liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 67
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abbey-Lee, Robin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biologi. Linköpings universitet, Tekniska fakulteten. Max Planck Inst Ornithol, Germany.
    Dingemanse, Niels J.
    Ludwig Maximilians Univ Munchen, Germany.
    Adaptive individual variation in phenological responses to perceived predation levels2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 1601Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The adaptive evolution of timing of breeding (a component of phenology) in response to environmental change requires individual variation in phenotypic plasticity for selection to act upon. A major question is what processes generate this variation. Here we apply multi-year manipulations of perceived predation levels (PPL) in an avian predator-prey system, identifying phenotypic plasticity in phenology as a key component of alternative behavioral strategies with equal fitness payoffs. We show that under low-PPL, faster (versus slower) exploring birds breed late (versus early); the pattern is reversed under high-PPL, with breeding synchrony decreasing in conjunction. Timing of breeding affects reproductive success, yet behavioral types have equal fitness. The existence of alternative behavioral strategies thus explains variation in phenology and plasticity in reproductive behavior, which has implications for evolution in response to anthropogenic change.

  • 2.
    Andersson Ersman, Peter
    et al.
    RISE Acreo, Sweden.
    Lassnig, Roman
    RISE Acreo, Sweden.
    Strandberg, Jan
    RISE Acreo, Sweden.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Keshmiri, Vahid
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gustafsson, Goran
    RISE Acreo, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    All-printed large-scale integrated circuits based on organic electrochemical transistors2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 5053Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The communication outposts of the emerging Internet of Things are embodied by ordinary items, which desirably include all-printed flexible sensors, actuators, displays and akin organic electronic interface devices in combination with silicon-based digital signal processing and communication technologies. However, hybrid integration of smart electronic labels is partly hampered due to a lack of technology that (de)multiplex signals between silicon chips and printed electronic devices. Here, we report all-printed 4-to-7 decoders and seven-bit shift registers, including over 100 organic electrochemical transistors each, thus minimizing the number of terminals required to drive monolithically integrated all-printed electrochromic displays. These relatively advanced circuits are enabled by a reduction of the transistor footprint, an effort which includes several further developments of materials and screen printing processes. Our findings demonstrate that digital circuits based on organic electrochemical transistors (OECTs) provide a unique bridge between all-printed organic electronics (OEs) and low-cost silicon chip technology for Internet of Things applications.

  • 3.
    Belonoshko, Anatoly B.
    et al.
    Royal Inst Technol KTH, Sweden.
    Fu, Jie
    Ningbo Univ, Peoples R China.
    Bryk, Taras
    Natl Acad Sci Ukraine, Ukraine.
    Simak, Sergey
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Mattesini, Maurizio
    Univ Complutense Madrid, Spain; UCM, Spain.
    Low viscosity of the Earths inner core2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 2483Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Earths solid inner core is a highly attenuating medium. It consists mainly of iron. The high attenuation of sound wave propagation in the inner core is at odds with the widely accepted paradigm of hexagonal close-packed phase stability under inner core conditions, because sound waves propagate through the hexagonal iron without energy dissipation. Here we show by first-principles molecular dynamics that the body-centered cubic phase of iron, recently demonstrated to be thermodynamically stable under the inner core conditions, is considerably less elastic than the hexagonal phase. Being a crystalline phase, the body-centered cubic phase of iron possesses the viscosity close to that of a liquid iron. The high attenuation of sound in the inner core is due to the unique diffusion characteristic of the body-centered cubic phase. The low viscosity of iron in the inner core enables the convection and resolves a number of controversies.

  • 4.
    Bykov, M.
    et al.
    Univ Bayreuth, Germany.
    Bykova, E.
    Univ Bayreuth, Germany; DESY, Germany.
    Aprilis, G.
    Univ Bayreuth, Germany.
    Glazyrin, K.
    DESY, Germany.
    Koemets, E.
    Univ Bayreuth, Germany.
    Chuvashova, I
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Kupenko, I
    Univ Munster, Germany.
    McCammon, C.
    Univ Bayreuth, Germany.
    Mezouar, M.
    European Synchrotron Radiat Facil, France.
    Prakapenka, V
    Univ Chicago, IL 60437 USA.
    Liermann, H-P
    DESY, Germany.
    Tasnadi, Ferenc
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Natl Univ Sci and Technol MISIS, Russia.
    Ponomareva, A. V
    Natl Univ Sci and Technol MISIS, Russia.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Dubrovinskaia, N.
    Univ Bayreuth, Germany.
    Dubrovinsky, L.
    Univ Bayreuth, Germany.
    Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 2756Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly-nitrogen compounds have been considered as potential high energy density materials for a long time due to the large number of energetic N-N or N=N bonds. In most cases high nitrogen content and stability at ambient conditions are mutually exclusive, thereby making the synthesis of such materials challenging. One way to stabilize such compounds is the application of high pressure. Here, through a direct reaction between Fe and N-2 in a laser-heated diamond anvil cell, we synthesize three ironnitrogen compounds Fe3N2, FeN2 and FeN4. Their crystal structures are revealed by single-crystal synchrotron X-ray diffraction. Fe3N2, synthesized at 50 GPa, is isostructural to chromium carbide Cr3C2. FeN2 has a marcasite structure type and features covalently bonded dinitrogen units in its crystal structure. FeN4, synthesized at 106 GPa, features polymeric nitrogen chains of [N-4(2-)](n) units. Based on results of structural studies and theoretical analysis, [N-4(2-)](n) units in this compound reveal catena-poly[tetraz-1-ene-1,4-diyl] anions.

  • 5.
    Bykov, Maxim
    et al.
    Univ Bayreuth, Germany.
    Chariton, Stella
    Univ Bayreuth, Germany.
    Fei, Hongzhan
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Aprilis, Georgios
    Univ Bayreuth, Germany.
    Ponomareva, Alena V
    Natl Univ Sci and Technol MISIS, Russia.
    Tasnadi, Ferenc
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Merle, Benoit
    Friedrich Alexander Univ Erlangen Nurnberg FAU, Germany.
    Feldners, Patrick
    Friedrich Alexander Univ Erlangen Nurnberg FAU, Germany.
    Vogel, Sebastian
    Univ Munich LMU, Germany.
    Schnick, Wolfgang
    Univ Munich LMU, Germany.
    Prakapenka, Vitali B.
    Univ Chicago, IL 60637 USA.
    Greenberg, Eran
    Univ Chicago, IL 60637 USA.
    Hanfland, Michael
    European Synchrotron Radiat Facil, France.
    Pakhomova, Anna
    DESY, Germany.
    Liermann, Hanns-Peter
    DESY, Germany.
    Katsura, Tomoo
    Univ Bayreuth, Germany.
    Dubrovinskaia, Natalia
    Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re-2(N-2)(N)(2) stable at ambient conditions2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 2994Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-pressure synthesis in diamond anvil cells can yield unique compounds with advanced properties, but often they are either unrecoverable at ambient conditions or produced in quantity insufficient for properties characterization. Here we report the synthesis of metallic, ultraincompressible (K-0 = 428(10) GPa), and very hard (nanoindentation hardness 36.7(8) GPa) rhenium nitride pernitride Re-2(N-2)(N)(2). Unlike known transition metals pernitrides Re-2(N-2)(N)(2) contains both pernitride N-2(4-) and discrete N3- anions, which explains its exceptional properties. Re-2(N-2)(N)(2) can be obtained via a reaction between rhenium and nitrogen in a diamond anvil cell at pressures from 40 to 90 GPa and is recoverable at ambient conditions. We develop a route to scale up its synthesis through a reaction between rhenium and ammonium azide, NH4N3, in a large-volume press at 33 GPa. Although metallic bonding is typically seen incompatible with intrinsic hardness, Re-2(N-2)(N)(2) turned to be at a threshold for superhard materials.

  • 6.
    Bykova, E.
    et al.
    DESY, Germany; Univ Bayreuth, Germany.
    Bykov, M.
    Univ Bayreuth, Germany; Natl Univ Sci and Technol MISIS, Russia.
    Cernok, A.
    Univ Bayreuth, Germany; Open Univ, England.
    Tidholm, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Simak, Sergey
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Hellman, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. CALTECH, CA 91125 USA.
    Belov, M. P.
    Natl Univ Sci and Technol MISIS, Russia.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Liermann, H. -P.
    DESY, Germany.
    Hanfland, M.
    European Synchrotron Radiat Facil, France.
    Prakapenka, V. B.
    Univ Chicago, IL 60637 USA.
    Prescher, C.
    Univ Chicago, IL 60637 USA; Univ Cologne, Germany.
    Dubrovinskaia, N.
    Univ Bayreuth, Germany.
    Dubrovinsky, L.
    Univ Bayreuth, Germany.
    Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 4789Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Modelling of processes involving deep Earth liquids requires information on their structures and compression mechanisms. However, knowledge of the local structures of silicates and silica (SiO2) melts at deep mantle conditions and of their densification mechanisms is still limited. Here we report the synthesis and characterization of metastable high-pressure silica phases, coesite-IV and coesite-V, using in situ single-crystal X-ray diffraction and ab initio simulations. Their crystal structures are drastically different from any previously considered models, but explain well features of pair-distribution functions of highly densified silica glass and molten basalt at high pressure. Built of four, five-, and six-coordinated silicon, coesite-IV and coesite-V contain SiO6 octahedra, which, at odds with 3rd Paulings rule, are connected through common faces. Our results suggest that possible silicate liquids in Earths lower mantle may have complex structures making them more compressible than previously supposed.

  • 7.
    Calafat, Francisco M.
    et al.
    Natl Oceanog Ctr, Joseph Proudman Bldg,6 Brownlow St, Liverpool L3 5DA, Merseyside, England.
    Wahl, Thomas
    Univ Cent Florida, Natl Ctr Integrated Coastal Res, 12800 Pegasus Dr,Suite 211, Orlando, FL 32816 USA;Univ Cent Florida, Dept Civil Environm & Construct Engn, USA.
    Lindsten, Fredrik
    Uppsala universitet, Reglerteknik, Sweden.
    Williams, Joanne
    Natl Oceanog Ctr, England.
    Frajka-Williams, Eleanor
    Univ Southampton, Ocean & Earth Sci, European Way, England.
    Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 2571Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Changes in the sea-level annual cycle (SLAC) can have profound impacts on coastal areas, including increased flooding risk and ecosystem alteration, yet little is known about the magnitude and drivers of such changes. Here we show, using novel Bayesian methods, that there are significant decadal fluctuations in the amplitude of the SLAC along the United States Gulf and Southeast coasts, including an extreme event in 2008-2009 that is likely (probability = 68%) unprecedented in the tide-gauge record. Such fluctuations are coherent along the coast but decoupled from deep-ocean changes. Through the use of numerical and analytical ocean models, we show that the primary driver of these fluctuations involves incident Rossby waves that generate fast western-boundary waves. These Rossby waves project onto the basin-wide upper mid-ocean transport (top 1000 m) leading to a link with the SLAC, wherein larger SLAC amplitudes coincide with enhanced transport variability.

  • 8.
    Cardin, Velia
    et al.
    Linköpings universitet, Institutet för handikappvetenskap (IHV). Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten.
    Orfanidou, Eleni
    University College London, UK and University of Crete, Greece.
    Rönnberg, Jerker
    Linköpings universitet, Institutet för handikappvetenskap (IHV). Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten.
    Capek, Cheryl M.
    University of Manchester, UK.
    Rudner, Mary
    Linköpings universitet, Institutet för handikappvetenskap (IHV). Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten.
    Woll, Bencie
    University College London, UK.
    Dissociating cognitive and sensory neural plasticity in human superior temporal cortex2013Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 4, nr 2Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Disentangling the effects of sensory and cognitive factors on neural reorganization is fundamental for establishing the relationship between plasticity and functional specialization. Auditory deprivation in humans provides a unique insight into this problem, because the origin of the anatomical and functional changes observed in deaf individuals is not only sensory, but also cognitive, owing to the implementation of visual communication strategies such as sign language and speechreading. Here, we describe a functional magnetic resonance imaging study of individuals with different auditory deprivation and sign language experience. We find that sensory and cognitive experience cause plasticity in anatomically and functionally distinguishable substrates. This suggests that after plastic reorganization, cortical regions adapt to process a different type of input signal, but preserve the nature of the computation they perform, both at a sensory and cognitive level.

  • 9.
    Carlstrom, Karl E.
    et al.
    Karolinska Inst, Sweden.
    Ewing, Ewoud
    Karolinska Inst, Sweden.
    Granqvist, Mathias
    Karolinska Inst, Sweden.
    Gyllenberg, Alexandra
    Karolinska Inst, Sweden.
    Aeinehband, Shahin
    Karolinska Inst, Sweden.
    Enoksson, Sara Lind
    Karolinska Univ Hosp, Sweden.
    Checa, Antonio
    Karolinska Inst, Sweden.
    Badam, Tejaswi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten. Univ Skovde, Sweden.
    Huang, Jesse
    Karolinska Inst, Sweden.
    Gomez-Cabrero, David
    Univ Publ Nevarra UPNA, Spain.
    Gustafsson, Mika
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Al Nimer, Faiez
    Karolinska Inst, Sweden.
    Wheelock, Craig E.
    Karolinska Inst, Sweden.
    Kockum, Ingrid
    Karolinska Inst, Sweden.
    Olsson, Tomas
    Karolinska Inst, Sweden.
    Jagodic, Maja
    Karolinska Inst, Sweden.
    Piehl, Fredrik
    Karolinska Inst, Sweden.
    Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 3081Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dimethyl fumarate (DMF) is a first-line-treatment for relapsing-remitting multiple sclerosis (RRMS). The redox master regulator Nrf2, essential for redox balance, is a target of DMF, but its precise therapeutic mechanisms of action remain elusive. Here we show impact of DMF on circulating monocytes and T cells in a prospective longitudinal RRMS patient cohort. DMF increases the level of oxidized isoprostanes in peripheral blood. Other observed changes, including methylome and transcriptome profiles, occur in monocytes prior to T cells. Importantly, monocyte counts and monocytic ROS increase following DMF and distinguish patients with beneficial treatment-response from non-responders. A single nucleotide polymorphism in the ROS-generating NOX3 gene is associated with beneficial DMF treatment-response. Our data implicate monocyte-derived oxidative processes in autoimmune diseases and their treatment, and identify NOX3 genetic variant, monocyte counts and redox state as parameters potentially useful to inform clinical decisions on DMF therapy of RRMS.

  • 10.
    Charalambidis, Georgios
    et al.
    University of Crete, Greece.
    Georgilis, Evangelos
    University of Crete, Greece; Fdn Research and Technology Hellas FORTH, Greece.
    Panda, Manas K.
    University of Crete, Greece; CSIR NIIST, India.
    Anson, Christopher E.
    Karlsruhe Institute Technology, Germany.
    Powell, Annie K.
    Karlsruhe Institute Technology, Germany; Karlsruhe Institute Technology, Germany.
    Doyle, Stephen
    Karlsruhe Institute Technology, Germany; Karlsruhe Institute Technology, Germany.
    Moss, David
    Karlsruhe Institute Technology, Germany; Karlsruhe Institute Technology, Germany.
    Jochum, Tobias
    Karlsruhe Institute Technology, Germany; Karlsruhe Institute Technology, Germany; Abcr GmbH, Germany.
    Horton, Peter N.
    University of Southampton, England.
    Coles, Simon J.
    University of Southampton, England.
    Linares, Mathieu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Beljonne, David
    University of Mons UMONS, Belgium; University of Mons UMONS, Belgium.
    Naubron, Jean-Valere
    Aix Marseille University, France.
    Conradt, Jonas
    Karlsruhe Institute Technology, Germany; Karlsruhe Institute Technology, Germany.
    Kalt, Heinz
    Karlsruhe Institute Technology, Germany; Karlsruhe Institute Technology, Germany.
    Mitraki, Anna
    University of Crete, Greece; Fdn Research and Technology Hellas FORTH, Greece.
    Coutsolelos, Athanassios G.
    University of Crete, Greece.
    Silviu Balaban, Teodor
    Aix Marseille University, France.
    A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif2016Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 7, nr 12657Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

  • 11.
    Chen, Gefei
    et al.
    Karolinska Institute, Sweden.
    Abelein, Axel
    Karolinska Institute, Sweden.
    Nilsson, Harriet E.
    Karolinska Institute, Sweden; KTH Royal Institute Technology, Sweden.
    Leppert, Axel
    Karolinska Institute, Sweden.
    Andrade-Talavera, Yuniesky
    Karolinska Institute, Sweden.
    Tambaro, Simone
    Karolinska Institute, Sweden.
    Hemmingsson, Lovisa
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Karolinska Institute, Sweden.
    Roshan, Firoz
    Karolinska Institute, Sweden.
    Landreh, Michael
    University of Oxford, England; Karolinska Institute, Sweden.
    Biverstal, Henrik
    Karolinska Institute, Sweden; Latvian Institute Organ Synth, Latvia.
    Koeck, Philip J. B.
    Karolinska Institute, Sweden; KTH Royal Institute Technology, Sweden.
    Presto, Jenny
    Karolinska Institute, Sweden.
    Hebert, Hans
    Karolinska Institute, Sweden; KTH Royal Institute Technology, Sweden.
    Fisahn, Andre
    Karolinska Institute, Sweden.
    Johansson, Jan
    Karolinska Institute, Sweden.
    Bri2 BRICHOS client specificity and chaperone activity are governed by assembly state2017Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, artikel-id 2081Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    . Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimers disease the amyloid-beta peptide (A beta) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces A beta fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible nonfibrillar aggregation. How these different activities are mediated is not known. Here we show that Bri2 BRICHOS monomers potently prevent neuronal network toxicity of A beta, while dimers strongly suppress A beta fibril formation. The dimers assemble into high-molecular-weight oligomers with an apparent two-fold symmetry, which are efficient inhibitors of non-fibrillar protein aggregation. These results indicate that Bri2 BRICHOS affects qualitatively different aspects of protein misfolding and toxicity via different quaternary structures, suggesting a means to generate molecular chaperone diversity.

  • 12.
    Chen, Shula
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Huang, Yuqing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Visser, Dennis
    KTH Royal Inst Technol, Sweden.
    Anand, Srinivasan
    KTH Royal Inst Technol, Sweden.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Room-temperature polarized spin-photon interface based on a semiconductor nanodisk-in-nanopillar structure driven by few defects2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 3575Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Owing to their superior optical properties, semiconductor nanopillars/nanowires in one-dimensional (1D) geometry are building blocks for nano-photonics. They also hold potential for efficient polarized spin-light conversion in future spin nano-photonics. Unfortunately, spin generation in 1D systems so far remains inefficient at room temperature. Here we propose an approach that can significantly enhance the radiative efficiency of the electrons with the desired spin while suppressing that with the unwanted spin, which simultaneously ensures strong spin and light polarization. We demonstrate high optical polarization of 20%, inferring high electron spin polarization up to 60% at room temperature in a 1D system based on a GaNAs nanodisk-in-GaAs nanopillar structure, facilitated by spin-dependent recombination via merely 2-3 defects in each nanodisk. Our approach points to a promising direction for realization of an interface for efficient spin-photon quantum information transfer at room temperature-a key element for future spin-photonic applications.

  • 13.
    Cirera, Borja
    et al.
    IMDEA Nanoscience, c/Faraday 9, Cantoblanco,Madrid, Spain.
    Giménez-Agulló, Nelson
    Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Pa¨ısos Catalans 16, Tarragona, Spain.
    Björk, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk kemi. Linköpings universitet, Tekniska fakulteten.
    Martínez-Peña, Francisco
    IMDEA Nanoscience, c/Faraday 9, Cantoblanco,Madrid, Spain..
    Martin-Jimenez, Alberto
    IMDEA Nanoscience, c/Faraday 9, Cantoblanco,Madrid, Spain..
    Rodriguez-Fernandez, Jonathan
    Departamento de F´ısica de la Materia Condensada, Universidad Auto´noma de Madrid, c/Francisco Toma´s y Valiente.
    Pizarro, Ana M.
    IMDEA Nanoscience, c/Faraday 9, Cantoblanco,Madrid, Spain..
    Otero, Roberto
    IMDEA Nanoscience, c/Faraday 9, Cantoblanco, 28049 Madrid, Spain,Universidad Auto´noma de Madrid, c/Francisco Toma´s y Valiente.
    Gallego, José M.
    Instituto de Ciencia de Materiales de Madrid, c/ Sor Juana Ine´s de la Cruz 3, Cantoblanco,Madrid, Spain..
    Ballester, Pablo
    Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Pa¨ısos Catalans 16, Tarragona, Spain/Catalan Institutionfor Research and Advanced Studies, Passeig Lluis Companys 23, Barcelona, Spain..
    Galan-Mascaros, José R.
    Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Pa¨ısos Catalans 16, Tarragona, Spain/Catalan Institutionfor Research and Advanced Studies, Passeig Lluis Companys 23, Barcelona, Spain..
    Ecija, David
    IMDEA Nanoscience, c/Faraday 9, Cantoblanco, Madrid, Spain.
    Thermal selectivity of intermolecular versus intramolecular reactions on surfaces2016Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 7, nr 11002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure.

  • 14.
    Couch, Fergus J.
    et al.
    Mayo Clin, MN 55905 USA; Mayo Clin, MN 55905 USA.
    Kuchenbaecker, Karoline B.
    University of Cambridge, England.
    Michailidou, Kyriaki
    University of Cambridge, England.
    Mendoza-Fandino, Gustavo A.
    University of S Florida, FL 33612 USA.
    Nord, Silje
    Radiumhosp, Norway.
    Lilyquist, Janna
    Mayo Clin, MN 55905 USA.
    Olswold, Curtis
    Mayo Clin, MN 55905 USA.
    Hallberg, Emily
    Mayo Clin, MN 55905 USA.
    Agata, Simona
    IRCCS, Italy.
    Ahsan, Habibul
    University of Chicago, IL 60637 USA; University of Chicago, IL 60637 USA; University of Chicago, IL 60637 USA.
    Aittomaeki, Kristiina
    University of Helsinki, Finland.
    Ambrosone, Christine
    Roswell Pk Cancer Institute, NY 14263 USA.
    Andrulis, Irene L.
    Mt Sinai Hospital, Canada; University of Toronto, Canada; University of Toronto, Canada.
    Anton-Culver, Hoda
    University of Calif Irvine, CA 92697 USA.
    Arndt, Volker
    German Cancer Research Centre, Germany.
    Arun, Banu K.
    University of Texas MD Anderson Cancer Centre, TX 77030 USA.
    Arver, Brita
    Karolinska University Hospital, Sweden.
    Barile, Monica
    Ist Europeo Oncol, Italy.
    Barkardottir, Rosa B.
    Landspitali University Hospital, Iceland; University of Iceland, Iceland.
    Barrowdale, Daniel
    University of Cambridge, England.
    Beckmann, Lars
    Institute Qual and Efficiency Health Care IQWiG, Germany.
    Beckmann, Matthias W.
    University of Erlangen Nurnberg, Germany.
    Benitez, Javier
    Spanish National Cancer Centre CNIO, Spain; Spanish National Cancer Centre CNIO, Spain; Biomed Network Rare Disease CIBERER, Spain.
    Blank, Stephanie V.
    NYU, NY 10016 USA.
    Blomqvist, Carl
    University of Helsinki, Finland; University of Helsinki, Finland.
    Bogdanova, Natalia V.
    Hannover Medical Sch, Germany.
    Bojesen, Stig E.
    Copenhagen University Hospital, Denmark.
    Bolla, Manjeet K.
    University of Cambridge, England.
    Bonanni, Bernardo
    Ist Europeo Oncol, Italy.
    Brauch, Hiltrud
    Dr Margarete Fischer Bosch Institute Clin Pharmacol, Germany; University of Tubingen, Germany.
    Brenner, Hermann
    German Cancer Research Centre, Germany; German Cancer Research Centre, Germany; National Centre Tumor Disease NCT, Germany.
    Burwinkel, Barbara
    Heidelberg University, Germany.
    Buys, Saundra S.
    University of Utah, UT 84112 USA.
    Caldes, Trinidad
    IdISSC, Spain.
    Caligo, Maria A.
    University of Pisa, Italy; University Hospital Pisa, Italy.
    Canzian, Federico
    German Cancer Research Centre, Germany.
    Carpenter, Jane
    University of Sydney, Australia.
    Chang-Claude, Jenny
    German Cancer Research Centre, Germany.
    Chanock, Stephen J.
    NCI, MD 20850 USA.
    Chung, Wendy K.
    Columbia University, NY 10032 USA; Columbia University, NY 10032 USA.
    Claes, Kathleen B. M.
    University of Ghent, Belgium.
    Cox, Angela
    University of Sheffield, England.
    Cross, Simon S.
    University of Sheffield, England.
    Cunningham, Julie M.
    Mayo Clin, MN 55905 USA.
    Czene, Kamila
    Karolinska Institute, Sweden.
    Daly, Mary B.
    Fox Chase Cancer Centre, PA 19111 USA.
    Damiola, Francesca
    University of Lyon, France.
    Darabi, Hatef
    Karolinska Institute, Sweden.
    de la Hoya, Miguel
    IdISSC, Spain.
    Devilee, Peter
    Leiden University, Netherlands.
    Diez, Orland
    University Hospital Vall dHebron, Spain; University of Autonoma Barcelona, Spain.
    Ding, Yuan C.
    City Hope National Medical Centre, CA 91010 USA.
    Dolcetti, Riccardo
    CRO Aviano National Cancer Institute, Italy.
    Domchek, Susan M.
    University of Penn, PA 19104 USA.
    Dorfling, Cecilia M.
    University of Pretoria, South Africa.
    dos-Santos-Silva, Isabel
    University of London London School Hyg and Trop Med, England.
    Dumont, Martine
    Centre Hospital University of Quebec, Canada; University of Laval, Canada.
    Dunning, Alison M.
    University of Cambridge, England.
    Eccles, Diana M.
    University of Southampton, England.
    Ehrencrona, Hans
    Uppsala University, Sweden; University of Lund Hospital, Sweden.
    Ekici, Arif B.
    University of Erlangen Nurnberg, Germany; Comprehens Cancer Centre EMN, Germany.
    Eliassen, Heather
    Brigham and Womens Hospital, MA 02115 USA; Harvard University, MA 02115 USA; Harvard University, MA 02115 USA.
    Ellis, Steve
    University of Cambridge, England.
    Fasching, Peter A.
    University of Erlangen Nurnberg, Germany.
    Figueroa, Jonine
    NCI, MD 20850 USA.
    Flesch-Janys, Dieter
    University of Clin Hamburg Eppendorf, Germany; University of Clin Hamburg Eppendorf, Germany.
    Foersti, Asta
    German Cancer Research Centre, Germany; Lund University, Sweden.
    Fostira, Florentia
    National Centre Science Research Demokritos, Greece.
    Foulkes, William D.
    McGill University, Canada.
    Friebel, Tara
    University of Philadelphia, PA 19104 USA.
    Friedman, Eitan
    Chaim Sheba Medical Centre, Israel.
    Frost, Debra
    University of Cambridge, England.
    Gabrielson, Marike
    Karolinska Institute, Sweden.
    Gammon, Marilie D.
    University of N Carolina, NC 27599 USA.
    Ganz, Patricia A.
    Jonsson Comprehens Cancer Centre, CA 90095 USA; Jonsson Comprehens Cancer Centre, CA 90095 USA.
    Gapstur, Susan M.
    Amer Cancer Soc, GA 30303 USA.
    Garber, Judy
    Dana Farber Cancer Institute, MA 02215 USA.
    Gaudet, Mia M.
    Amer Cancer Soc, GA 30303 USA.
    Gayther, Simon A.
    Cedars Sinai Medical Centre, CA 90048 USA.
    Gerdes, Anne-Marie
    Copenhagen University Hospital, Denmark.
    Ghoussaini, Maya
    University of Cambridge, England.
    Giles, Graham G.
    Cancer Council Victoria, Australia.
    Glendon, Gord
    Mt Sinai Hospital, Canada.
    Godwin, Andrew K.
    University of Kansas, KS 66205 USA.
    Goldberg, Mark S.
    McGill University, Canada; McGill University, Canada.
    Goldgar, David E.
    University of Utah, UT 84132 USA.
    Gonzalez-Neira, Anna
    Spanish National Cancer Research Centre CNIO, Spain.
    Greene, Mark H.
    NCI, MD 20850 USA.
    Gronwald, Jacek
    Pomeranian Medical University, Poland.
    Guenel, Pascal
    CESP Centre Research Epidemiol and Populat Heatlh, France.
    Gunter, Marc
    University of London Imperial Coll Science Technology and Med, England.
    Haeberle, Lothar
    University of Erlangen Nurnberg, Germany.
    Haiman, Christopher A.
    University of So Calif, CA 90033 USA.
    Hamann, Ute
    German Cancer Research Centre, Germany.
    Hansen, Thomas V. O.
    Copenhagen University Hospital, Denmark.
    Hart, Steven
    Mayo Clin, MN 55905 USA.
    Healey, Sue
    QIMR Berghofer Medical Research Institute, Australia.
    Heikkinen, Tuomas
    Heidelberg University, Germany; University of Helsinki, Finland.
    Henderson, Brian E.
    University of So Calif, CA 90033 USA.
    Herzog, Josef
    City Hope Clin Cancer Genet Community Research Network, CA 91010 USA.
    Hogervorst, Frans B. L.
    Netherlands Cancer Institute, Netherlands.
    Hollestelle, Antoinette
    Erasmus MC Cancer Institute, Netherlands.
    Hooning, Maartje J.
    Erasmus University, Netherlands.
    Hoover, Robert N.
    NCI, MD 20850 USA.
    Hopper, John L.
    University of Melbourne, Australia.
    Humphreys, Keith
    Karolinska Institute, Sweden.
    Hunter, David J.
    Harvard University, MA 02115 USA.
    Huzarski, Tomasz
    Pomeranian Medical University, Poland.
    Imyanitov, Evgeny N.
    NN Petrov Oncology Research Institute, Russia.
    Isaacs, Claudine
    Georgetown University, DC 20007 USA.
    Jakubowska, Anna
    Pomeranian Medical University, Poland.
    James, Paul
    Peter MacCallum Cancer Centre, Australia; University of Melbourne, Australia.
    Janavicius, Ramunas
    State Research Institute, Lithuania.
    Birk Jensen, Uffe
    Aarhus University Hospital, Denmark.
    John, Esther M.
    Cancer Prevent Institute Calif, CA 94538 USA.
    Jones, Michael
    Institute Cancer Research, England.
    Kabisch, Maria
    German Cancer Research Centre, Germany.
    Kar, Siddhartha
    University of Cambridge, England.
    Karlan, Beth Y.
    Cedars Sinai Medical Centre, CA 90048 USA.
    Khan, Sofia
    University of Helsinki, Finland; University of Helsinki, Finland.
    Khaw, Kay-Tee
    University of Cambridge, England.
    Kibriya, Muhammad G.
    University of Chicago, IL 60637 USA.
    Knight, Julia A.
    Mt Sinai Hospital, Canada.
    Ko, Yon-Dschun
    Evangel Kliniken Bonn gGmbH, Germany.
    Konstantopoulou, Irene
    National Centre Science Research Demokritos, Greece.
    Kosma, Veli-Matti
    University of Eastern Finland, Finland.
    Kristensen, Vessela
    Radiumhosp, Norway.
    Kwong, Ava
    Hong Kong Hereditary Breast Cancer Family Registry, Peoples R China; University of Hong Kong, Peoples R China.
    Laitman, Yael
    Chaim Sheba Medical Centre, Israel.
    Lambrechts, Diether
    VIB, Belgium.
    Lazaro, Conxi
    IDIBELL Catalan Institute Oncol, Spain.
    Lee, Eunjung
    University of So Calif, CA 90032 USA.
    Le Marchand, Loic
    University of Cancer Centre, HI 96813 USA.
    Lester, Jenny
    Cedars Sinai Medical Centre, CA 90048 USA.
    Lindblom, Annika
    Karolinska Institute, Sweden.
    Lindor, Noralane
    Mayo Clin, AZ 85259 USA.
    Lindstrom, Sara
    Harvard University, MA 02115 USA; Harvard University, MA 02115 USA.
    Liu, Jianjun
    Genome Institute Singapore, Singapore.
    Long, Jirong
    Vanderbilt University, TN 37203 USA; Vanderbilt University, TN 37203 USA.
    Lubinski, Jan
    Pomeranian Medical University, Poland.
    Mai, Phuong L.
    NCI, MD 20850 USA.
    Makalic, Enes
    University of Melbourne, Australia.
    Malone, Kathleen E.
    Fred Hutchinson Cancer Research Centre, WA 98109 USA; University of Washington, WA 98195 USA.
    Mannermaa, Arto
    University of Eastern Finland, Finland.
    Manoukian, Siranoush
    Fdn IRCCS Ist Nazl Tumori INT, Italy.
    Margolin, Sara
    Karolinska University Hospital, Sweden.
    Marme, Frederik
    Heidelberg University, Germany.
    Martens, John W. M.
    Erasmus MC Cancer Institute, Netherlands.
    McGuffog, Lesley
    University of Cambridge, England.
    Meindl, Alfons
    Technical University of Munich, Germany.
    Miller, Austin
    Roswell Pk Cancer Institute, NY 14263 USA.
    Milne, Roger L.
    Cancer Council Victoria, Australia.
    Miron, Penelope
    Case Western Reserve University, OH 44106 USA.
    Montagna, Marco
    IRCCS, Italy.
    Mazoyer, Sylvie
    University of Lyon, France.
    Mulligan, Anna M.
    University of Health Network, Canada; University of Toronto, Canada.
    Muranen, Taru A.
    Heidelberg University, Germany; University of Helsinki, Finland.
    Nathanson, Katherine L.
    University of Penn, PA 19104 USA.
    Neuhausen, Susan L.
    City Hope National Medical Centre, CA 91010 USA.
    Nevanlinna, Heli
    University of Helsinki, Finland; University of Helsinki, Finland.
    Nordestgaard, Borge G.
    Copenhagen University Hospital, Denmark.
    Nussbaum, Robert L.
    Invitae Corp, CA 94107 USA.
    Offit, Kenneth
    Mem Sloan Kettering Cancer Centre, NY 10065 USA.
    Olah, Edith
    National Institute Oncol, Hungary.
    Olopade, Olufunmilayo I.
    University of Chicago, IL 60637 USA.
    Olson, Janet E.
    Mayo Clin, MN 55905 USA.
    Osorio, Ana
    Spanish National Cancer Centre CNIO, Spain.
    Park, Sue K.
    Seoul National University, South Korea; Seoul National University, South Korea.
    Peeters, Petra H.
    University of Medical Centre, Netherlands; University of London Imperial Coll Science Technology and Med, England.
    Peissel, Bernard
    Fdn IRCCS Ist Nazl Tumori INT, Italy.
    Peterlongo, Paolo
    Fdn Ist FIRC Oncology Mol, Italy.
    Peto, Julian
    University of London London School Hyg and Trop Med, England.
    Phelan, Catherine M.
    University of S Florida, FL 33612 USA.
    Pilarski, Robert
    Ohio State University, OH 43210 USA.
    Poppe, Bruce
    University of Ghent, Belgium.
    Pylkaes, Katri
    University of Oulu, Finland; University of Oulu, Finland; University of Oulu, Finland.
    Radice, Paolo
    Fdn IRCCS Ist Nazl Tumori INT, Italy.
    Rahman, Nazneen
    Institute Cancer Research, England.
    Rantala, Johanna
    Karolinska University Hospital, Sweden.
    Rappaport, Christine
    Medical University of Vienna, Austria.
    Rennert, Gad
    Clalit National Israeli Cancer Control Centre, Israel; Carmel Hospital, Israel; B Rappaport Fac Med, Israel.
    Richardson, Andrea
    Johns Hopkins University, MD 21205 USA.
    Robson, Mark
    Mem Sloan Kettering Cancer Centre, NY 10065 USA.
    Romieu, Isabelle
    Int Agency Research Canc, France.
    Rudolph, Anja
    German Cancer Research Centre, Germany.
    Rutgers, Emiel J.
    Antoni van Leeuwenhoek Hospital, Netherlands.
    Sanchez, Maria-Jose
    University of Granada, Spain; CIBER Epidemiol and Salud Public CIBERESP, Spain.
    Santella, Regina M.
    Columbia University, NY 10032 USA.
    Sawyer, Elinor J.
    Kings Coll London, England.
    Schmidt, Daniel F.
    University of Melbourne, Australia.
    Schmidt, Marjanka K.
    Antoni van Leeuwenhoek Hospital, Netherlands.
    Schmutzler, Rita K.
    University Hospital Cologne, Germany; University Hospital Cologne, Germany.
    Schumacher, Fredrick
    University of So Calif, CA 90033 USA.
    Scott, Rodney
    John Hunter Hospital, Australia.
    Senter, Leigha
    Ohio State University, OH 43210 USA.
    Sharma, Priyanka
    University of Kansas, KS 66205 USA.
    Simard, Jacques
    University of Laval, Canada.
    Singer, Christian F.
    Medical University of Vienna, Austria.
    Sinilnikova, Olga M.
    University of Lyon, France; Hospital Civils Lyon, France.
    Soucy, Penny
    University of Laval, Canada.
    Southey, Melissa
    University of Melbourne, Australia.
    Steinemann, Doris
    Hannover Medical Sch, Germany.
    Stenmark-Askmalm, Marie
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Klinisk patologi och klinisk genetik.
    Stoppa-Lyonnet, Dominique
    Institute Curie, France; University of Paris 05, France.
    Swerdlow, Anthony
    Institute Cancer Research, England.
    Szabo, Csilla I.
    NHGRI, MD 20892 USA.
    Tamimi, Rulla
    Brigham and Womens Hospital, MA 02115 USA; Harvard University, MA 02115 USA; Harvard University, MA 02115 USA; Harvard University, MA 02115 USA.
    Tapper, William
    University of Southampton, England.
    Teixeira, Manuel R.
    Portuguese Oncology Institute, Portugal; University of Porto, Portugal.
    Teo, Soo-Hwang
    Cancer Research Initiat Fdn, Malaysia; University of Malaya, Malaysia.
    Terry, Mary B.
    Columbia University, NY 10032 USA.
    Thomassen, Mads
    Odense University Hospital, Denmark.
    Thompson, Deborah
    University of Cambridge, England.
    Tihomirova, Laima
    Latvian Biomed Research and Study Centre, Latvia.
    Toland, Amanda E.
    Ohio State University, OH 43210 USA.
    Tollenaar, Robert A. E. M.
    Leiden University, Netherlands.
    Tomlinson, Ian
    University of Oxford, England; University of Oxford, England.
    Truong, Therese
    CESP Centre Research Epidemiol and Populat Heatlh, France.
    Tsimiklis, Helen
    University of Melbourne, Australia.
    Teule, Alex
    IDIBELL Catalan Institute Oncol, Spain.
    Tumino, Rosario
    Civ MP Arezzo Hospital, Italy; Civ MP Arezzo Hospital, Italy.
    Tung, Nadine
    Beth Israel Deaconess Medical Centre, MA 02215 USA.
    Turnbull, Clare
    Institute Cancer Research, England.
    Ursin, Giski
    Institute Populat Based Cancer Research, Norway.
    van Deurzen, Carolien H. M.
    Erasmus University, Netherlands.
    van Rensburg, Elizabeth J.
    University of Pretoria, South Africa.
    Varon-Mateeva, Raymonda
    Charite, Germany.
    Wang, Zhaoming
    NCI, MD 20877 USA.
    Wang-Gohrke, Shan
    University Hospital Ulm, Germany.
    Weiderpass, Elisabete
    Karolinska Institute, Sweden; Institute Populat Based Cancer Research, Norway; University of Tromso, Norway; Folkhalsan Research Centre, Finland.
    Weitzel, Jeffrey N.
    City Hope Clin Cancer Genet Community Research Network, CA 91010 USA.
    Whittemore, Alice
    Stanford University, CA 94305 USA.
    Wildiers, Hans
    University Hospital, Belgium.
    Winqvist, Robert
    University of Oulu, Finland; University of Oulu, Finland; University of Oulu, Finland.
    Yang, Xiaohong R.
    NCI, MD 20892 USA.
    Yannoukakos, Drakoulis
    National Centre Science Research Demokritos, Greece.
    Yao, Song
    Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA.
    Pilar Zamora, M.
    Hospital University of La Paz, Spain.
    Zheng, Wei
    Vanderbilt University, TN 37203 USA; Vanderbilt University, TN 37203 USA.
    Hall, Per
    Karolinska Institute, Sweden.
    Kraft, Peter
    Harvard University, MA 02115 USA; Harvard University, MA 02115 USA; Harvard University, MA 02115 USA.
    Vachon, Celine
    Mayo Clin, MN 55905 USA.
    Slager, Susan
    Mayo Clin, MN 55905 USA.
    Chenevix-Trench, Georgia
    QIMR Berghofer Medical Research Institute, Australia.
    Pharoah, Paul D. P.
    University of Cambridge, England.
    Monteiro, Alvaro A. N.
    University of S Florida, FL 33612 USA.
    Garcia-Closas, Montserrat
    NCI, MD 20850 USA.
    Easton, Douglas F.
    University of Cambridge, England.
    Antoniou, Antonis C.
    University of Cambridge, England.
    Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer2016Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 7, nr 11375, s. 1-13Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.

  • 15.
    Cui, Yong
    et al.
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Yao, Huifeng
    Chinese Acad Sci, Peoples R China.
    Zhang, Jianqi
    Natl Ctr Nanosci and Technol, Peoples R China.
    Zhang, Tao
    Chinese Acad Sci, Peoples R China.
    Wang, Yuming
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Hong, Ling
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Xian, Kaihu
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Xu, Bowei
    Chinese Acad Sci, Peoples R China.
    Zhang, Shaoqing
    Chinese Acad Sci, Peoples R China; Univ Sci and Technol Beijing, Peoples R China.
    Peng, Jing
    Organtec Ltd, Peoples R China.
    Wei, Zhixiang
    Natl Ctr Nanosci and Technol, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Hou, Jianhui
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 2515Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Broadening the optical absorption of organic photovoltaic (OPV) materials by enhancing the intramolecular push-pull effect is a general and effective method to improve the power conversion efficiencies of OPV cells. However, in terms of the electron acceptors, the most common molecular design strategy of halogenation usually results in down-shifted molecular energy levels, thereby leading to decreased open-circuit voltages in the devices. Herein, we report a chlorinated non-fullerene acceptor, which exhibits an extended optical absorption and meanwhile displays a higher voltage than its fluorinated counterpart in the devices. This unexpected phenomenon can be ascribed to the reduced non-radiative energy loss (0.206 eV). Due to the simultaneously improved short-circuit current density and open-circuit voltage, a high efficiency of 16.5% is achieved. This study demonstrates that finely tuning the OPV materials to reduce the bandgap-voltage offset has great potential for boosting the efficiency.

  • 16.
    Fonseca, Gregory J
    et al.
    Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Tao, Jenhan
    Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Westin, Emma M
    Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Duttke, Sascha H
    Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Spann, Nathanael J
    Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Strid, Tobias
    Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Shen, Zeyang
    Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92037, USA.
    Stender, Joshua D
    Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Sakai, Mashito
    Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Link, Verena M
    Faculty of Biology, Division of Evolutionary Biology, Ludwig-Maximilian University of Munich, Munich, 80539, Germany.
    Benner, Christopher
    Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Glass, Christopher K
    Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA // Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
    Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages.2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, nr 1, artikel-id 414Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mechanisms by which members of the AP-1 family of transcription factors play non-redundant biological roles despite recognizing the same DNA sequence remain poorly understood. To address this question, here we investigate the molecular functions and genome-wide DNA binding patterns of AP-1 family members in primary and immortalized mouse macrophages. ChIP-sequencing shows overlapping and distinct binding profiles for each factor that were remodeled following TLR4 ligation. Development of a machine learning approach that jointly weighs hundreds of DNA recognition elements yields dozens of motifs predicted to drive factor-specific binding profiles. Machine learning-based predictions are confirmed by analysis of the effects of mutations in genetically diverse mice and by loss of function experiments. These findings provide evidence that non-redundant genomic locations of different AP-1 family members in macrophages largely result from collaborative interactions with diverse, locus-specific ensembles of transcription factors and suggest a general mechanism for encoding functional specificities of their common recognition motif.

  • 17.
    Forchheimer, Daniel
    et al.
    Royal Institute Technology KTH, Sweden.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska högskolan.
    Haviland, David B.
    Royal Institute Technology KTH, Sweden.
    Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy2015Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 6, nr 6270Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Atomic force microscopy has recently been extented to bimodal operation, where increased image contrast is achieved through excitation and measurement of two cantilever eigen-modes. This enhanced material contrast is advantageous in analysis of complex heterogeneous materials with phase separation on the micro or nanometre scale. Here we show that much greater image contrast results from analysis of nonlinear response to the bimodal drive, at harmonics and mixing frequencies. The amplitude and phase of up to 17 frequencies are simultaneously measured in a single scan. Using a machine-learning algorithm we demonstrate almost threefold improvement in the ability to separate material components of a polymer blend when including this nonlinear response. Beyond the statistical analysis performed here, analysis of nonlinear response could be used to obtain quantitative material properties at high speeds and with enhanced resolution.

  • 18.
    Franco, Irene
    et al.
    Karolinska Inst, Sweden.
    Johansson, Anna
    Uppsala Univ, Sweden.
    Olsson, Karl
    Karolinska Inst, Sweden.
    Vrtacnik, Peter
    Karolinska Inst, Sweden.
    Lundin, Par
    Karolinska Inst, Sweden; Stockholm Univ, Sweden.
    Helgadottir, Hafdis T.
    Karolinska Inst, Sweden.
    Larsson, Malin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Revechon, Gwladys
    Karolinska Inst, Sweden.
    Bosia, Carla
    IIGM, Italy; Politecn Torino, Italy.
    Pagnani, Andrea
    IIGM, Italy; Politecn Torino, Italy.
    Provero, Paolo
    Mol Biotechnol Ctr, Italy; Ist Sci San Raffaele, Italy.
    Gustafsson, Thomas
    Karolinska Inst, Sweden.
    Fischer, Helene
    Karolinska Inst, Sweden.
    Eriksson, Maria
    Karolinska Inst, Sweden.
    Somatic mutagenesis in satellite cells associates with human skeletal muscle aging2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 800Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Human aging is associated with a decline in skeletal muscle (SkM) function and a reduction in the number and activity of satellite cells (SCs), the resident stem cells. To study the connection between SC aging and muscle impairment, we analyze the whole genome of single SC clones of the leg muscle vastus lateralis from healthy individuals of different ages (21-78 years). We find an accumulation rate of 13 somatic mutations per genome per year, consistent with proliferation of SCs in the healthy adult muscle. SkM-expressed genes are protected from mutations, but aging results in an increase in mutations in exons and promoters, targeting genes involved in SC activity and muscle function. In agreement with SC mutations affecting the whole tissue, we detect a missense mutation in a SC propagating to the muscle. Our results suggest somatic mutagenesis in SCs as a driving force in the age-related decline of SkM function.

  • 19.
    Gilljam, David
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Biologi. Linköpings universitet, Tekniska högskolan.
    Curtsdotter, Alva
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Biologi. Linköpings universitet, Tekniska högskolan.
    Ebenman, Bo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Biologi. Linköpings universitet, Tekniska högskolan.
    Adaptive rewiring aggravates the effects of species loss in ecosystems2015Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 6, artikel-id 8412Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Loss of one species in an ecosystem can trigger extinctions of other dependent species. For instance, specialist predators will go extinct following the loss of their only prey unless they can change their diet. It has therefore been suggested that an ability of consumers to rewire to novel prey should mitigate the consequences of species loss by reducing the risk of cascading extinction. Using a new modelling approach on natural and computer-generated food webs we find that, on the contrary, rewiring often aggravates the effects of species loss. This is because rewiring can lead to overexploitation of resources, which eventually causes extinction cascades. Such a scenario is particularly likely if prey species cannot escape predation when rare and if predators are efficient in exploiting novel prey. Indeed, rewiring is a two-edged sword; it might be advantageous for individual predators in the short term, yet harmful for long-term system persistence.

  • 20.
    Giovanni, David
    et al.
    Nanyang Technol Univ, Singapore; Energy Res Inst NTU ERI N, Singapore.
    Lim, Jia Wei Melvin
    Nanyang Technol Univ, Singapore.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Lim, Swee Sien
    Nanyang Technol Univ, Singapore.
    Righetto, Marcello
    Nanyang Technol Univ, Singapore.
    Qing, Jian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Qiannan
    Nanyang Technol Univ, Singapore.
    Dewi, Herlina Arianita
    Energy Res Inst NTU ERI N, Singapore.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Mhaisalkar, Subodh Gautam
    Energy Res Inst NTU ERI N, Singapore; Nanyang Technol Univ, Singapore.
    Mathews, Nripan
    Energy Res Inst NTU ERI N, Singapore; Nanyang Technol Univ, Singapore.
    Sum, Tze Chien
    Nanyang Technol Univ, Singapore.
    Ultrafast long-range spin-funneling in solution-processed Ruddlesden-Popper halide perovskites2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 3456Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Room-temperature spin-based electronics is the vision of spintronics. Presently, there are few suitable material systems. Herein, we reveal that solution-processed mixed-phase Ruddlesden-Popper perovskite thin-films transcend the challenges of phonon momentum-scattering that limits spin-transfer in conventional semiconductors. This highly disordered system exhibits a remarkable efficient ultrafast funneling of photoexcited spin-polarized excitons from two-dimensional (2D) to three-dimensional (3D) phases at room temperature. We attribute this efficient exciton relaxation pathway towards the lower energy states to originate from the energy transfer mediated by intermediate states. This process bypasses the omnipresent phonon momentum-scattering in typical semiconductors with stringent band dispersion, which causes the loss of spin information during thermalization. Film engineering using graded 2D/3D perovskites allows unidirectional out-of-plane spin-funneling over a thickness of similar to 600 nm. Our findings reveal an intriguing family of solution-processed perovskites with extraordinary spin-preserving energy transport properties that could reinvigorate the concepts of spin-information transfer.

  • 21.
    Gorinski, Nataliya
    et al.
    Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
    Bijata, Monika
    Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany / Cell Biophysics, Nencki Institute, Pasteur Str. 3, 02-093, Warsaw, Poland.
    Prasad, Sonal
    Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
    Wirth, Alexander
    Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
    Abdel Galil, Dalia
    Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
    Zeug, Andre
    Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, German.
    Bazovkina, Daria
    Behavioural Neurogenomics, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia.
    Kondaurova, Elena
    Behavioural Neurogenomics, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia.
    Kulikova, Elizabeth
    Behavioural Neurogenomics, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia.
    Ilchibaeva, Tatiana
    Behavioural Neurogenomics, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia.
    Zareba-Koziol, Monika
    Cell Biophysics, Nencki Institute, Pasteur Str. 3, 02-093, Warsaw, Poland.
    Papaleo, Francesco
    Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genova, Italy.
    Scheggia, Diego
    Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genova, Italy.
    Kochlamazashvili, Gaga
    Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genova, Italy.
    Dityatev, Alexander
    Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genova, Italy / Molecular Neuroplasticity, DZNE, Leipziger Str. 44, 39120, Magdeburg, Germany.
    Smyth, Ian
    Anatomy & Developmental Biology, Monash University, 3800, Melbourne, Australia.
    Krzystyniak, Adam
    Cell Biophysics, Nencki Institute, Pasteur Str. 3, 02-093, Warsaw, Poland.
    Wlodarczyk, Jakub
    Cell Biophysics, Nencki Institute, Pasteur Str. 3, 02-093, Warsaw, Poland.
    Richter, Diethelm W.
    Neuro and Sensory Physiology, University of Göttingen, 37073, Göttingen, Germany.
    Strekalova, Tatyana
    Sechenov First Moscow State Medical University, Moscow, Russia / Neuroscience, Maastricht University, 6229 ER, Maastricht, Netherlands / Laboratory of Psychiatric Neurobiology and Institute of General Pathology and Pathophysiology, Sechenov First Moscow State Medical University, Trubetskaya 8, 119315, Moscow, Russia.
    Sigrist, Stephan
    Institute of Biology, Free University Berlin, Takustr. 6, 14195, Berlin, Germany.
    Bang, Claudia
    Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
    Hobuß, Lisa
    Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
    Fiedler, Jan
    Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
    Thum, Thomas
    Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
    Naumenko, Vladimir S.
    Behavioural Neurogenomics, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia.
    Pandey, Ghanshyam
    Department of Psychiatry, University of Illinois, 1601 W. Taylor Street, Chicago, IL, 60612, USA.
    Ponimaskin, Evgeni
    Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
    Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, nr 1, s. 1-14, artikel-id 3924Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The serotonergic system and in particular serotonin 1A receptor (5-HT1AR) are implicated in major depressive disorder (MDD). Here we demonstrated that 5-HT1AR is palmitoylated in human and rodent brains, and identified ZDHHC21 as a major palmitoyl acyltransferase, whose depletion reduced palmitoylation and consequently signaling functions of 5-HT1AR. Two rodent models for depression-like behavior show reduced brain ZDHHC21 expression and attenuated 5-HT1AR palmitoylation. Moreover, selective knock-down of ZDHHC21 in the murine forebrain induced depression-like behavior. We also identified the microRNA miR-30e as a negative regulator of Zdhhc21 expression. Through analysis of the post-mortem brain samples in individuals with MDD that died by suicide we find that miR-30e expression is increased, while ZDHHC21 expression, as well as palmitoylation of 5-HT1AR, are reduced within the prefrontal cortex. Our study suggests that downregulation of 5-HT1AR palmitoylation is a mechanism involved in depression, making the restoration of 5-HT1AR palmitoylation a promising clinical strategy for the treatment of MDD.

  • 22.
    Hakizimana, Pierre
    et al.
    Karolinska Institutet / Karolinska University Hospital, Stockholm, Sweden.
    Brownell, William E
    Jacob, Stefan
    Fridberger, Anders
    Karolinska Institutet / Karolinska University Hospital, Stockholm, Sweden.
    Sound-induced length changes in outer hair cell stereocilia2012Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 3Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hearing relies on mechanical stimulation of stereocilia bundles on the sensory cells of the inner ear. When sound hits the ear, each stereocilium pivots about a neck-like taper near their base. More than three decades of research have established that sideways deflection of stereocilia is essential for converting mechanical stimuli into electrical signals. Here we show that mammalian outer hair cell stereocilia not only move sideways but also change length during sound stimulation. Currents that enter stereocilia through mechanically sensitive ion channels control the magnitude of both length changes and bundle deflections in a reciprocal manner: the smaller the length change, the larger is the bundle deflection. Thus, the transduction current is important for maintaining the resting mechanical properties of stereocilia. Hair cell stimulation is most effective when bundles are in a state that ensures minimal length change.

  • 23.
    He, Hans
    et al.
    Chalmers Univ Technol, Sweden.
    Kim, Kyung Ho
    Chalmers Univ Technol, Sweden; Seoul Natl Univ, South Korea.
    Danilov, Andrey
    Chalmers Univ Technol, Sweden.
    Montemurro, Domenico
    Chalmers Univ Technol, Sweden.
    Yu, Liyang
    Chalmers Univ Technol, Sweden.
    Park, Yung Woo
    Seoul Natl Univ, South Korea; Univ Penn, PA 19104 USA.
    Lombardi, Floriana
    Chalmers Univ Technol, Sweden.
    Bauch, Thilo
    Chalmers Univ Technol, Sweden.
    Moth-Poulsen, Kasper
    Chalmers Univ Technol, Sweden.
    Lakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Malmberg, Per
    Chalmers Univ Technol, Sweden.
    Muller, Christian
    Chalmers Univ Technol, Sweden.
    Kubatkin, Sergey
    Chalmers Univ Technol, Sweden.
    Lara-Avila, Samuel
    Chalmers Univ Technol, Sweden; Natl Phys Lab, England.
    Uniform doping of graphene close to the Dirac point by polymer-assisted assembly of molecular dopants2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 3956Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tuning the charge carrier density of two-dimensional (2D) materials by incorporating dopants into the crystal lattice is a challenging task. An attractive alternative is the surface transfer doping by adsorption of molecules on 2D crystals, which can lead to ordered molecular arrays. However, such systems, demonstrated in ultra-high vacuum conditions (UHV), are often unstable in ambient conditions. Here we show that air-stable doping of epitaxial graphene on SiC-achieved by spin-coating deposition of 2,3,5,6-tetrafluoro-tetracyano-quino-dimethane (F4TCNQ) incorporated in poly(methyl-methacrylate)-proceeds via the spontaneous accumulation of dopants at the graphene-polymer interface and by the formation of a charge-transfer complex that yields low-disorder, charge-neutral, large-area graphene with carrier mobilities similar to 70 000 cm(2) V-1 s(-1) at cryogenic temperatures. The assembly of dopants on 2D materials assisted by a polymer matrix, demonstrated by spincoating wafer-scale substrates in ambient conditions, opens up a scalable technological route toward expanding the functionality of 2D materials.

  • 24.
    Hosaka, Kayoko
    et al.
    Karolinska Institute, Sweden .
    Yang, Yunlong
    Karolinska Institute, Sweden .
    Seki, Takahiro
    Karolinska Institute, Sweden .
    Nakamura, Masaki
    Karolinska Institute, Sweden .
    Andersson, Patrik
    Karolinska Institute, Sweden .
    Rouhi, Pegah
    Karolinska Institute, Sweden .
    Yang, Xiaojuan
    Karolinska Institute, Sweden .
    Jensen, Lasse
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Hälsouniversitetet. Karolinska Institute, Sweden .
    Lim, Sharon
    Karolinska Institute, Sweden .
    Feng, Ninghan
    Karolinska Institute, Sweden .
    Xue, Yuan
    Karolinska Institute, Sweden .
    Li, Xuri
    Sun Yat Sen University, Peoples R China .
    Larsson, Ola
    Karolinska Institute, Sweden .
    Ohhashi, Toshio
    Shinshu University, Japan .
    Cao, Yihai
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Hälsouniversitetet. Karolinska Institute, Sweden .
    Tumour PDGF-BB expression levels determine dual effects of anti-PDGF drugs on vascular remodelling and metastasis2013Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 4, nr 2129Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Anti-platelet-derived growth factor (PDGF) drugs are routinely used in front-line therapy for the treatment of various cancers, but the molecular mechanism underlying their dose-dependent impact on vascular remodelling remains poorly understood. Here we show that anti-PDGF drugs significantly inhibit tumour growth and metastasis in high PDGF-BB-producing tumours by preventing pericyte loss and vascular permeability, whereas they promote tumour cell dissemination and metastasis in PDGF-BB-low-producing or PDGF-BB-negative tumours by ablating pericytes from tumour vessels. We show that this opposing effect is due to PDGF-beta signalling in pericytes. Persistent exposure of pericytes to PDGF-BB markedly downregulates PDGF-beta and inactivation of the PDGF-beta signalling decreases integrin alpha 1 beta 1 levels, which impairs pericyte adhesion to extracellular matrix components in blood vessels. Our data suggest that tumour PDGF-BB levels may serve as a biomarker for selection of tumour-bearing hosts for anti-PDGF therapy and unsupervised use of anti-PDGF drugs could potentially promote tumour invasion and metastasis.

  • 25.
    Huang, Yuqing
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Song, Y. X.
    Chinese Academic Science, Peoples R China.
    Wang, S. M.
    Chinese Academic Science, Peoples R China; Chalmers, Sweden.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator2017Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, artikel-id 15401Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A three-dimensional (3D) topological insulator (TI) is a unique quantum phase of matter with exotic physical properties and promising spintronic applications. However, surface spin current in a common 3D TI remains difficult to control and the out-of-plane spin texture is largely unexplored. Here, by means of surface spin photocurrent in Bi2Te3 TI devices driven by circular polarized light, we identify the subtle effect of the spin texture of the topological surface state including the hexagonal warping term on the surface current. By exploring the out-of-plane spin texture, we demonstrate spin injection from GaAs to TI and its significant contribution to the surface current, which can be manipulated by an external magnetic field. These discoveries pave the way to not only intriguing new physics but also enriched spin functionalities by integrating TI with conventional semiconductors, such that spin-enabled optoelectronic devices may be fabricated in such hybrid structures.

  • 26.
    Janssen, P.
    et al.
    Eindhoven University of Technology, Netherlands.
    Cox, M.
    Eindhoven University of Technology, Netherlands.
    Wouters, S. H. W.
    Eindhoven University of Technology, Netherlands.
    Kemerink, M.
    Eindhoven University of Technology, Netherlands.
    Wienk, M. M.
    Eindhoven University of Technology, Netherlands.
    Koopmans, B.
    Eindhoven University of Technology, Netherlands.
    Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways2013Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 4, artikel-id 2286Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Harnessing the spin degree of freedom in semiconductors is generally a challenging, yet rewarding task. In recent years, the large effect of a small magnetic field on the current in organic semiconductors has puzzled the young field of organic spintronics. Although the microscopic interaction mechanisms between spin-carrying particles in organic materials are well understood nowadays, there is no consensus as to which pairs of spin-carrying particles are actually influencing the current in such a drastic manner. Here we demonstrate that the spin-based particle reactions can be tuned in a blend of organic materials, and microscopic mechanisms are identified using magnetoresistance lineshapes and voltage dependencies as fingerprints. We find that different mechanisms can dominate, depending on the exact materials choice, morphology and operating conditions. Our improved understanding will contribute to the future control of magnetic field effects in organic semiconductors.

  • 27.
    Ji, Hong
    et al.
    Karolinska Institute, Sweden; Nanjing Medical University, Peoples R China.
    Cao, Renhai
    Karolinska Institute, Sweden.
    Yang, Yunlong
    Karolinska Institute, Sweden.
    Zhang, Yin
    Karolinska Institute, Sweden.
    Iwamoto, Hideki
    Karolinska Institute, Sweden.
    Lim, Sharon
    Karolinska Institute, Sweden.
    Nakamura, Masaki
    Karolinska Institute, Sweden.
    Andersson, Patrik
    Karolinska Institute, Sweden.
    Wang, Jian
    Karolinska Institute, Sweden.
    Sun, Yuping
    Shandong University, Peoples R China.
    Dissing, Steen
    University of Copenhagen, Denmark.
    He, Xia
    Nanjing Medical University, Peoples R China.
    Yang, Xiaojuan
    Karolinska Institute, Sweden.
    Cao, Yihai
    Linköpings universitet, Institutionen för medicin och hälsa. Linköpings universitet, Medicinska fakulteten. Karolinska Institute, Sweden; University of Leicester, England.
    TNFR1 mediates TNF-alpha-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling2014Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 5, nr 4944Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Inflammation and lymphangiogenesis are two cohesively coupled processes that promote tumour growth and invasion. Here we report that TNF-alpha markedly promotes tumour lymphangiogenesis and lymphatic metastasis. The TNF-alpha-TNFR1 signalling pathway directly stimulates lymphatic endothelial cell activity through a VEGFR3-independent mechanism. However, VEGFR3-induced lymphatic endothelial cell tips are a prerequisite for lymphatic vessel growth in vivo, and a VEGFR3 blockade completely ablates TNF-alpha-induced lymphangiogenesis. Moreover, TNF-alpha-TNFR1-activated inflammatory macrophages produce high levels of VEGF-C to coordinately activate VEGFR3. Genetic deletion of TNFR1 (Tnfr1(-/-)) in mice or depletion of tumour-associated macrophages (TAMs) virtually eliminates TNF-alpha-induced lymphangiogenesis and lymphatic metastasis. Gain-of-function experiments show that reconstitution of Tnfr1(+/+) macrophages in Tnfr1(+/+) mice largely restores tumour lymphangiogenesis and lymphatic metastasis. These findings shed mechanistic light on the intimate interplay between inflammation and lymphangiogenesis in cancer metastasis, and propose therapeutic intervention of lymphatic metastasis by targeting the TNF-alpha-TNFR1 pathway.

  • 28.
    Johansson, Henrik J.
    et al.
    Karolinska Institute, Sweden .
    Sanchez, Betzabe C.
    Karolinska Institute, Sweden .
    Mundt, Filip
    Karolinska Institute, Sweden .
    Forshed, Jenny
    Karolinska Institute, Sweden .
    Kovacs, Aniko
    University Hospital, Sweden .
    Panizza, Elena
    Karolinska Institute, Sweden .
    Hultin-Rosenberg, Lina
    Karolinska Institute, Sweden .
    Lundgren, Bo
    Stockholm University, Sweden .
    Martens, Ulf
    Stockholm University, Sweden .
    Mathe, Gyongyver
    University Hospital, Sweden .
    Yakhini, Zohar
    Agilent Labs, Israel Technion Israel Institute Technology, Israel .
    Helou, Khalil
    University Hospital, Sweden .
    Krawiec, Kamilla
    Karolinska University Hospital, Sweden .
    Kanter, Lena
    Karolinska Institute, Sweden .
    Hjerpe, Anders
    Karolinska Institute, Sweden .
    Stål, Olle
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för kliniska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Onkologiska kliniken US.
    Linderholm, Barbro K.
    Karolinska Institute, Sweden University Hospital, Sweden .
    Lehtio, Janne
    Karolinska Institute, Sweden .
    Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer2013Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 4, nr 3175Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    About one-third of oestrogen receptor alpha-positive breast cancer patients treated with tamoxifen relapse. Here we identify the nuclear receptor retinoic acid receptor alpha as a marker of tamoxifen resistance. Using quantitative mass spectrometry-based proteomics, we show that retinoic acid receptor alpha protein networks and levels differ in a tamoxifen-sensitive (MCF7) and a tamoxifen-resistant (LCC2) cell line. High intratumoural retinoic acid receptor alpha protein levels also correlate with reduced relapse-free survival in oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen solely. A similar retinoic acid receptor alpha expression pattern is seen in a comparable independent patient cohort. An oestrogen receptor alpha and retinoic acid receptor alpha ligand screening reveals that tamoxifen-resistant LCC2 cells have increased sensitivity to retinoic acid receptor alpha ligands and are less sensitive to oestrogen receptor alpha ligands compared with MCF7 cells. Our data indicate that retinoic acid receptor alpha may be a novel therapeutic target and a predictive factor for oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen.

  • 29.
    Johnsson, Martin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biologi. Linköpings universitet, Tekniska fakulteten.
    Gering, Eben
    Department of Zoology, Michigan University, Michigan, USA.
    Willis, Pamela
    Department of Biology, University of Victoria, Victoria, British Columbia, Canada.
    Lopez, Saioa
    UCL Genetics Institute, University College London, London, UK.
    Van Dorp, Lucy
    UCL Genetics Institute, University College London, London, UK.
    Hellenthal, Garrett
    UCL Genetics Institute, University College London, London, UK.
    Henriksen, Rie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biologi. Linköpings universitet, Tekniska fakulteten.
    Friberg, Urban
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biologi. Linköpings universitet, Tekniska fakulteten.
    Wright, Dominic
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biologi. Linköpings universitet, Tekniska fakulteten.
    Feralisation targets different genomic loci to domestication in the chicken.2016Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 7, artikel-id 12950Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Feralisation occurs when a domestic population recolonizes the wild, escaping its previous restricted environment, and has been considered as the reverse of domestication. We have previously shown that Kauai Island's feral chickens are a highly variable and admixed population. Here we map selective sweeps in feral Kauai chickens using whole-genome sequencing. The detected sweeps were mostly unique to feralisation and distinct to those selected for during domestication. To ascribe potential phenotypic functions to these genes we utilize a laboratory-controlled equivalent to the Kauai population-an advanced intercross between Red Junglefowl and domestic layer birds that has been used previously for both QTL and expression QTL studies. Certain sweep genes exhibit significant correlations with comb mass, maternal brooding behaviour and fecundity. Our analyses indicate that adaptations to feral and domestic environments involve different genomic regions and feral chickens show some evidence of adaptation at genes associated with sexual selection and reproduction.

  • 30.
    Kawai, Shigeki
    et al.
    Namiki, Tsukuba, 305-0044 Ibaraki, Japan/Basel, Switzerland/ Honcho, Kawaguchi, 332-0012 Saitama, Japan.
    Foster, Adam S.
    Aalto University, Finland/Kanazawa University, Kanazawa Japan..
    Björkman, Torbjörn
    Aalto University/Åbo Akademi University, Finland..
    Nowakowska, Sylwia
    University of Basel,Switzerland.
    Björk, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk kemi. Linköpings universitet, Tekniska fakulteten.
    Canova, Filippo Federici
    Aalto University, Finland.
    Gade, Lutz H.
    Universität Heidelberg, Germany.
    Jung, Thomas A.
    University of Basel, Switzerland/Paul Scherrer Institute, Switzerland..
    Meyer, Ernst
    University of Basel, Switzerland..
    Van der Waals interactions and the limits of isolated atom models at interfaces2016Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 7, artikel-id 11559Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems.

  • 31.
    Khodaparast, Ladan
    et al.
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Khodaparast, Laleh
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Gallardo, Rodrigo
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Louros, Nikolaos N.
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Michiels, Emiel
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Ramakrishnan, Reshmi
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Ramakers, Meine
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Claes, Filip
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Young, Lydia
    Univ Leeds, England; Univ Leeds, England.
    Shahrooei, Mohammad
    KULeuven, Belgium.
    Wilkinson, Hannah
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Desager, Matyas
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Tadesse, Wubishet Mengistu
    KULeuven, Belgium.
    Nilsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Hammarström, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Aertsen, Abram
    KULeuven, Belgium.
    Carpentier, Sebastien
    KULeuven, Belgium.
    Van Eldere, Johan
    KULeuven, Belgium.
    Rousseau, Frederic
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Schymkowitz, Joost
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 866Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Aggregation is a sequence-specific process, nucleated by short aggregation-prone regions (APRs) that can be exploited to induce aggregation of proteins containing the same APR. Here, we find that most APRs are unique within a proteome, but that a small minority of APRs occur in many proteins. When aggregation is nucleated in bacteria by such frequently occurring APRs, it leads to massive and lethal inclusion body formation containing a large number of proteins. Buildup of bacterial resistance against these peptides is slow. In addition, the approach is effective against drug-resistant clinical isolates of Escherichia coli and Acinetobacter baumannii, reducing bacterial load in a murine bladder infection model. Our results indicate that redundant APRs are weak points of bacterial protein homeostasis and that targeting these may be an attractive antibacterial strategy.

  • 32.
    Kim, Seong-Min
    et al.
    Gwangju Inst Sci and Technol, South Korea.
    Kim, Chang-Hyun
    Gwangju Inst Sci and Technol, South Korea; Gwangju Inst Sci and Technol, South Korea; Gachon Univ, Peoples R China.
    Kim, Youngseok
    Gwangju Inst Sci and Technol, South Korea.
    Kim, Nara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Gwangju Inst Sci and Technol, South Korea.
    Lee, Won-June
    Gwangju Inst Sci and Technol, South Korea.
    Lee, Eun-Hak
    Gwangju Inst Sci and Technol, South Korea.
    Kim, Dokyun
    Gwangju Inst Sci and Technol, South Korea.
    Park, Sungjun
    RIKEN, Japan.
    Lee, Kwanghee
    Gwangju Inst Sci and Technol, South Korea; Gwangju Inst Sci and Technol, South Korea; Gwangju Inst Sci and Technol, South Korea.
    Rivnay, Jonathan
    Northwestern Univ, IL 60208 USA.
    Yoon, Myung-Han
    Gwangju Inst Sci and Technol, South Korea.
    Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 3858Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Owing to the mixed electron/hole and ion transport in the aqueous environment, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based organic electrochemical transistor has been regarded as one of the most promising device platforms for bioelectronics. Nonetheless, there exist very few in-depth studies on how intrinsic channel material properties affect their performance and long-term stability in aqueous environments. Herein, we investigated the correlation among film microstructural crystallinity/composition, device performance, and aqueous stability in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. The highly organized anisotropic ordering in crystallized conducting polymer films led to remarkable device characteristics such as large transconductance (similar to 20 mS), extraordinary volumetric capacitance (113 F.cm(-3)), and unprecedentedly high [mu C*] value (similar to 490 F.cm(-1) V-1 s(-1)). Simultaneously, minimized poly(styrenesulfonate) residues in the crystallized film substantially afforded marginal film swelling and robust operational stability even after amp;gt;20-day water immersion, amp;gt;2000-time repeated on-off switching, or high-temperature/pressure sterilization. We expect that the present study will contribute to the development of long-term stable implantable bioelectronics for neural recording/stimulation.

  • 33.
    Langefeld, Carl D.
    et al.
    Wake Forest School Med, NC 27101 USA; Wake Forest School Med, NC 27101 USA.
    Ainsworth, Hannah C.
    Wake Forest School Med, NC 27101 USA; Wake Forest School Med, NC 27101 USA.
    Cunninghame Graham, Deborah S.
    Kings Coll London, England.
    Kelly, Jennifer A.
    Oklahoma Medical Research Fdn, OK 73104 USA.
    Comeau, Mary E.
    Wake Forest School Med, NC 27101 USA.
    Marion, Miranda C.
    Wake Forest School Med, NC 27101 USA.
    Howard, Timothy D.
    Wake Forest School Med, NC 27101 USA.
    Ramos, Paula S.
    Medical University of South Carolina, SC 29425 USA.
    Croker, Jennifer A.
    UAB School Med, AL 35294 USA.
    Morris, David L.
    Kings Coll London, England.
    Sandling, Johanna K.
    Uppsala University, Sweden; University of Nacl Mayor San Marcos, Peru.
    Carlsson Almlof, Jonas
    Uppsala University, Sweden; University of Nacl Mayor San Marcos, Peru.
    Acevedo-Vasquez, Eduardo M.
    University of Nacl Mayor San Marcos, Peru.
    Alarcon, Graciela S.
    UAB School of Medicine, Birmingham, Alabama, USA.
    Babini, Alejandra M.
    Hospital Italiano Cordoba, Argentina.
    Baca, Vicente
    Hospital Pediat Mexico City, Mexico.
    Bengtsson, Anders A.
    Lund University, Sweden.
    Berbotto, Guillermo A.
    Hospital Eva Peron, Argentina.
    Bijl, Marc
    Martini Hospital, Netherlands.
    Brown, Elizabeth E.
    UAB School of Medicine, Birmingham, Alabama, USA..
    Brunner, Hermine I.
    Cincinnati Childrens Hospital Medical Centre, OH 45229 USA; University of Cincinnati, OH 45229 USA.
    Cardiel, Mario H.
    Centre Invest Clin Morelia, Mexico.
    Catoggio, Luis
    Hospital Italiano Buenos Aires, Argentina.
    Cervera, Ricard
    University of Barcelona, Spain.
    Cucho-Venegas, Jorge M.
    University of Nacl Mayor San Marcos, Peru.
    Rantapaa Dahlqvist, Solbritt
    Umeå University, Sweden.
    DAlfonso, Sandra
    University of Piemonte Orientale, Italy.
    Martins Da Silva, Berta
    University of Porto, Portugal.
    de la Rua Figueroa, Inigo
    Hospital University of Gran Canaria Dr Negrin, Spain.
    Doria, Andrea
    University of Padua, Italy.
    Edberg, Jeffrey C.
    UAB School Med, AL 35294 USA.
    Endreffy, Emoke
    University of Szeged, Hungary; University of Szeged, Hungary.
    Esquivel-Valerio, Jorge A.
    Hospital University of Dr Jose Eleuterio Gonzalez University of Autonom, Mexico.
    Fortin, Paul R.
    University of Laval, Canada.
    Freedman, Barry I.
    Wake Forest School Med, NC 27101 USA; Wake Forest School Med, NC 27101 USA; Wake Forest School Med, NC 27101 USA.
    Frostegard, Johan
    Karolinska Institute, Sweden.
    Garcia, Mercedes A.
    Hospital Interzonal Gen Agudos Gen San Martin, Argentina.
    Garcia de la Torre, Ignacio
    University of Guadalajara, Mexico.
    Gilkeson, Gary S.
    Medical University of South Carolina, SC 29425 USA.
    Gladman, Dafna D.
    Toronto Western Hospital, Canada.
    Gunnarsson, Iva
    Karolinska University Hospital, Sweden.
    Guthridge, Joel M.
    Oklahoma Medical Research Fdn, OK 73104 USA.
    Huggins, Jennifer L.
    Cincinnati Childrens Hospital Medical Centre, OH 45229 USA; University of Cincinnati, OH 45229 USA.
    James, Judith A.
    Hospital Eva Peron, Argentina; University of Oklahoma, OK 73104 USA; University of Oklahoma, OK 73104 USA.
    Kallenberg, Cees G. M.
    University of Medical Centre Groningen, Netherlands.
    Kamen, Diane L.
    Medical University of South Carolina, Charleston, USA.
    Karp, David R.
    University of Texas Southwestern Medical Centre Dallas, TX 75235 USA.
    Kaufman, Kenneth M.
    Cincinnati Childrens Hospital Medical Centre, OH 45229 USA.
    Kottyan, Leah C.
    Cincinnati Childrens Hospital Medical Centre, OH 45229 USA.
    Kovacs, Laszlo
    University of Szeged, Hungary.
    Laustrup, Helle
    Odense University Hospital, Denmark.
    Lauwerys, Bernard R.
    Catholic University of Louvain, Belgium; Catholic University of Louvain, Belgium.
    Li, Quan-Zhen
    University of Texas Southwestern Medical Centre Dallas, TX 75235 USA.
    Maradiaga-Cecena, Marco A.
    Hospital Gen Culiacan, Mexico.
    Martin, Javier
    CSIC, Spain.
    McCune, Joseph M.
    University of Michigan, MI 48103 USA.
    McWilliams, David R.
    Wake Forest School Med, NC 27101 USA; Wake Forest School Med, NC 27101 USA.
    Merrill, Joan T.
    Oklahoma Medical Research Fdn, OK 73104 USA.
    Miranda, Pedro
    Centre Estudios Reumatol, Chile.
    Moctezuma, Jose F.
    Hospital Gen Mexico City, Mexico.
    Nath, Swapan K.
    Oklahoma Medical Research Fdn, OK 73104 USA.
    Niewold, Timothy B.
    Mayo Clin, MN 94158 USA.
    Orozco, Lorena
    Institute Nacl Medical Genom INMEGEN, Mexico.
    Ortego-Centeno, Norberto
    Hospital University of San Cecilio, Spain.
    Petri, Michelle
    Johns Hopkins University, MD 21218 USA.
    Pineau, Christian A.
    McGill University, Canada.
    Pons-Estel, Bernardo A.
    Sanatorio Parque, Argentina.
    Pope, Janet
    University of Western Ontario, Canada.
    Raj, Prithvi
    University of Texas Southwestern Medical Centre Dallas, TX 75235 USA.
    Ramsey-Goldman, Rosalind
    Northwestern University, IL 60611 USA.
    Reveille, John D.
    University of Texas Health Science Centre Houston UTHealth, TX 77030 USA.
    Russell, Laurie P.
    Wake Forest School Med, NC 27101 USA.
    Sabio, Jose M.
    Hospital University of Virgen de las Nieves, Spain.
    Aguilar-Salinas, Carlos A.
    Institute Nacl Ciencias Medical and Nutr Salvador Zubiran, Mexico.
    Scherbarth, Hugo R.
    Autoinmunes HIGA Dr Alende Mar Plata, Argentina.
    Scorza, Raffaella
    Fdn IRCCS CaGranda Osped Ma Repiore Policlin, Italy; University of Milan, Italy.
    Seldin, Michael F.
    UC Davis School Med, CA 95616 USA.
    Sjöwall, Christopher
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Reumatologiska kliniken i Östergötland.
    Svenungsson, Elisabet
    Karolinska University Hospital, Sweden.
    Thompson, Susan D.
    Cincinnati Childrens Hospital Medical Centre, OH 45229 USA.
    Toloza, Sergio M. A.
    Minist Heatlh, Argentina.
    Truedsson, Lennart
    Lund University, Sweden.
    Tusie-Luna, Teresa
    UNAM Institute Nacl Ciencias Medical and Nutr Salvador Zubir, Mexico.
    Vasconcelos, Carlos
    University of Porto, Portugal.
    Vila, Luis M.
    University of Puerto Rico, PR 00936 USA.
    Wallace, Daniel J.
    Cedars Sinai Medical Centre, CA 90048 USA.
    Weisman, Michael H.
    Cedars Sinai Medical Centre, CA 90048 USA.
    Wither, Joan E.
    Toronto Western Hospital, Canada.
    Bhangale, Tushar
    Genentech Inc, CA 94080 USA.
    Oksenberg, Jorge R.
    University of Calif San Francisco, CA 94158 USA; University of Calif San Francisco, CA 94158 USA.
    Rioux, John D.
    University of Montreal, Canada; Montreal Heart Institute, Canada.
    Gregersen, Peter K.
    Feinstein Institute Medical Research, NY 11030 USA.
    Syvanen, Ann-Christine
    Uppsala University, Sweden; University of Nacl Mayor San Marcos, Peru.
    Ronnblom, Lars
    Uppsala University, Sweden.
    Criswell, Lindsey A.
    UCSF School Med, CA 94158 USA.
    Jacob, Chaim O.
    Keck School Medical USC, CA 90033 USA.
    Sivils, Kathy L.
    Oklahoma Medical Research Fdn, OK 73104 USA.
    Tsao, Betty P.
    Medical University of South Carolina, SC 29425 USA.
    Schanberg, Laura E.
    Duke University, NC 27708 USA.
    Behrens, Timothy W.
    Genentech Inc, CA 94080 USA.
    Silverman, Earl D.
    Hospital Sick Children, Canada; Hospital Sick Children, Canada; University of Toronto, Canada.
    Alarcon-Riquelme, Marta E.
    Oklahoma Medical Research Fdn, OK 73104 USA; University of Granada, Spain; Karolinska Institute, Sweden.
    Kimberly, Robert P.
    UAB School Med, AL 35294 USA.
    Harley, John B.
    Cincinnati Childrens Hospital Medical Centre, OH 45229 USA.
    Wakeland, Edward K.
    University of Texas Southwestern Medical Centre Dallas, TX 75235 USA.
    Graham, Robert R.
    Genentech Inc, CA 94080 USA.
    Gaffney, Patrick M.
    Oklahoma Medical Research Fdn, OK 73104 USA.
    Vyse, Timothy J.
    Kings Coll London, England.
    Transancestral mapping and genetic load in systemic lupus erythematosus2017Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, artikel-id 16021Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (similar to 50% of these regions have multiple independent associations); these include 24 novel SLE regions (P amp;lt; 5 x 10(-8)), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.

  • 34.
    Lawrenson, Kate
    et al.
    University of Southern Calif, CA 90033 USA; Cedars Sinai Medical Centre, CA 90048 USA.
    Kar, Siddhartha
    University of Cambridge, England.
    McCue, Karen
    QIMR Berghofer Medical Research Institute, Australia.
    Kuchenbaeker, Karoline
    University of Cambridge, England.
    Michailidou, Kyriaki
    University of Cambridge, England.
    Tyrer, Jonathan
    University of Cambridge, England.
    Beesley, Jonathan
    QIMR Berghofer Medical Research Institute, Australia.
    Ramus, Susan J.
    University of Southern Calif, CA 90033 USA.
    Li, Qiyuan
    Xiamen University, Peoples R China; Dana Farber Cancer Institute, MA 02215 USA.
    Delgado, Melissa K.
    University of Southern Calif, CA 90033 USA.
    Lee, Janet M.
    University of Southern Calif, CA 90033 USA.
    Aittomaki, Kristiina
    University of Helsinki, Finland.
    Andrulis, Irene L.
    Mt Sinai Hospital, Canada; University of Toronto, Canada.
    Anton-Culver, Hoda
    University of Calif Irvine, CA 92697 USA.
    Arndt, Volker
    German Cancer Research Centre, Germany.
    Arun, Banu K.
    University of Texas MD Anderson Cancer Centre, TX 77030 USA.
    Arver, Brita
    Karolinska University Hospital, Sweden.
    Bandera, Elisa V.
    Rutgers Cancer Institute New Jersey, NJ 08903 USA.
    Barile, Monica
    Ist Europeo Oncol, Italy.
    Barkardottir, Rosa B.
    University of Iceland, Iceland; University of Iceland, Iceland.
    Barrowdale, Daniel
    University of Cambridge, England.
    Beckmann, Matthias W.
    University of Erlangen Nurnberg, Germany.
    Benitez, Javier
    Spanish National Cancer Research Centre, Spain; Centre Invest Red Enfermedades Raras, Spain.
    Berchuck, Andrew
    Duke University, NC 27710 USA.
    Bisogna, Maria
    Mem Sloan Kettering Cancer Centre, NY 10065 USA.
    Bjorge, Line
    Haukeland Hospital, Norway; University of Bergen, Norway.
    Blomqvist, Carl
    University of Helsinki, Finland.
    Blot, William
    Vanderbilt University, TN 37203 USA; Int Epidemiol Institute, MD 20850 USA.
    Bogdanova, Natalia
    Hannover Medical Sch, Germany.
    Bojesen, Anders
    Vejle Hospital, Denmark; Seoul National University, South Korea; Lunenfeld Tanenbaum Research Institute Mt Sinai Hospital, Canada.
    Bojesen, Stig E.
    University of Copenhagen, Denmark; Copenhagen University Hospital, Denmark; Copenhagen University Hospital, Denmark.
    Bolla, Manjeet K.
    University of Cambridge, England.
    Bonanni, Bernardo
    Ist Europeo Oncol, Italy.
    Borresen-Dale, Anne-Lise
    Oslo University Hospital, Norway; University of Oslo, Norway.
    Brauch, Hiltrud
    Dr Margarete Fischer Bosch Institute Clin Pharmacol, Germany; University of Tubingen, Germany; German Cancer Research Centre, Germany.
    Brennan, Paul
    Int Agency Research Canc, France.
    Brenner, Hermann
    German Cancer Research Centre, Germany; German Cancer Research Centre, Germany; German Cancer Research Centre, Germany.
    Bruinsma, Fiona
    Cancer Council Victoria, Australia.
    Brunet, Joan
    Catalan Institute Oncol, Spain.
    Ahmad Buhari, Shaik
    National University of Health Syst, Singapore.
    Burwinkel, Barbara
    German Cancer Research Centre, Germany; Heidelberg University, Germany.
    Butzow, Ralf
    University of Helsinki, Finland.
    Buys, Saundra S.
    University of Utah, UT 84112 USA.
    Cai, Qiuyin
    Vanderbilt University, TN 37203 USA.
    Caldes, Trinidad
    IdISSC El Institute Invest Sanitaria Hospital Clin San Car, Spain.
    Campbell, Ian
    Peter MacCallum Cancer Centre, Australia.
    Canniotto, Rikki
    Roswell Pk Cancer Institute, NY 14263 USA.
    Chang-Claude, Jenny
    German Cancer Research Centre, Germany; University of Medical Centre Hamburg Eppendorf, Germany.
    Chiquette, Jocelyne
    University of Quebec, Canada.
    Choi, Ji-Yeob
    Seoul National University, South Korea.
    Claes, Kathleen B. M.
    University of Ghent, Belgium.
    Cook, Linda S.
    University of New Mexico, NM 87131 USA.
    Cox, Angela
    University of Sheffield, England.
    Cramer, Daniel W.
    Harvard University, MA 02115 USA; Brigham and Womens Hospital, MA 02115 USA; Harvard University, MA 02115 USA.
    Cross, Simon S.
    University of Sheffield, England.
    Cybulski, Cezary
    Pomeranian Medical University, Poland.
    Czene, Kamila
    Karolinska Institute, Sweden.
    Daly, Mary B.
    Fox Chase Cancer Centre, PA 19111 USA.
    Damiola, Francesca
    University of Lyon, France.
    Dansonka-Mieszkowska, Agnieszka
    Maria Sklodowska Curie Mem Cancer Centre, Poland; Institute Oncol, Poland.
    Darabi, Hatef
    Karolinska Institute, Sweden.
    Dennis, Joe
    University of Cambridge, England.
    Devilee, Peter
    Leiden University, Netherlands.
    Diez, Orland
    University Hospital Vall Hebron, Spain; University of Autonoma Barcelona, Spain.
    Doherty, Jennifer A.
    Geisel School Medical Dartmouth, NH 03755 USA.
    Domchek, Susan M.
    University of Penn, PA 19104 USA.
    Dorfling, Cecilia M.
    University of Pretoria, South Africa.
    Doerk, Thilo
    Hannover Medical Sch, Germany.
    Dumont, Martine
    University of Laval, Canada.
    Ehrencrona, Hans
    Uppsala University, Sweden; University of Lund Hospital, Sweden.
    Ejlertsen, Bent
    Copenhagen University Hospital, Denmark.
    Ellis, Steve
    University of Cambridge, England.
    Engel, Christoph
    University of Leipzig, Germany.
    Lee, Eunjung
    University of Southern Calif, CA 90033 USA.
    Gareth Evans, D.
    University of Manchester, England.
    Fasching, Peter A.
    University of Erlangen Nurnberg, Germany; University of Calif Los Angeles, CA 90095 USA.
    Feliubadalo, Lidia
    Catalan Institute Oncol, Spain.
    Figueroa, Jonine
    NCI, MD 20892 USA.
    Flesch-Janys, Dieter
    University of Medical Centre Hamburg Eppendorf, Germany; University of Medical Centre Hamburg Eppendorf, Germany.
    Fletcher, Olivia
    Institute Cancer Research, England.
    Flyger, Henrik
    Copenhagen University Hospital, Denmark.
    Foretova, Lenka
    Masaryk Mem Cancer Institute, Czech Republic; Medical Fac MU, Czech Republic.
    Fostira, Florentia
    Aghia Paraskevi Attikis, Greece.
    Foulkes, William D.
    McGill University, Canada.
    Fridley, Brooke L.
    University of Kansas, KS 66103 USA.
    Friedman, Eitan
    Chaim Sheba Medical Centre, Israel.
    Frost, Debra
    University of Cambridge, England.
    Gambino, Gaetana
    University of and University Hospital Pisa, Italy.
    Ganz, Patricia A.
    Jonsson Comprehens Cancer Centre, CA 90024 USA.
    Garber, Judy
    Dana Farber Cancer Institute, MA 02215 USA.
    Garcia-Closas, Montserrat
    NCI, MD 20892 USA; Institute Cancer Research, England.
    Gentry-Maharaj, Aleksandra
    UCL EGA Institute Womens Heatlh, England.
    Ghoussaini, Maya
    University of Cambridge, England.
    Giles, Graham G.
    Cancer Council Victoria, Australia; University of Melbourne, Australia.
    Glasspool, Rosalind
    Beatson West Scotland Cancer Centre, Scotland.
    Godwin, Andrew K.
    University of Kansas, KS 66160 USA.
    Goldberg, Mark S.
    McGill University, Canada; McGill University, Canada.
    Goldgar, David E.
    University of Utah, UT 84132 USA.
    Gonzalez-Neira, Anna
    Spanish National Cancer Research Centre, Spain.
    Goode, Ellen L.
    Mayo Clin, MN 55902 USA.
    Goodman, Marc T.
    Cedars Sinai Medical Centre, CA 90048 USA; Cedars Sinai Medical Centre, CA 90048 USA.
    Greene, Mark H.
    NCI, MD 20892 USA.
    Gronwald, Jacek
    Pomeranian Medical University, Poland.
    Guenel, Pascal
    INSERM, France; University of Paris 11, France.
    Haiman, Christopher A.
    University of Southern Calif, CA 90033 USA.
    Hall, Per
    Karolinska Institute, Sweden.
    Hallberg, Emily
    Mayo Clin, MN 55902 USA.
    Hamann, Ute
    German Cancer Research Centre, Germany.
    Hansen, Thomas V. O.
    Copenhagen University Hospital, Denmark.
    Harrington, Patricia A.
    University of Cambridge, England.
    Hartman, Mikael
    National University of Health Syst, Singapore; National University of Singapore, Singapore.
    Hassan, Norhashimah
    University of Malaya, Malaysia; Cancer Research Initiat Fdn, Malaysia.
    Healey, Sue
    QIMR Berghofer Medical Research Institute, Australia.
    Heitz, Florian
    Kliniken Essen Mitte, Germany; Dr Horst Schmidt Kliniken Wiesbaden, Germany.
    Herzog, Josef
    City Hope Clin Cancer Genet Community Research Network, CA 91010 USA.
    Hogdall, Estrid
    University of Copenhagen, Denmark; Danish Cancer Soc Research Centre, Denmark.
    Hogdall, Claus K.
    University of Copenhagen, Denmark.
    Hogervorst, Frans B. L.
    Netherlands Cancer Institute, Netherlands.
    Hollestelle, Antoinette
    Erasmus MC Cancer Institute, Netherlands.
    Hopper, John L.
    University of Melbourne, Australia.
    Hulick, Peter J.
    NorthShore University of Health Syst, IL 60201 USA.
    Huzarski, Tomasz
    Pomeranian Medical University, Poland.
    Imyanitov, Evgeny N.
    NN Petrov Institute Oncol, Russia.
    Isaacs, Claudine
    Georgetown University, DC 20057 USA.
    Ito, Hidemi
    Aichi Cancer Centre, Japan.
    Jakubowska, Anna
    Pomeranian Medical University, Poland.
    Janavicius, Ramunas
    Centre Innovat Med, Lithuania.
    Jensen, Allan
    University of Copenhagen, Denmark.
    John, Esther M.
    Cancer Prevent Institute Calif, CA 94538 USA.
    Johnson, Nichola
    Institute Cancer Research, England.
    Kabisch, Maria
    German Cancer Research Centre, Germany.
    Kang, Daehee
    Seoul National University, South Korea.
    Kapuscinski, Miroslav
    University of Melbourne, Australia.
    Karlan, Beth Y.
    Cedars Sinai Medical Centre, CA 90048 USA.
    Khan, Sofia
    University of Helsinki, Finland.
    Kiemeney, Lambertus A.
    Radboud University of Nijmegen, Netherlands.
    Kruger Kjaer, Susanne
    Danish Cancer Soc Research Centre, Denmark; University of Copenhagen, Denmark.
    Knight, Julia A.
    Lunenfeld Tanenbaum Research Institute Mt Sinai Hospital, Canada; University of Toronto, Canada.
    Konstantopoulou, Irene
    Aghia Paraskevi Attikis, Greece.
    Kosma, Veli-Matti
    Kuopio University Hospital, Finland; University of Eastern Finland, Finland.
    Kristensen, Vessela
    Oslo University Hospital, Norway; University of Oslo, Norway; University of Oslo, Norway.
    Kupryjanczyk, Jolanta
    Maria Sklodowska Curie Mem Cancer Centre, Poland; Institute Oncol, Poland.
    Kwong, Ava
    Hong Kong Sanat and Hospital, Peoples R China; University of Hong Kong, Peoples R China.
    de la Hoya, Miguel
    IdISSC El Institute Invest Sanitaria Hospital Clin San Car, Spain.
    Laitman, Yael
    Chaim Sheba Medical Centre, Israel.
    Lambrechts, Diether
    VIB, Belgium; University of Leuven, Belgium.
    Le, Nhu
    University of Southern Calif, CA 90033 USA.
    De Leeneer, Kim
    University of Ghent, Belgium.
    Lester, Jenny
    Cedars Sinai Medical Centre, CA 90048 USA.
    Levine, Douglas A.
    Mem Sloan Kettering Cancer Centre, NY 10065 USA.
    Li, Jingmei
    Karolinska Institute, Sweden.
    Lindblom, Annika
    Karolinska Institute, Sweden.
    Long, Jirong
    Vanderbilt University, TN 37203 USA.
    Lophatananon, Artitaya
    University of Warwick, England.
    Loud, Jennifer T.
    NCI, MD 20892 USA.
    Lu, Karen
    University of Texas MD Anderson Cancer Centre, TX 77030 USA.
    Lubinski, Jan
    Pomeranian Medical University, Poland.
    Mannermaa, Arto
    Kuopio University Hospital, Finland; Kuopio University Hospital, Finland; University of Eastern Finland, Finland.
    Manoukian, Siranoush
    Ist Nazl Tumori, Italy.
    Le Marchand, Loic
    University of Hawaii, HI 96813 USA.
    Margolin, Sara
    Karolinska Institute, Sweden.
    Marme, Frederik
    Heidelberg University, Germany; Heidelberg University, Germany.
    Massuger, Leon F. A. G.
    Radboud University of Nijmegen, Netherlands.
    Matsuo, Keitaro
    Kyushu University, Japan.
    Mazoyer, Sylvie
    University of Lyon, France.
    McGuffog, Lesley
    University of Cambridge, England.
    McLean, Catriona
    Alfred Hospital, Australia.
    McNeish, Iain
    University of Glasgow, Scotland.
    Meindl, Alfons
    Technical University of Munich, Germany.
    Menon, Usha
    UCL EGA Institute Womens Heatlh, England.
    Mensenkamp, Arjen R.
    Radboud University of Nijmegen, Netherlands.
    Milne, Roger L.
    Cancer Council Victoria, Australia; University of Melbourne, Australia.
    Montagna, Marco
    IRCCS, Italy.
    Moysich, Kirsten B.
    Roswell Pk Cancer Institute, NY 14263 USA.
    Muir, Kenneth
    University of Warwick, England; University of Manchester, England.
    Mulligan, Anna Marie
    University of Health Network, Canada; University of Toronto, Canada.
    Nathanson, Katherine L.
    University of Penn, PA 19104 USA.
    Ness, Roberta B.
    University of Texas Houston, TX 77030 USA.
    Neuhausen, Susan L.
    Beckman Research Institute City Hope, CA 91010 USA.
    Nevanlinna, Heli
    University of Helsinki, Finland; University of Helsinki, Finland.
    Nord, Silje
    University of Oslo, Norway.
    Nussbaum, Robert L.
    University of Calif San Francisco, CA 94143 USA.
    Odunsi, Kunle
    Roswell Pk Cancer Institute, NY 14263 USA.
    Offit, Kenneth
    Mem Sloan Kettering Cancer Centre, NY 10065 USA.
    Olah, Edith
    National Institute Oncol, Hungary.
    Olopade, Olufunmilayo I.
    University of Chicago, IL 60637 USA.
    Olson, Janet E.
    Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA.
    Olswold, Curtis
    Mayo Clin, MN 55902 USA.
    OMalley, David
    Ohio State University, OH 43210 USA; James Graham Brown Cancer Centre, OH 43210 USA.
    Orlow, Irene
    Mem Sloan Kettering Cancer Centre, NY 10017 USA.
    Orr, Nick
    Institute Cancer Research, England.
    Osorio, Ana
    University of Copenhagen, Denmark; Spanish National Cancer Centre CNIO, Spain; Biomed Network Rare Disease CIBERER, Spain.
    Kyung Park, Sue
    Seoul National University, South Korea; Seoul National University, South Korea; Seoul National University, South Korea.
    Pearce, Celeste L.
    University of Southern Calif, CA 90033 USA.
    Pejovic, Tanja
    Oregon Health and Science University, OR 97239 USA; Oregon Health and Science University, OR 97239 USA.
    Peterlongo, Paolo
    FIRC Italian Fdn Cancer Research, Italy.
    Pfeiler, Georg
    Medical University of Vienna, Austria.
    Phelan, Catherine M.
    H Lee Moffitt Cancer Centre and Research Institute, FL 33606 USA.
    Poole, Elizabeth M.
    Harvard University, MA 02115 USA; Brigham and Womens Hospital, MA 02115 USA; Harvard University, MA 02115 USA.
    Pylkas, Katri
    Centre NordLab, Finland; University of Oulu, Finland.
    Radice, Paolo
    Ist Nazl Tumori, Italy.
    Rantala, Johanna
    Karolinska University Hospital, Sweden.
    Usman Rashid, Muhammad
    German Cancer Research Centre, Germany; Shaukat Khanum Mem Cancer Hospital and Research Centre SKMCH and RC, Pakistan.
    Rennert, Gad
    Clalit National Israeli Cancer Control Centre, Israel; Carmel Hospital, Israel.
    Rhenius, Valerie
    University of Cambridge, England.
    Rhiem, Kerstin
    University Hospital Cologne, Germany; University Hospital Cologne, Germany.
    Risch, Harvey A.
    Yale University, CT 06510 USA.
    Rodriguez, Gus
    NorthShore University of HealthSyst, IL 60201 USA.
    Anne Rossing, Mary
    Fred Hutchinson Cancer Research Centre, WA 98109 USA; University of Washington, WA 98109 USA.
    Rudolph, Anja
    German Cancer Research Centre, Germany.
    Salvesen, Helga B.
    Haukeland Hospital, Norway; University of Bergen, Norway.
    Sangrajrang, Suleeporn
    National Cancer Institute, Thailand.
    Sawyer, Elinor J.
    Kings Coll London, England.
    Schildkraut, Joellen M.
    Duke University, NC 27710 USA; Duke Cancer Institute, NC 27710 USA.
    Schmidt, Marjanka K.
    Netherlands Cancer Institute, Netherlands.
    Schmutzler, Rita K.
    University Hospital Cologne, Germany; University Hospital Cologne, Germany; University Hospital Cologne, Germany; University Hospital Cologne, Germany.
    Sellers, Thomas A.
    H Lee Moffitt Cancer Centre and Research Institute, FL 33606 USA.
    Seynaeve, Caroline
    Erasmus MC Cancer Institute, Netherlands.
    Shah, Mitul
    University of Cambridge, England.
    Shen, Chen-Yang
    Academic Sinica, Taiwan; China Medical University, Taiwan.
    Shu, Xiao-Ou
    Vanderbilt University, TN 37203 USA.
    Sieh, Weiva
    Stanford University, CA 94305 USA.
    Singer, Christian F.
    Medical University of Vienna, Austria.
    Sinilnikova, Olga M.
    Centre Leon Berard, France; University of Lyon 1, France.
    Slager, Susan
    Mayo Clin, MN 55902 USA.
    Song, Honglin
    University of Cambridge, England.
    Soucy, Penny
    University of Laval, Canada.
    Southey, Melissa C.
    University of Melbourne, Australia.
    Stenmark Askmalm, Marie
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Klinisk patologi och klinisk genetik. University of Lund Hospital, Sweden.
    Stoppa-Lyonnet, Dominique
    Institute Curie, France; Institute Curie, France; Sorbonne Paris Cite, France.
    Sutter, Christian
    University of Heidelberg Hospital, Germany.
    Swerdlow, Anthony
    Institute Cancer Research, England; Institute Cancer Research, England.
    Tchatchou, Sandrine
    Mt Sinai Hospital, Canada.
    Teixeira, Manuel R.
    Portuguese Oncology Institute, Portugal; University of Porto, Portugal.
    Teo, Soo H.
    University of Malaya, Malaysia; Cancer Research Initiat Fdn, Malaysia.
    Terry, Kathryn L.
    Harvard University, MA 02115 USA; Brigham and Womens Hospital, MA 02115 USA; Harvard University, MA 02115 USA.
    Beth Terry, Mary
    Columbia University, NY 10027 USA.
    Thomassen, Mads
    Odense University Hospital, Denmark.
    Grazia Tibiletti, Maria
    University of Insubria, Italy.
    Tihomirova, Laima
    Latvian Biomed Research and Study Centre, Latvia.
    Tognazzo, Silvia
    IRCCS, Italy.
    Ewart Toland, Amanda
    Vanderbilt University, TN 37203 USA; IdISSC El Institute Invest Sanitaria Hospital Clin San Car, Spain; Ohio State University, OH 43210 USA.
    Tomlinson, Ian
    University of Oxford, England; University of Oxford, England.
    Torres, Diana
    German Cancer Research Centre, Germany; Pontificia University of Javeriana, Colombia.
    Truong, Therese
    INSERM, France; University of Paris 11, France.
    Tseng, Chiu-chen
    University of Southern Calif, CA 90033 USA.
    Tung, Nadine
    Beth Israel Deaconess Medical Centre, MA 02215 USA.
    Tworoger, Shelley S.
    Harvard University, MA 02115 USA; Brigham and Womens Hospital, MA 02115 USA; Harvard University, MA 02115 USA.
    Vachon, Celine
    Mayo Clin, MN 55902 USA.
    van den Ouweland, Ans M. W.
    Erasmus University, Netherlands.
    van Doorn, Helena C.
    Erasmus MC Cancer Institute, Netherlands.
    van Rensburg, Elizabeth J.
    University of Pretoria, South Africa.
    Vant Veer, Laura J.
    Netherlands Cancer Institute, Netherlands.
    Vanderstichele, Adriaan
    University Hospital Leuven, Belgium.
    Vergote, Ignace
    University Hospital Leuven, Belgium.
    Vijai, Joseph
    Mem Sloan Kettering Cancer Centre, NY 10065 USA.
    Wang, Qin
    University of Cambridge, England.
    Wang-Gohrke, Shan
    University Hospital Ulm, Germany.
    Weitzel, Jeffrey N.
    City Hope Clin Cancer Genet Community Research Network, CA 91010 USA.
    Wentzensen, Nicolas
    NCI, MD 20892 USA.
    Whittemore, Alice S.
    Stanford University, CA 94305 USA.
    Wildiers, Hans
    University Hospital Leuven, Belgium.
    Winqvist, Robert
    Centre NordLab, Finland; University of Oulu, Finland.
    Wu, Anna H.
    University of Southern Calif, CA 90033 USA.
    Yannoukakos, Drakoulis
    National Centre Science Research Demokritos, Greece.
    Yoon, Sook-Yee
    Sime Darby Medical Centre, Malaysia; University of Malaya, Malaysia.
    Yu, Jyh-Cherng
    National Def Medical Centre, Taiwan.
    Zheng, Wei
    Vanderbilt University, TN 37203 USA.
    Zheng, Ying
    Shanghai Centre Disease Control and Prevent, Peoples R China.
    Kum Khanna, Kum
    QIMR Berghofer Medical Research Institute, Australia.
    Simard, Jacques
    University of Laval, Canada.
    Monteiro, Alvaro N.
    H Lee Moffitt Cancer Centre and Research Institute, FL 33612 USA.
    French, Juliet D.
    QIMR Berghofer Medical Research Institute, Australia.
    Couch, Fergus J.
    Mayo Clin, MN 55902 USA; Mayo Clin, MN 55905 USA.
    Freedman, Matthew L.
    Dana Farber Cancer Institute, MA 02215 USA.
    Easton, Douglas F.
    University of Cambridge, England; University of Cambridge, England.
    Dunning, Alison M.
    University of Cambridge, England.
    Pharoah, Paul D.
    University of Cambridge, England.
    Edwards, Stacey L.
    QIMR Berghofer Medical Research Institute, Australia.
    Chenevix-Trench, Georgia
    QIMR Berghofer Medical Research Institute, Australia.
    Antoniou, Antonis C.
    University of Cambridge, England.
    Gayther, Simon A.
    University of Southern Calif, CA 90033 USA; Cedars Sinai Medical Centre, CA 90048 USA.
    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus2016Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 7, artikel-id 12675Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10−20), ER-negative BC (P=1.1 × 10−13), BRCA1-associated BC (P=7.7 × 10−16) and triple negative BC (P-diff=2 × 10−5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10−3) and ABHD8 (P<2 × 10−3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.

  • 35.
    Lilljebjorn, Henrik
    et al.
    Lund University, Sweden.
    Henningsson, Rasmus
    Lund University, Sweden.
    Hyrenius-Wittsten, Axel
    Lund University, Sweden.
    Olsson, Linda
    Lund University, Sweden.
    Orsmark-Pietras, Christina
    Lund University, Sweden.
    von Palffy, Sofia
    Lund University, Sweden.
    Askmyr, Maria
    Lund University, Sweden.
    Rissler, Marianne
    Lund University, Sweden.
    Schrappe, Martin
    University Hospital Schleswig Holstein, Germany.
    Cario, Gunnar
    University Hospital Schleswig Holstein, Germany.
    Castor, Anders
    Lund University, Sweden.
    Pronk, Cornelis J. H.
    Lund University, Sweden.
    Behrendtz, Mikael
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för kliniska vetenskaper. Region Östergötland, Barn- och kvinnocentrum, Barn- och ungdomskliniken i Linköping. Linköpings universitet, Medicinska fakulteten.
    Mitelman, Felix
    Lund University, Sweden.
    Johansson, Bertil
    Lund University, Sweden; University of and Regional Labs Regional Skåne, Sweden.
    Paulsson, Kajsa
    Lund University, Sweden.
    Andersson, Anna K.
    Lund University, Sweden.
    Fontes, Magnus
    Lund University, Sweden.
    Fioretos, Thoas
    Lund University, Sweden; University of and Regional Labs Regional Skåne, Sweden.
    Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia2016Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 7, nr 11790Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fusion genes are potent driver mutations in cancer. In this study, we delineate the fusion gene landscape in a consecutive series of 195 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP ALL). Using RNA sequencing, we find in-frame fusion genes in 127 (65%) cases, including 27 novel fusions. We describe a subtype characterized by recurrent IGH-DUX4 or ERG-DUX4 fusions, representing 4% of cases, leading to overexpression of DUX4 and frequently co-occurring with intragenic ERG deletions. Furthermore, we identify a subtype characterized by an ETV6-RUNX1-like gene-expression profile and coexisting ETV6 and IKZF1 alterations. Thus, this study provides a detailed overview of fusion genes in paediatric BCP ALL and adds new pathogenetic insights, which may improve risk stratification and provide therapeutic options for this disease.

  • 36.
    Melianas, Armantas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Etzold, Fabian
    Max Planck Institute Polymer Research, Germany.
    Savenije, Tom J.
    Delft University of Technology, Netherlands.
    Laquai, Frederic
    Max Planck Institute Polymer Research, Germany; King Abdullah University of Science and Technology, Saudi Arabia.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten. Eindhoven University of Technology, Netherlands.
    Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells2015Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 6, nr 8778Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In photovoltaic devices, the photo-generated charge carriers are typically assumed to be in thermal equilibrium with the lattice. In conventional materials, this assumption is experimentally justified as carrier thermalization completes before any significant carrier transport has occurred. Here, we demonstrate by unifying time-resolved optical and electrical experiments and Monte Carlo simulations over an exceptionally wide dynamic range that in the case of organic photovoltaic devices, this assumption is invalid. As the photo-generated carriers are transported to the electrodes, a substantial amount of their energy is lost by continuous thermalization in the disorder broadened density of states. Since thermalization occurs downward in energy, carrier motion is boosted by this process, leading to a time-dependent carrier mobility as confirmed by direct experiments. We identify the time and distance scales relevant for carrier extraction and show that the photo-generated carriers are extracted from the operating device before reaching thermal equilibrium.

  • 37.
    Miao, Yanfeng
    et al.
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Ke, You
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Wang, Nana
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Zou, Wei
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Xu, Mengmeng
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Cao, Yu
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Sun, Yan
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Yang, Rong
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Wang, Ying
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Tong, Yunfang
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Xu, Wenjie
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Zhang, Liangdong
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Li, Renzhi
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Li, Jing
    Zhejiang Univ, Peoples R China.
    He, Haiping
    Zhejiang Univ, Peoples R China.
    Jin, Yizheng
    Zhejiang Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Huang, Wei
    Nanjing Tech Univ NanjingTech, Peoples R China; Nanjing Univ Posts and Telecommun, Peoples R China; Nanjing Univ Posts and Telecommun, Peoples R China; Northwestern Polytech Univ, Peoples R China.
    Wang, Jianpu
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 3624Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solution-processable perovskites show highly emissive and good charge transport, making them attractive for low-cost light-emitting diodes (LEDs) with high energy conversion efficiencies. Despite recent advances in device efficiency, the stability of perovskite LEDs is still a major obstacle. Here, we demonstrate stable and bright perovskite LEDs with high energy conversion efficiencies by optimizing formamidinium lead iodide films. Our LEDs show an energy conversion efficiency of 10.7%, and an external quantum efficiency of 14.2% without outcoupling enhancement through controlling the concentration of the precursor solutions. The device shows low efficiency droop, i.e. 8.3% energy conversion efficiency and 14.0% external quantum efficiency at a current density of 300 mA cm(-2), making the device more efficient than state-of-the-art organic and quantum-dot LEDs at high current densities. Furthermore, the half-lifetime of device with benzylamine treatment is 23.7 hr under a current density of 100 mA cm(-2), comparable to the lifetime of near-infrared organic LEDs.

  • 38.
    Nagy, Roland
    et al.
    Univ Stuttgart, Germany; Inst Quantum Sci and Technol, Germany.
    Niethammer, Matthias
    Univ Stuttgart, Germany; Inst Quantum Sci and Technol, Germany.
    Widmann, Matthias
    Univ Stuttgart, Germany; Inst Quantum Sci and Technol, Germany.
    Chen, Yu-Chen
    Univ Stuttgart, Germany; Inst Quantum Sci and Technol, Germany.
    Udvarhelyi, Peter
    Hungarian Acad Sci, Hungary; Eotvos Lorand Univ, Hungary.
    Bonato, Cristian
    Heriot Watt Univ, Scotland.
    Ul-Hassan, Jawad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Karhu, Robin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Maze, Jeronimo R.
    Pontificia Univ Catolica Chile, Chile; Pontificia Univ Catolica Chile, Chile.
    Ohshima, Takeshi
    Natl Inst Quantum and Radiol Sci and Technol, Japan.
    Soykal, Oney O.
    Naval Res Lab, DC 20375 USA.
    Gali, Adam
    Hungarian Acad Sci, Hungary; Budapest Univ Technol and Econ, Hungary.
    Lee, Sang-Yun
    Korea Inst Sci and Technol, South Korea.
    Kaiser, Florian
    Univ Stuttgart, Germany; Inst Quantum Sci and Technol, Germany.
    Wrachtrup, Joerg
    Univ Stuttgart, Germany; Inst Quantum Sci and Technol, Germany.
    High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 1954Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Scalable quantum networking requires quantum systems with quantum processing capabilities. Solid state spin systems with reliable spin-optical interfaces are a leading hardware in this regard. However, available systems suffer from large electron-phonon interaction or fast spin dephasing. Here, we demonstrate that the negatively charged silicon-vacancy centre in silicon carbide is immune to both drawbacks. Thanks to its (4)A(2) symmetry in ground and excited states, optical resonances are stable with near-Fourier-transform-limited linewidths, allowing exploitation of the spin selectivity of the optical transitions. In combination with millisecond-long spin coherence times originating from the high-purity crystal, we demonstrate high-fidelity optical initialization and coherent spin control, which we exploit to show coherent coupling to single nuclear spins with similar to 1 kHz resolution. The summary of our findings makes this defect a prime candidate for realising memory-assisted quantum network applications using semiconductor-based spin-to-photon interfaces and coherently coupled nuclear spins.

  • 39.
    Nowakowska, Sylwia
    et al.
    Univ Basel, Dept Phys, CH-4056 Basel, Switzerland.
    Wäckerlin, Aneliia
    Univ Basel, Dept Phys, CH-4056 Basel, Switzerland.
    Kawai, Shigeki
    Univ Basel, Dept Phys, CH-4056 Basel, Switzerland; Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan.
    Ivas, Toni
    Univ Basel, Dept Phys, CH-4056 Basel, Switzerland.
    Nowakowski, Jan
    Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland.
    Fatayer, Shadi
    Univ Basel, Dept Phys, CH-4056 Basel, Switzerland; Univ Estadual Campinas, Inst Fis Gleb Wataghin, Dept Fis Aplicada, BR-13083859 Campinas, Brazil.
    Wäckerlin, Christian
    Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland.
    Nijs, Thomas
    Univ Basel, Dept Phys, CH-4056 Basel, Switzerland.
    Meyer, Ernst
    Univ Basel, Dept Phys, CH-4056 Basel, Switzerland.
    Björk, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk kemi. Linköpings universitet, Tekniska högskolan.
    Stöhr, Meike
    Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands.
    Gade, Lutz H.
    Heidelberg Univ, Inst Anorgan Chem, D-69120 Heidelberg, Germany.
    Jung, Thomas A.
    Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland.
    Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes2015Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 21, nr 6, s. 6071-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.

  • 40.
    Nuttall, Alfred L.
    et al.
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Ricci, Anthony J.
    Stanford Univ, CA 94025 USA; Stanford Univ, CA 94025 USA.
    Burwood, George
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Harte, James M.
    Tech Univ Denmark, Denmark.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Caye-Thomasen, Per
    Copenhagen Univ Hosp, Denmark.
    Ren, Tianying
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Ramamoorthy, Sripriya
    Indian Inst Technol, India.
    Zhang, Yuan
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Wilson, Teresa
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Lunner, Thomas
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Oticon AS, Denmark.
    Moore, Brian C. J.
    Univ Cambridge, England.
    Fridberger, Anders
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten. Oregon Hlth and Sci Univ, OR 97239 USA.
    A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 4175Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To understand speech, the slowly varying outline, or envelope, of the acoustic stimulus is used to distinguish words. A small amount of information about the envelope is sufficient for speech recognition, but the mechanism used by the auditory system to extract the envelope is not known. Several different theories have been proposed, including envelope detection by auditory nerve dendrites as well as various mechanisms involving the sensory hair cells. We used recordings from human and animal inner ears to show that the dominant mechanism for envelope detection is distortion introduced by mechanoelectrical transduction channels. This electrical distortion, which is not apparent in the sound-evoked vibrations of the basilar membrane, tracks the envelope, excites the auditory nerve, and transmits information about the shape of the envelope to the brain.

  • 41.
    Pakhomova, Anna
    et al.
    DESY, Germany.
    Aprilis, Georgios
    Univ Bayreuth, Germany.
    Bykov, Maxim
    Univ Bayreuth, Germany.
    Gorelova, Liudmila
    St Petersburg State Univ, Russia.
    Krivovichev, Sergey S.
    St Petersburg State Univ, Russia; Russian Acad Sci, Russia.
    Belov, Maxim P.
    NUST MISIS, Russia.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Penta- and hexa-coordinated beryllium and phosphorus in high-pressure modifications of CaBe2P2O82019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 2800Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Beryllium oxides have been extensively studied due to their unique chemical properties and important technological applications. Typically, in inorganic compounds beryllium is tetrahedrally coordinated by oxygen atoms. Herein based on results of in situ single crystal X-ray diffraction studies and ab initio calculations we report on the high-pressure behavior of CaBe2P2O8, to the best of our knowledge the first compound showing a step-wise transition of Be coordination from tetrahedral (4) to octahedral (6) through trigonal bipyramidal (5). It is remarkable that the same transformation route is observed for phosphorus. Our theoretical analysis suggests that the sequence of structural transitions of CaBe2P2O8 is associated with the electronic transformation from predominantly molecular orbitals at low pressure to the state with overlapping electronic clouds of anions orbitals.

  • 42.
    Palma, Carlos-Andres
    et al.
    Technishe Universität München, Germany.
    Björk, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk kemi. Linköpings universitet, Tekniska högskolan.
    Klappenberger, Florian
    Technische Universität München, Germany.
    Arras, Emmanuel
    Technische Universität München, Germany.
    Kühne, Dirk
    Technische Universität München, Germany.
    Stafström, Sven
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk kemi. Linköpings universitet, Tekniska högskolan.
    Barth, Johannes V.
    Technische Universität München, Germany.
    Visualization and thermodynamic encoding of single-molecule partition function projections2015Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 6, nr 6210Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ensemble averaging of molecular states is fundamental for the experimental determination of thermodynamic quantities. A special case occurs for single-molecule investigations under equilibrium conditions, for which free energy, entropy and enthalpy at finite temperatures are challenging to determine with ensemble averaging alone. Here we report a method to directly record time-averaged equilibrium probability distributions by confining an individual molecule to a nanoscopic pore of a two-dimensional metal-organic nanomesh, using temperature-controlled scanning tunnelling microscopy. We associate these distributions with partition function projections to assess real-space-projected thermodynamic quantities, aided by computational modelling. The presented molecular dynamics-based analysis is able to reproduce experimentally observed projected microstates with high accuracy. By an in silico customized energy landscape, we demonstrate that distinct probability distributions can be encrypted at different temperatures. Such modulation provides means to encode and decode information into position–temperature space.

  • 43.
    Pantazis, Antonios
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten. Univ Calif Los Angeles, CA 90095 USA.
    Westerberg, Karin
    Amgen Inc, CA 91320 USA.
    Althoff, Thorsten
    Univ Calif Los Angeles, CA 90095 USA.
    Abramson, Jeff
    Univ Calif Los Angeles, CA 90095 USA.
    Olcese, Riccardo
    Univ Calif Los Angeles, CA 90095 USA.
    Harnessing photoinduced electron transfer to optically determine protein sub-nanoscale atomic distances2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 4738Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Proteins possess a complex and dynamic structure, which is influenced by external signals and may change as they perform their biological functions. We present an optical approach, distance-encoding photoinduced electron transfer (DEPET), capable of the simultaneous study of protein structure and function. An alternative to FRET-based methods, DEPET is based on the quenching of small conjugated fluorophores by photoinduced electron transfer: a reaction that requires contact of the excited fluorophore with a suitable electron donor. This property allows DEPET to exhibit exceptional spatial and temporal resolution capabilities in the range pertinent to protein conformational change. We report the first implementation of DEPET on human large-conductance K+ (BK) channels under voltage clamp. We describe conformational rearrangements underpinning BK channel sensitivity to electrical excitation, in conducting channels expressed in living cells. Finally, we validate DEPET in synthetic peptide length standards, to evaluate its accuracy in measuring sub-and near-nanometer intramolecular distances.

  • 44.
    Patrick, Matthew T.
    et al.
    Univ Michigan, MI 48109 USA.
    Stuart, Philip E.
    Univ Michigan, MI 48109 USA.
    Raja, Kalpana
    Univ Michigan, MI 48109 USA; Morgridge Inst Res, WI 53715 USA.
    Gudjonsson, Johann E.
    Univ Michigan, MI 48109 USA.
    Tejasvi, Trilokraj
    Univ Michigan, MI 48109 USA; Ann Arbor Vet Affairs Hosp, MI 48105 USA.
    Yang, Jingjing
    Univ Michigan, MI 48109 USA; Emory Univ, GA 30322 USA.
    Chandran, Vinod
    Univ Toronto, Canada.
    Das, Sayantan
    Univ Michigan, MI 48109 USA.
    Callis-Duffin, Kristina
    Univ Utah, UT 84132 USA.
    Ellinghaus, Eva
    Christian Albrechts Univ Kiel, Germany.
    Enerbäck, Charlotta
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Hudkliniken i Östergötland.
    Esko, Tonu
    Univ Tartu, Estonia; Broad Inst and Harvard, MA 02142 USA.
    Franke, Andre
    Christian Albrechts Univ Kiel, Germany.
    Kang, Hyun M.
    Univ Michigan, MI 48109 USA.
    Krueger, Gerald G.
    Univ Utah, UT 84132 USA.
    Lim, Henry W.
    Henry Ford Hosp, MI 48202 USA.
    Rahman, Proton
    Mem Univ, Canada.
    Rosen, Cheryl F.
    Univ Toronto, Canada.
    Weidinger, Stephan
    Univ Med Ctr Schleswig Holstein, Germany.
    Weichenthal, Michael
    Univ Med Ctr Schleswig Holstein, Germany.
    Wen, Xiaoquan
    Univ Michigan, MI 48109 USA.
    Voorhees, John J.
    Univ Michigan, MI 48109 USA.
    Abecasis, Goncalo R.
    Univ Michigan, MI 48109 USA.
    Gladman, Dafna D.
    Univ Toronto, Canada.
    Nair, Rajan P.
    Univ Michigan, MI 48109 USA.
    Elder, James T.
    Univ Michigan, MI 48109 USA; Ann Arbor Vet Affairs Hosp, MI 48105 USA.
    Tsoi, Lam C.
    Univ Michigan, MI 48105 USA.
    Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 4178Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Psoriatic arthritis (PsA) is a complex chronic musculoskeletal condition that occurs in similar to 30% of psoriasis patients. Currently, no systematic strategy is available that utilizes the differences in genetic architecture between PsA and cutaneous-only psoriasis (PsC) to assess PsA risk before symptoms appear. Here, we introduce a computational pipeline for predicting PsA among psoriasis patients using data from six cohorts with amp;gt;7000 genotyped PsA and PsC patients. We identify 9 new loci for psoriasis or its subtypes and achieve 0.82 area under the receiver operator curve in distinguishing PsA vs. PsC when using 200 genetic markers. Among the top 5% of our PsA prediction we achieve amp;gt;90% precision with 100% specificity and 16% recall for predicting PsA among psoriatic patients, using conditional inference forest or shrinkage discriminant analysis. Combining statistical and machine-learning techniques, we show that the underlying genetic differences between psoriasis subtypes can be used for individualized subtype risk assessment.

  • 45.
    Puttisong, Yuttapoom
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Wang, X. J.
    National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China .
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Geelhaar, L.
    Paul-Drude-Institut fur Festkörpelektronik, Berlin, Germany.
    Ptak, A. J.
    National Renewable Energy Laboratory, Golden, Colorado, USA.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor2013Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 4, nr 1751Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nuclear spin hyperpolarization is essential to future solid-state quantum computation using nuclear spin qubits and in highly sensitive magnetic resonance imaging. Though efficient dynamic nuclear polarization in semiconductors has been demonstrated at low temperatures for decades, its realization at room temperature is largely lacking. Here we demonstrate that a combined effect of efficient spin-dependent recombination and hyperfine coupling can facilitate strong dynamic nuclear polarization of a defect atom in a semiconductor at room temperature. We provide direct evidence that a sizeable nuclear field (~150 Gauss) and nuclear spin polarization (~15%) sensed by conduction electrons in GaNAs originates from dynamic nuclear polarization of a Ga interstitial defect. We further show that the dynamic nuclear polarization process is remarkably fast and is completed in <5 μs at room temperature. The proposed new concept could pave a way to overcome a major obstacle in achieving strong dynamic nuclear polarization at room temperature, desirable for practical device applications.

  • 46.
    Robroek, Björn J. M.
    et al.
    University of Utrecht, Netherlands; University of Southampton, England.
    Jassey, Vincent E. J.
    University of Toulouse, France.
    Payne, Richard J.
    Manchester Metropolitan University, England; University of York, England.
    Marti Genero, Magalimagge30
    Linköpings universitet, Institutionen för tema, Tema Miljöförändring. Linköpings universitet, Filosofiska fakulteten.
    Bragazza, Luca
    University of Ferrara, Italy; Ecole Polytech Federal Lausanne, Switzerland; WSL Swiss Federal Institute Forest Snow and Landscape Research, Switzerland.
    Bleeker, Albert
    PBL Netherlands Environm Assessment Agency, Netherlands.
    Buttler, Alexandre
    University of Ferrara, Italy; Ecole Polytech Federal Lausanne, Switzerland.
    Caporn, Simon J. M.
    Manchester Metropolitan University, England.
    Dise, Nancy B.
    Manchester Metropolitan University, England; Centre Ecol and Hydrol, Scotland.
    Kattge, Jens
    Max Planck Institute Biogeochem, Germany; German Centre Integrat Biodivers Research iDiv, Germany.
    Zajac, Katarzyna
    University of Bayreuth, Germany; University of Bayreuth, Germany.
    Svensson, Bo
    Linköpings universitet, Institutionen för tema, Tema Miljöförändring. Linköpings universitet, Filosofiska fakulteten.
    van Ruijven, Jasper
    Wageningen University of and Research Centre, Netherlands.
    Verhoeven, Jos T. A.
    University of Utrecht, Netherlands.
    Taxonomic and functional turnover are decoupled in European peat bogs2017Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, artikel-id 1161Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In peatland ecosystems, plant communities mediate a globally significant carbon store. The effects of global environmental change on plant assemblages are expected to be a factor in determining how ecosystem functions such as carbon uptake will respond. Using vegetation data from 56 Sphagnum-dominated peat bogs across Europe, we show that in these ecosystems plant species aggregate into two major clusters that are each defined by shared response to environmental conditions. Across environmental gradients, we find significant taxonomic turnover in both clusters. However, functional identity and functional redundancy of the community as a whole remain unchanged. This strongly suggests that in peat bogs, species turnover across environmental gradients is restricted to functionally similar species. Our results demonstrate that plant taxonomic and functional turnover are decoupled, which may allow these peat bogs to maintain ecosystem functioning when subject to future environmental change.

  • 47.
    Russell, Jordan T.
    et al.
    Univ Florida, FL 32611 USA.
    Roesch, Luiz F. W.
    Univ Fed Pampa, Brazil.
    Ördberg, Malin
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för barns och kvinnors hälsa. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Barn- och kvinnocentrum, H.K.H. Kronprinsessan Victorias barn- och ungdomssjukhus Linköping/Motala.
    Ilonen, Jorma
    Univ Turku, Finland; Turku Univ Hosp, Finland.
    Atkinson, Mark A.
    Univ Florida, FL 32610 USA.
    Schatz, Desmond A.
    Univ Florida, FL 32610 USA.
    Triplett, Eric W.
    Univ Florida, FL 32611 USA.
    Ludvigsson, Johnny
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för barns och kvinnors hälsa. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Barn- och kvinnocentrum, H.K.H. Kronprinsessan Victorias barn- och ungdomssjukhus Linköping/Motala.
    Genetic risk for autoimmunity is associated with distinct changes in the human gut microbiome2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 3621Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Susceptibility to many human autoimmune diseases is under strong genetic control by class II human leukocyte antigen (HLA) allele combinations. These genes remain by far the greatest risk factors in the development of type 1 diabetes and celiac disease. Despite this, little is known about HLA influences on the composition of the human gut microbiome, a potential source of environmental influence on disease. Here, using a general population cohort from the All Babies in Southeast Sweden study, we report that genetic risk for developing type 1 diabetes autoimmunity is associated with distinct changes in the gut microbiome. Both the core microbiome and beta diversity differ with HLA risk group and genotype. In addition, protective HLA haplotypes are associated with bacterial genera Intestinibacter and Romboutsia. Thus, general population cohorts are valuable in identifying potential environmental triggers or protective factors for autoimmune diseases that may otherwise be masked by strong genetic control.

  • 48.
    Sakamoto, Kazuyuki
    et al.
    Chiba University, Japan .
    Kim, Tae-Hwan
    Pohang University of Science and Technology, South Korea .
    Kuzumaki, Takuya
    Chiba University, Japan .
    Mueller, Beate
    Chiba University, Japan .
    Yamamoto, Yuta
    Chiba University, Japan .
    Ohtaka, Minoru
    Chiba University, Japan .
    Osiecki, Jacek
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Yt- och Halvledarfysik. Linköpings universitet, Tekniska högskolan.
    Miyamoto, Koji
    Hiroshima University, Japan .
    Takeichi, Yasuo
    University of Tokyo, Japan .
    Harasawa, Ayumi
    University of Tokyo, Japan .
    Stolwijk, Sebastian D.
    University of Munster, Germany .
    Schmidt, Anke B.
    University of Munster, Germany .
    Fujii, Jun
    CNRS, Italy .
    Uhrberg, Roger
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Yt- och Halvledarfysik. Linköpings universitet, Tekniska högskolan.
    Donath, Markus
    University of Munster, Germany .
    Woong Yeom, Han
    Pohang University of Science and Technology, South Korea .
    Oda, Tatsuki
    Kanazawa University, Japan .
    Valley spin polarization by using the extraordinary Rashba effect on silicon2013Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 4, nr 2073Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The addition of the valley degree of freedom to a two-dimensional spin-polarized electronic system provides the opportunity to multiply the functionality of next-generation devices. So far, however, such devices have not been realized due to the difficulty to polarize the valleys, which is an indispensable step to activate this degree of freedom. Here we show the formation of 100% spin-polarized valleys by a simple and easy way using the Rashba effect on a system with C-3 symmetry. This polarization, which is much higher than those in ordinary Rashba systems, results in the valleys acting as filters that can suppress the backscattering of spin-charge. The present system is formed on a silicon substrate, and therefore opens a new avenue towards the realization of silicon spintronic devices with high efficiency.

  • 49.
    Sytnyk, Mykhailo
    et al.
    Friedrich Alexander University of Erlangen Nurnberg, Germany; Energie Campus Nurnberg EnCN, Germany.
    Jakesova, Marie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Johannes Kepler University of Linz, Austria.
    Litvinukova, Monika
    Johannes Kepler University of Linz, Austria.
    Mashkov, Oleksandr
    Friedrich Alexander University of Erlangen Nurnberg, Germany; Energie Campus Nurnberg EnCN, Germany.
    Kriegner, Dominik
    Charles University of Prague, Czech Republic.
    Stangl, Julian
    University of Linz, Austria.
    Nebesarova, Jana
    Academic Science Czech Republic, Czech Republic.
    Fecher, Frank W.
    Bayer Zentrum Angew Energieforsch ZAE Bayern, Germany.
    Schoefberger, Wolfgang
    Johannes Kepler University of Linz, Austria.
    Serdar Sariciftci, Niyazi
    Johannes Kepler University of Linz, Austria.
    Schindl, Rainer
    Johannes Kepler University of Linz, Austria; Medical University of Graz, Austria.
    Heiss, Wolfgang
    Friedrich Alexander University of Erlangen Nurnberg, Germany; Energie Campus Nurnberg EnCN, Germany.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Johannes Kepler University of Linz, Austria.
    Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals2017Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, artikel-id 91Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Successful formation of electronic interfaces between living cells and semiconductors hinges on being able to obtain an extremely close and high surface-area contact, which preserves both cell viability and semiconductor performance. To accomplish this, we introduce organic semiconductor assemblies consisting of a hierarchical arrangement of nanocrystals. These are synthesised via a colloidal chemical route that transforms the nontoxic commercial pigment quinacridone into various biomimetic three-dimensional arrangements of nanocrystals. Through a tuning of parameters such as precursor concentration, ligands and additives, we obtain complex size and shape control at room temperature. We elaborate hedgehog-shaped crystals comprising nanoscale needles or daggers that form intimate interfaces with the cell membrane, minimising the cleft with single cells without apparent detriment to viability. Excitation of such interfaces with light leads to effective cellular photostimulation. We find reversible light-induced conductance changes in ion-selective or temperature-gated channels.

  • 50.
    Tang, Shi
    et al.
    Umeå University, Sweden; LunaLEC AB, Sweden.
    Sandstrom, Andreas
    Umeå University, Sweden; LunaLEC AB, Sweden.
    Lundberg, Petter
    Umeå University, Sweden.
    Lanz, Thomas
    Umeå University, Sweden.
    Larsen, Christian
    Umeå University, Sweden; LunaLEC AB, Sweden.
    van Reenen, Stephan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
    Edman, Ludvig
    Umeå University, Sweden; LunaLEC AB, Sweden.
    Design rules for light-emitting electrochemical cells delivering bright luminance at 27.5 percent external quantum efficiency2017Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, artikel-id 1190Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The light-emitting electrochemical cell promises cost-efficient, large-area emissive applications, as its characteristic in-situ doping enables use of air-stabile electrodes and a solution-processed single-layer active material. However, mutual exclusion of high efficiency and high brightness has proven a seemingly fundamental problem. Here we present a generic approach that overcomes this critical issue, and report on devices equipped with air-stabile electrodes and outcoupling structure that deliver a record-high efficiency of 99.2 cd A(-1) at a bright luminance of 1910 cd m(-2). This device significantly outperforms the corresponding optimized organic light-emitting diode despite the latter employing calcium as the cathode. The key to this achievement is the design of the host-guest active material, in which tailored traps suppress exciton diffusion and quenching in the central recombination zone, allowing efficient triplet emission. Simultaneously, the traps do not significantly hamper electron and hole transport, as essentially all traps in the transport regions are filled by doping.

12 1 - 50 av 67
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf