liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Glasin, Joakim
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Henricson, Joakim
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology. Linköping University, Faculty of Medicine and Health Sciences.
    Lindberg, Lars-Göran
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Björk Wilhelms, Daniel
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Wireless vitals: Proof of concept for wireless patient monitoring in an emergency department setting2019In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 12, no 4, article id e201800275Article in journal (Refereed)
    Abstract [en]

    Vital sign assessment is a common task in emergency medicine, but resources for continuous monitoring are restricted, data is often recorded manually, and entangled wires cause frustration. Therefore, we designed a small, wireless photoplethysmographic device capable of continuously assessing pulse, respiratory frequency and oxygen saturation on the sternum and tested the performance and feasibility in an emergency department setting. Fifty (56.3 20.2 years), consenting emergency patients (29 male) were recruited. Heart rate, respiratory rate and oxygen saturation were recorded simultaneously using the device and standard monitoring equipment. Data was compared using Bland-Altman plotting (heart rate, respiratory rate) and mean difference (oxygen saturation). The bias for heart- and respiratory rate was 0.4 (limits of agreements -11.3, 12.2 and -6.1, 7.0). Mean difference for oxygen saturation was -0.21 +/- 2.35%. This may be the first wireless device to use photoplethysmography on the sternum for vital sign assessment. We noted good agreement with standard monitors, but lack of standardization in data processing between monitoring systems may limit the generalizability of these findings. Although further improvements are needed, the feasibility of this approach provides proof of concept for a new paradigm of large scale, wireless patient monitoring.

  • 2.
    Hernandez, Frank Jeyson
    et al.
    Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain.
    Dondapati, Srujan Kumar
    Photonics and Optoelectronics Group, Physics Department and Center for Nanoscience CeNS, Ludwig-Maximilians-Universität München, Munich, Germany.
    Ozalp, V Cengiz
    Bioengineering and Bioelectrochemistry Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain.
    Pinto, Alessandro
    Bioengineering and Bioelectrochemistry Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain.
    O'Sullivan, Ciara K
    Bioengineering and Bioelectrochemistry Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain.
    Klar, Thomas A
    Institute of Physics and Institute of Micro and Nanotechnologies, Technical University of Ilmenau, Ilmenau, Germany.
    Katakis, Ioannis
    Bioengineering and Bioelectrochemistry Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, Spain.
    Label free optical sensor for Avidin based on single gold nanoparticles functionalized with aptamers2009In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 2, no 4, p. 227-231Article in journal (Refereed)
    Abstract [en]

    Optical spectroscopy of a single gold nanoparticle, functionalized with an aptamer, is used to sense the specific binding of avidin. Herewith, the field of single noble metal nanoparticle biosensors is extended to the important field of aptamer based assays. The sensitivity of this initial, but not yet optimized apta-nano-sensor is in the range of 20 nM. Due to its nanoscopic size, this single nanoparticle based apta-sensor may be used in nanoscopic volumes such as in array type assays or even inside cells.

  • 3.
    Hultman, Martin
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Fredriksson, Ingemar
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Järfälla-Stockholm, Sweden.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Alvandpour, Atila
    Linköping University, Department of Electrical Engineering, Integrated Circuits and Systems. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    A 15.6 frames per second 1 megapixel Multiple Exposure Laser Speckle Contrast Imaging setup2018In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 11, no 2, article id e201700069Article in journal (Refereed)
    Abstract [en]

    A multiple exposure laser speckle contrast imaging (MELSCI) setup for visualizing blood perfusion was developed using a field programmable gate array (FPGA), connected to a 1000 frames per second (fps) 1-megapixel camera sensor. Multiple exposure time images at 1, 2, 4, 8, 16, 32 and 64 milliseconds were calculated by cumulative summation of 64 consecutive snapshot images. The local contrast was calculated for all exposure times using regions of 4 × 4 pixels. Averaging of multiple contrast images from the 64-millisecond acquisition was done to improve the signal-to-noise ratio. The results show that with an effective implementation of the algorithm on an FPGA, contrast images at all exposure times can be calculated in only 28 milliseconds. The algorithm was applied to data recorded during a 5 minutes finger occlusion. Expected contrast changes were found during occlusion and the following hyperemia in the occluded finger, while unprovoked fingers showed constant contrast during the experiment. The developed setup is capable of massive data processing on an FPGA that enables processing of MELSCI data in 15.6 fps (1000/64 milliseconds). It also leads to improved frame rates, enhanced image quality and enables the calculation of improved microcirculatory perfusion estimates compared to single exposure time systems.

  • 4.
    Johansson, Johannes
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Portaluppi, Davide
    Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.
    Buttafava, Mauro
    Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.
    Villa, Federica
    Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.
    A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array2019In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, article id UNSP e201900091Article in journal (Refereed)
    Abstract [en]

    The autocorrelation of laser speckles from coherent near infrared light is used for noninvasive estimates of relative changes in blood perfusion in techniques such as laser Doppler flowmetry (LDF) and diffuse correlation spectroscopy (DCS). In this study, a 2D array of single photon avalanche diodes (SPADs) was used to combine the strengths of multiple detectors in LDF with high light sensitivity in DCS. The system was tested on milk phantoms with varying detector fiber diameter (200 and 600 μm), source‐detector fiber separation (4.6‐10.2 mm), fiber‐SPAD distance (2.5‐36.5 mm), contiguous measurement time per repetition for the autocorrelation (1‐33 ms) and temperature (15.6‐46.7°C). An in vivo blood occlusion test was also performed. The multipixel approach improved signal‐to‐noise ratio (SNR) and, in our setup, the use of a multimode detector fiber was beneficial for SNR. In conclusion, the multipixel system works, but improvements and further studies regarding, for example, the data acquisition and optimal settings are still 

  • 5.
    Johansson, Johannes
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Intracerebral quantitative chromophore estimation from reflectance spectra captured during deep brain stimulation implantation2013In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 6, no 5, p. 435-445Article in journal (Refereed)
    Abstract [en]

    Quantification of blood fraction (fblood), blood oxygenation (S), melanin, lipofuscin and oxidised and reduced Cytochrome aa 3 and c was done from diffuse reflectance spectra captured in cortex, white matter, globus pallidus internus (GPi) and subthalamus during stereotactic implantations of 29 deep brain stimulation (DBS) electrodes with the aim of investigating whether the chromophores can give physiological information about the targets for DBS. Double-sided Mann-Whitney U -tests showed more lipofuscin in GPi compared to white matter and subthalamus (p < 0.05). Compared to the other structures, fbloodwas significantly higher in cortex (p < 0.05) and S lower in GPi (p < 0.05). Median values and range for fblood were 1.0 [0.2–6.0]% in the cortex, 0.3 [0.1–8.2]% in white matter, 0.2 [0.1–0.8]% in the GPi and 0.2 [0.1–11.7]% in the subthalamus. Corresponding values for S was 20 [0–81]% in the cortex, 29 [0–78]% in white matter, 0 [0–0]% in the GPi and 0 [0–92]% in the subthalamus. In conclusion, the measurements indicate very low oxygenation and blood volume for DBS patients, especially in the GPi. It would be of great interest to investigate whether this is due to the disease, the normal situation or an artefact of doing invasive measurements.

  • 6.
    Markwardt, Niklas
    et al.
    Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München, Munich, Germany.
    Haj-Hosseini, Neda
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Hollnburger, Bastian
    Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München, Munich, Germany.
    Stepp, Herbert
    Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München, Munich, Germany.
    Zelenkov, Petr
    Burdenko Neurosurgery Institute, Moscow, Russia.
    Rühm, Adrian
    Laser-Forschungslabor, LIFE-Zentrum, Klinikum der Universität München, Munich, Germany.
    405 nm versus 633 nm for protoporphyrin IX excitation in fluorescence-guided stereotactic biopsy of brain tumors2016In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 9, no 9, p. 901-912Article in journal (Refereed)
    Abstract [en]

    Fluorescence diagnosis may be used to improve the safety and reliability of stereotactic brain tumor biopsies using biopsy needles with integrated fiber optics. Based on 5-aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence, vital tumor tissue can be localized in vivo during the excision procedure to reduce the number of necessary samples for a reliable diagnosis. In this study, the practical suitability of two different PpIX excitation wavelengths (405 nm, 633 nm) was investigated on optical phantoms. Violet excitation at 405 nm provides a 50-fold higher sensitivity for the bulk tumor; this factor increases up to 100 with decreasing fluorescent volume as shown by ray tracing simulations. Red excitation at 633 nm, however, is noticeably superior with regard to blood layers obscuring the fluorescence. Experimental results on the signal attenuation through blood layers of well-defined thicknesses could be confirmed by ray tracing simulations. Typical interstitial fiber probe measurements were mimicked on agarose-gel phantoms. Even in direct contact, blood layers of 20-40 µm between probe and tissue must be expected, obscuring 405-nm-excited PpIX fluorescence almost completely, but reducing the 633-nm-excited signal only by 25.5%. Thus, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy. PpIX signal attenuation through clinically relevant blood layers for 405 nm (violet) and 633 nm (red) excitation.

  • 7.
    McNamara, Paul N
    et al.
    University of Limerick, Ireland.
    O'Doherty, Jim
    Royal Surrey County Hospital, Guildford, UK.
    O'Connell, Marie-Louise
    University of Limerick.
    Fitzgerald, Barry W
    University of Limerick, Ireland.
    Anderson, Chris
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Dermatology and Venerology in Östergötland.
    Nilsson, Gert
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Toll, Rani
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Acute Health Care in Linköping.
    Leahy, Martin J
    University of Limerick, Ireland.
    Tissue viability (TiVi) imaging: temporal effects of local occlusion studies in the volar forearm2010In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 3, no 1-2, p. 66-74Article in journal (Refereed)
    Abstract [en]

    Tissue Viability (TiVi) imaging is a promising new technology for the assessment of microcirculation in the upper human dermis. Although the technique is easily implemented and develops large amounts of observational data, its role in the clinical workplace awaits the development of standardised protocols required for routine clinical practice. The present study investigates the use of TiVi technology in a human, in vivo, localized, skin blood flow occlusion protocol. In this feasibility study, the response of the cutaneous microcirculation after provocation on the volar surface of the forearm was evaluated using a high temporal-low spatial resolution TiVi camera. 19 healthy subjects - 10 female and 9 male - were studied after a localized pressure was applied for 5 different time periods ranging from 5 to 25 seconds. Areas corresponding to 100 x 100 pixels (2.89 cm(2)) were monitored for 60 seconds prior to, during and after each occlusion period. Our results demonstrated the removal of blood from the local area and a hyperaemic response supporting the suitability of TiVi imaging for the generation of detailed provocation response data of relevance for the physiological function of the skin microcirculation in health and disease.

  • 8.
    Rejmstad, Peter
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Johansson, Johannes D.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Haj-Hosseini, Neda
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy2017In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 10, no 3, p. 446-455Article in journal (Refereed)
    Abstract [en]

    Continuous measurement of local brain oxygen saturation (SO2) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the “gold standard” in measuring cerebral oxygen pressure (pO2), which is closely related to SO2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO2 for different blood concentrations. The P3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO2. The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5–2%) where pO2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile.

  • 9.
    Toll John, Rani
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Henricson, Joakim
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Junker, Johan
    Region Östergötland, Center for Disaster Medicine and Traumatology. Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Jonson, Carl-Oscar
    Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Disaster Medicine and Traumatology. Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology.
    Nilsson, Gert
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology. WheelsBridge AB, Linköping, Sweden.
    Björk Wilhelms, Daniel
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Anderson, Chris D
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    A cool response: the influence of ambient temperature on capillary refill time2018In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 11, no 6Article in journal (Refereed)
    Abstract [en]

    Objective

    To describe the effect of low ambient temperature on skin temperature and capillary refill (CR) time in forehead, sternum and finger pulp.

    Methods

    An observational, nonrandomized experimental study on 15 healthy subjects (6 females) in a cold room (8°C). Outcome measures were skin temperature and quantified CR test after application of a standardized blanching pressure (9 N/cm2) using digital photographic polarization spectroscopy to generate CR times.

    Results

    The finger pulp showed marked temperature fall and prolonged CR times (>10 seconds). The CR registrations of the forehead and sternum were more comparable to curves observed in a control material at room temperature, and skin temperature falls were less marked. CR times were not prolonged in forehead measurements. At the sternum, some individuals showed CR times beyond guideline recommendations despite only a marginal reduction in skin temperature.

    Conclusions

    Low ambient temperature is a strong independent factor for CR time at peripheral sites. Reservation about sternum as a site of measurement is warranted since cold provocation produced prolonged CR times in some individuals. We found that the forehead is the most thermostable of the 3 sites and thus the preferred site to avoid ambient temperature artifact in measuring CR time.

  • 10.
    Toll John, Rani
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Henricson, Joakim
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    Nilsson, Gert E.
    WheelsBridge AB, Linköping, Sweden.
    Wilhelms, Daniel
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Anderson, Chris
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    Reflectance spectroscopy: to shed new light on the capillary refill test2018In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 11, no 1, article id e201700043Article in journal (Refereed)
    Abstract [en]

    To use Bioengineering methodology is used to achieve, at five anatomical sites, a detailed, quantitative assessment of the return of blood content to the blanched area, during the Capillary Refill (CR) test. An observational, non-randomized, experimental study on 23 healthy subjects (14 females) was performed in our climate controlled skin physiology laboratory. Our main outcome measures were based on the chronological assessment and quantification of red blood cell concentration (RBC) after the release of blanching pressure in the CR test, using Tissue Viability Imaging (TiVi), a digital photographic technique based on polarisation spectroscopy. TiVi enabled collection of detailed data on skin RBC concentration during the CR test. The results were shown as curves with skin blood concentration (TiVi-value) on the y-axis and the time on the x-axis. Quantitative CR responses showed site and temperature variability. We also suggest possible objective endpoint values from the capillary refill curve. Detailed data on skin RBC concentration during the CR test is easily obtained and allows objective determination of end points not possible to achieve by naked eye assessment. These findings have the potential to place the utility of the CR test in a clinical setting in a new light. Picture: Regular photograph and TiVi Image showing CR test and corresponding graph for the CR response. [GRAPHICS] .

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf