liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Mattias L
    et al.
    Lund University, Sweden .
    Melianas, Armantas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Infahasaeng, Yingyot
    Lund University, Sweden .
    Tang, Zheng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Yartsev, Arkady
    Lund University, Sweden .
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Sundstrom, Villy
    Lund University, Sweden .
    Unified Study of Recombination in Polymer:Fullerene Solar Cells Using Transient Absorption and Charge-Extraction Measurements2013In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 4, no 12, p. 2069-2072Article in journal (Refereed)
    Abstract [en]

    Recombination in the well-performing bulk heterojunction solar cell blend between the conjugated polymer TQ-1 and the substituted fullerene PCBM has been investigated with pump-probe transient absorption and charge extraction of photo-generated carriers (photo-CELIV). Both methods are shown to generate identical and overlapping data under appropriate experimental conditions. The dominant type of recombination is bimolecular with a rate constant of 7 x 10(-12) cm(-3) s(-1). This recombination rate is shown to be fully consistent with solar cell performance. Deviations from an ideal bimolecular recombination process, in this material system only observable at high pump fluences, are explained with a time-dependent charge-carrier mobility, and the implications of such a behavior for device development are discussed.

  • 2.
    Björk, Jonas
    et al.
    University of Liverpool, UK.
    Hanke, Felix
    University of Liverpool, UK.
    Palma, Carlos-Andres
    University de Strasbourg, France.
    Samorì, Paolo
    University de Strasbourg, France.
    Cecchini, Marco
    University de Strasbourg, France.
    Persson, Mats
    University of Liverpool, UK.
    Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through π−π Stacking2010In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 1, p. 3407-3412Article in journal (Refereed)
    Abstract [en]

    The adsorption of neutral (poly)-aromatic, antiaromatic, and more generally π-conjugated systems on graphene is studied as a prototypical case of π-π stacking. To account for dispersive interactions, we compare the recent van der Waals density functional (vdw-DF) with three semiempirical corrections to density functional theory and two empirical force fields. The adsorption energies of the molecules binding to graphene predicted by the vdw-DFwere found to be in excellent agreement with temperature desorption experiments reported in litera- ture,whereas the results of theremaining functionals andforce fields only preserve the correct trends. The comparison of the dispersive versus electrostatic contribu- tions to the total binding energies in the aromatic and antiaromatic systems suggests that π-π interactions can be regarded as being prevalently dispersive in nature at large separations, whereas close to the equilibrium bonding distance, it is a complex interplay between dispersive and electrostatic Coulombic interactions. Moreover our results surprisingly indicate that the magnitude of π-π interactions normalized both per number of total atoms and carbon atoms increases signifi- cantly with the relative number of hydrogen atoms in the studied systems.

  • 3.
    Di Meo, Florent
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, The Institute of Technology.
    Pedersen, Morten
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology. University of Southern Denmark, Denmark.
    Rubio-Magnieto, Jenifer
    University of Mons UMONS, Belgium.
    Surin, Mathieu
    University of Mons UMONS, Belgium.
    Linares, Mathieu
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, The Institute of Technology. University of Mons UMONS, Belgium.
    Norman, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, The Institute of Technology.
    DNA Electronic Circular Dichroism on the Inter-Base Pair Scale: An Experimental Theoretical Case Study of the AT Homo-Oligonucleotide2015In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 6, no 3, p. 355-359Article in journal (Refereed)
    Abstract [en]

    A successful elucidation of the near-ultraviolet electronic circular dichroism spectrum of a short double-stranded DNA is reported. Time-dependent density functional theory methods are shown to accurately predict spectra and assign bands on the microscopic base-pair scale, a finding that opens the field for using circular dichroism spectroscopy as a sensitive nanoscale probe of DNA to reveal its complex interactions with the environment.

  • 4.
    Fahleson, Tobias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, Faculty of Science & Engineering.
    Ågren, Hans
    KTH Royal Institute Technology, Sweden.
    Norman, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, Faculty of Science & Engineering. KTH Royal Institute Technology, Sweden.
    A Polarization Propagator for Nonlinear X-ray Spectroscopies2016In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 7, no 11, p. 1991-1995Article in journal (Refereed)
    Abstract [en]

    A complex polarization propagator approach has been developed to third order and implemented in density functional theory (DFT), allowing for the direct calculation of nonlinear molecular properties in the X-ray wavelength regime without explicitly addressing the excited-state manifold. We demonstrate the utility of this propagator method for the modeling of coherent near-edge X-ray two-photon absorption using, as an example, DFT as the underlying electronic structure model. Results are compared with the corresponding near edge X-ray absorption fine structure spectra, illuminating the differences in the role of symmetry, localization, and correlation between the two spectroscopies. The ramifications of this new technique for nonlinear X-ray research are briefly discussed.

  • 5.
    Ke, You
    et al.
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Wang, Nana
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Kong, Decheng
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Cao, Yu
    Nanjing Tech Univ NanjingTech, Peoples R China.
    He, Yarong
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Zhu, Lin
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Wang, Yuming
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Xue, Chen
    Northwestern Polytech Univ, Peoples R China.
    Peng, Qiming
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Huang, Wei
    Nanjing Tech Univ NanjingTech, Peoples R China; Northwestern Polytech Univ, Peoples R China.
    Wang, Jianpu
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability2019In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 10, no 3, p. 380-385Article in journal (Refereed)
    Abstract [en]

    Efficient and stable red perovskite light-emitting diodes (PeLEDs) are important for realizing full-color display and lighting. Red PeLEDs can be achieved either by mixed-halide or low-dimensional perovskites. However, the device performance, especially the brightness, is still low owing to phase separation or poor charge transport issues. Here, we demonstrate red PeLEDs based on three-dimensional (3D) mixed-halide perovskites where the defects are passivated by using 5-aminovaleric acid. The red PeLEDs with an emission peak at 690 nm exhibit an external quantum efficiency of 8.7% and a luminance of 1408 cd m(-2). A maximum luminance of 8547 cd m(-2) can be further achieved as tuning the emission peak to 662 nm, representing the highest brightness of red PeLEDs. Moreover, those LEDs exhibit a half-life of up to 8 h under a high constant current density of 100 mA cm(-2), which is over 10 times improvement compared to literature results.

  • 6.
    Liu, Xiaoke
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites: An Emerging Paradigm for High-Performance Light-Emitting Diodes2018In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 9, no 9, p. 2251-2258Article in journal (Refereed)
    Abstract [en]

    Recently, lead halide perovskite materials have attracted extensive interest, in particular, in the research field of solar cells. These materials are fascinating "soft" materials with semiconducting properties comparable to the best inorganic semiconductors like silicon and gallium arsenide. As one of the most promising perovskite family members, organic-inorganic hybrid Ruddlesden-Popper perovskites (HRPPs) offer rich chemical and structural flexibility for exploring excellent properties for optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). In this Perspective, we present an overview of HRPPs on their structural characteristics, synthesis of pure HRPP compounds and thin films, control of their preferential orientations, and investigations of heterogeneous HRPP thin films. Based on these recent advances, future directions and prospects have been proposed. HRPPs are promising to open up a new paradigm for high-performance LEDs.

  • 7.
    Ribeiro, Luiz Antonio
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, The Institute of Technology.
    Ferreira da Cunha, Wiliam
    University of Brasilia, Brazil.
    Luciano de Almeida Fonseca, Antonio
    University of Brasilia, Brazil.
    Magela e Silva, Geraldo
    University of Brasilia, Brazil.
    Stafström, Sven
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, The Institute of Technology.
    Transport of Polarons in Graphene Nanoribbons2015In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 6, no 3, p. 510-514Article in journal (Refereed)
    Abstract [en]

    The field-induced dynamics of polarons in armchair graphene nanoribbons (GNRs) is theoretically investigated in the framework of a two-dimensional tight-binding model with lattice relaxation. Our findings show that the semiconductor behavior, fundamental to polaron transport to take place, depends upon of a suitable balance between the GNR width and the electronphonon (eph) coupling strength. In a similar way, we found that the parameter space for which the polaron is dynamically stable is limited to an even narrower region of the GNR width and the eph coupling strength. Interestingly, the interplay between the external electric field and the eph coupling plays the role to define a phase transition from subsonic to supersonic velocities for polarons in GNRs.

  • 8.
    Roland, Steffen
    et al.
    Univ Potsdam, Germany; UP Transfer GmbH, Germany.
    Kniepert, Juliane
    Univ Potsdam, Germany.
    Love, John A.
    Univ Potsdam, Germany.
    Negi, Vikas
    Eindhoven Univ Technol, Netherlands.
    Liu, Feilong
    Eindhoven Univ Technol, Netherlands.
    Bobbert, Peter
    Eindhoven Univ Technol, Netherlands.
    Melianas, Armantas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Stanford Univ, CA 94305 USA.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Hofacker, Andreas
    Tech Univ Dresden, Germany.
    Neher, Dieter
    Univ Potsdam, Germany.
    Equilibrated Charge Carrier Populations Govern Steady-State Nongeminate Recombination in Disordered Organic Solar Cells2019In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 10, no 6, p. 1374-1381Article in journal (Refereed)
    Abstract [en]

    We employed bias-assisted charge extraction techniques to investigate the transient and steady-state recombination of photogenerated charge carriers in complete devices of a disordered polymer-fullerene blend. Charge recombination is shown to be dispersive, with a significant slowdown of the recombination rate over time, consistent with the results from kinetic Monte Carlo simulations. Surprisingly, our experiments reveal little to no contributions from early time recombination of nonequilibrated charge carriers to the steady-state recombination properties. We conclude that energetic relaxation of photogenerated carriers outpaces any significant nongeminate recombination under application-relevant illumination conditions. With equilibrated charges dominating the steady-state recombination, quasi-equilibrium concepts appear suited for describing the open-circuit voltage of organic solar cells despite pronounced energetic disorder.

  • 9.
    Santoro, Fabrizio
    et al.
    Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Italy .
    Improta, Roberto
    Istituto di Chimica dei Composti Organometallici (ICCOM-CNR).
    Fahleson, Tobias
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Kauczor, Joanna
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Norman, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Coriani, Sonia
    Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Italy .
    Relative Stability of the L-a and L-b Excited States in Adenine and Guanine: Direct Evidence from TD-DFT Calculations of MCD Spectra2014In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 5, no 11, p. 1806-1811Article in journal (Refereed)
    Abstract [en]

    The relative position of L-a and L-b pi pi* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution,. exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S-0 -greater than L-a transition from the weak S-0 -greater than L-b transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, L-a less than L-b, is the correct one.

  • 10.
    Tress, Wolfgang
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Swiss Federal Institute Technology EPFL, Switzerland.
    Beyer, Beatrice
    Fraunhofer Institute Electron Beam Plasma Technology and CO, Germany.
    Ashari Astani, Negar
    Ecole Polytech Federal Lausanne, Switzerland.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Meloni, Simone
    Ecole Polytech Federal Lausanne, Switzerland.
    Rothlisberger, Ursula
    Ecole Polytech Federal Lausanne, Switzerland.
    Extended Intermolecular Interactions Governing Photocurrent-Voltage Relations in Ternary Organic Solar Cells2016In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 7, no 19, p. 3936-3944Article in journal (Refereed)
    Abstract [en]

    Efficient organic solar cells are based on (electron) donor-acceptor heterojunctions. An optically generated excited molecular state (exciton) is dissociated at this junction, forming a charge-transfer (CT) state in an intermediate step before the electron and hole are completely separated. The observed highly efficient dissociation of this Coulombically bound state raises the question on the dissociation mechanism. Here, we show that the observed high quantum yields of charge carrier generation and CT state dissociation are due to extended (and consequently weakly bound) CT states visible in absorption and emission spectra and first-principles calculations. Identifying a new geminate-pair loss mechanism via donor excimers, we find that the hole on the small-molecule donor is not localized on a single molecule and charge separation is correlated with the energetic offset between excimer and CT states. Thus, the charges upon interface charge transfer and even in the case of back-transfer and recombination are less localized than commonly assumed.

  • 11.
    van Reenen, Stephan
    et al.
    University of Oxford, England.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Snaith, Henry J.
    University of Oxford, England.
    Modeling Anomalous Hysteresis in Perovskite Solar Cells2015In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 6, no 19, p. 3808-3814Article in journal (Refereed)
    Abstract [en]

    Organic inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-diffusion model to describe device operation of perovskite solar cells. To achieve hysteresis in the modeled current voltage characteristics, we must include both ion migration and electronic charge traps, serving as recombination centers. Trapped electronic charges recombine with oppositely charged free electronic carriers, of which the density depends on the bias-dependent ion distribution in the perovskite. Our results therefore show that reduction of either the density of mobile ionic species or carrier trapping at the perovskite interface will remove the adverse hysteresis in perovskite solar cells. This gives a clear target for ongoing research effort and unifies previously conflicting experimental observations and theories.

  • 12.
    Wang, Jianqiu
    et al.
    Beihang Univ, Peoples R China; Natl Ctr Nanosci and Technol, Peoples R China.
    Xu, Jianqiu
    Nanjing Univ, Peoples R China.
    Yao, Nannan
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Dongyang
    Beihang Univ, Peoples R China.
    Zheng, Zhong
    Natl Ctr Nanosci and Technol, Peoples R China.
    Xie, Shenkun
    Beihang Univ, Peoples R China; Natl Ctr Nanosci and Technol, Peoples R China.
    Zhang, Xuning
    Beihang Univ, Peoples R China.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhou, Huiqiong
    Natl Ctr Nanosci and Technol, Peoples R China.
    Zhang, Chunfeng
    Nanjing Univ, Peoples R China.
    Zhang, Yuan
    Beihang Univ, Peoples R China.
    A Comparative Study on Hole Transfer Inversely Correlated with Driving Force in Two Non-Fullerene Organic Solar Cells2019In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 10, no 14, p. 4110-4116Article in journal (Refereed)
    Abstract [en]

    We report a faster rate of hole transfer under a smaller AHomo in a comparative study of two group organic solar cells (OSCs) consisting of IT-4F as an acceptor and PBDBT and PBDBT-SF as donors. In the OSCs based on PBDBT. SF:IT-4F, a higher short-circuit current (J(SC)) was observed with a Delta(Homo) of 0.31 eV compared to a lower Jsc in PBDBT:IT-4F OSCs with a larger Delta(Homo) (0.45 eV). Intensive investigation indicates that the rate of transfer of a hole from IT-4F to PBDBT-SF or PBDBT is inversely proportional to the Delta(Homo) between IT-4F and donors. The larger Jsc in the PBDBT-SF:IT-4F device is attributed to a synergy of faster hole transfer, slower recombination, and rapid charge extraction enabled by desired morphology and balanced charge carrier mobilities with PBDBT-SF, suggesting that under a sufficiently high Delta(Homo), comprehensive considerations of the transport, film morphology, and energy levels are needed when designing new materials for high-performance OSCs.

  • 13.
    Zhang, Liangdong
    et al.
    Nanjing Tech Univ, Peoples R China.
    Jiang, Tao
    Nanjing Tech Univ, Peoples R China.
    Yi, Chang
    Nanjing Tech Univ, Peoples R China.
    Wu, Jiquan
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Liu, Xiaoke
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    He, Yaron
    Nanjing Tech Univ, Peoples R China.
    Miao, Yanfeng
    Nanjing Tech Univ, Peoples R China.
    Zhang, Ya
    Nanjing Tech Univ, Peoples R China.
    Zhang, Huotian
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Xie, Xinrui
    Zhejiang Univ, Peoples R China.
    Wang, Peng
    Zhejiang Univ, Peoples R China.
    Li, Renzhi
    Nanjing Tech Univ, Peoples R China; Nanjing Tech Univ, Peoples R China.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Huang, Wei
    Nanjing Tech Univ, Peoples R China; Nanjing Tech Univ, Peoples R China; NPU, Peoples R China.
    Wang, Jianpu
    Nanjing Tech Univ, Peoples R China.
    Bright Free Exciton Electroluminescence from Mn-Doped Two-Dimensional Layered Perovskites2019In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 10, no 11, p. 3171-3175Article in journal (Refereed)
    Abstract [en]

    Two-dimensional (2D) perovskites incorporating hydrophobic organic spacer cations show improved film stability and morphology compared to their three-dimensional (3D) counterparts. However, 2D perovskites usually exhibit low photoluminescence quantum efficiency (PLQE) owing to strong exciton-phonon interaction at room temperature, which limits their efficiency in light-emitting diodes (LEDs). Here, we demonstrate that the device performance of 2D perovskite LEDs can be significantly enhanced by doping Mn(2+)in (benzimidazolium)(2)PbI4 2D perovskite films to suppress the exciton-phonon interaction. The distorted [PbI6](4-) octahedra by Mn-doping and the rigid benzimidazolium (BIZ) ring without branched chains in the 2D perovskite structure lead to improved crystallinity and rigidity of the perovskites, resulting in suppressed phonon-exciton interaction and enhanced PLQE. On the basis of this strategy, for the first time, we report yellow electroluminescence from free excitons in 2D (n = 1) perovskites with a maximum brightness of 225 cd m(-2) and a peak EQE of 0.045%.

    The full text will be freely available from 2020-05-23 13:52
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf