liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Sun, Kwang-Hsiao
    et al.
    Nanjing University, Peoples R China.
    Liu, Zhao
    Nanjing University, Peoples R China.
    Liu, Chang-Jian
    Nanjing University, Peoples R China.
    Yu, Tong
    Nanjing University, Peoples R China.
    Zhou, Min
    Nanjing University, Peoples R China.
    Liu, Cheng
    Nanjing University, Peoples R China.
    Ran, Feng
    Nanjing University, Peoples R China.
    Pan, Li-Jia
    Nanjing University, Peoples R China.
    Zhang, Huan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Children's and Women's health. Linköping University, Faculty of Medicine and Health Sciences.
    In vivo study of alginate hydrogel conglutinating cells to polycaprolactone vascular scaffolds fabricated by electrospinning2017In: Journal of Biomedical Materials Research. Part B - Applied biomaterials, ISSN 1552-4973, E-ISSN 1552-4981, Vol. 105, no 8, p. 2443-2454Article in journal (Refereed)
    Abstract [en]

    Objective The aim of this study was to explore an innovative cell-seeding technology applied on artificial vascular scaffolds. Methods Scaffolds were fabricated by electrospinning polycaprolactone (PCL) and seeded with rat endothelial progenitor cells differentiated from adipose-derived stem cells. Then, we modified the PCL scaffolds through the use of alginate hydrogel conglutinating cells (AHCC), a blank alginate hydrogel coating (BAHC), and natural sedimentation seeding cells (NSSC). The blank PCL (BP) scaffolds without any modifications were considered the blank control group. After modification, the scaffolds were implanted in a rat model. The implanted scaffolds were harvested and observed using histological and immunohistochemical methods and scanning electron microscopy (SEM) at 1, 2, and 4weeks after implantation, respectively. Results The best regeneration and configuration of the endothelium tissue and the most similar morphology to that of natural endangium was observed qualitatively in the AHCC scaffolds. The BP scaffolds had qualitatively the worst regeneration and configuration and the most dissimilar morphology at the same time point. In the AHCC group, cells could adhere directly on the inner surface of the vascular scaffolds, eliminating the time delay via the NSSC method prior to cell adhesion. Conclusion AHCC are an effective method for seeding cells on vascular scaffolds and can eliminate the time delay for cell adhesion. (C) 2016 Wiley Periodicals, Inc.

  • 2.
    Wickham, Abeni M.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Islam, Mohammad Mirazul
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Karolinska Institutet, Stockholm, Sweden.
    Mondal, Debasish
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences. Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Phopase, Jaywant
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Sadhu, Veera
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Tamás, Éva
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Polisetti, Naresh
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Richter-Dahlfors, Agneta
    Karolinska Institutet, Stockholm, Sweden.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology. Nanyang Technological University, Singapore.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Karolinska Institutet, Stockholm, Sweden.
    Polycaprolactone–thiophene-conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells2014In: Journal of Biomedical Materials Research. Part B - Applied biomaterials, ISSN 1552-4973, E-ISSN 1552-4981, Vol. 102, no 7, p. 1553-1561Article in journal (Refereed)
    Abstract [en]

    The myocardium is unable to regenerate itself after infarct, resulting in scarring and thinning of the heart wall. Our objective was to develop a patch to buttress and bypass the scarred area, while allowing regeneration by incorporated cardiac stem/progenitor cells (CPCs). Polycaprolactone (PCL) was fabricated as both sheets by solvent casting, and fibrous meshes by electrospinning, as potential patches, to determine the role of topology in proliferation and phenotypic changes to the CPCs. Thiophene-conjugated carbon nanotubes (T-CNTs) were incorporated to enhance the mechanical strength. We showed that freshly isolated CPCs from murine hearts neither attached nor spread on the PCL sheets, both with and without T-CNT. As electrospun meshes, however, both PCL and PCL/T-CNT supported CPC adhesion, proliferation, and differentiation. The incorporation of T-CNT into PCL resulted in a significant increase in mechanical strength but no morphological changes to the meshes. In turn, proliferation, but not differentiation, of CPCs into cardiomyocytes was enhanced in T-CNT containing meshes. We have shown that changing the topology of PCL, a known hydrophobic material, dramatically altered its properties, in this case, allowing CPCs to survive and differentiate. With further development, PCL/T-CNT meshes or similar patches may become a viable strategy to aid restoration of the postmyocardial infarction myocardium.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf