion (intercellular adhesion molecule-1) was investigated in two oral cancer cell lines (UT-SCC-20A and UT-SCC-24A). Different methods for cell preparation were studied: mechanical and enzymatic detachment, and culture on chamber slides. Receptor expression was investigated using immunohistochemical staining. The amount of soluble and cell-bound Fas was determined with the ELISA technique, and the functional relevance of Fas expression, apoptosis induction, was analyzed.

    Results: Cisplatin enhanced cytoplasm and membrane staining for Fas in both cell lines. After cisplatin treatment, the amount of soluble Fas was increased in UT-SCC-20A cultures, but no effect was observed in the UT-SCC-24A cell line. Apoptosis, measured as enhanced caspase-3 activity, was induced by an agonistic Fas antibody (CH11) after cisplatin treatment in UT-SCC-24A cells.

    Conclusions: Low-dose cisplatin treatment enhanced Fas expression in both cell lines and increased susceptibility to apoptosis in one of them.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf