liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Di Fino, A.
    et al.
    Newcastle University, England .
    Petrone, Luigi
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Aldred, N.
    Newcastle University, England .
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Clare, A. S.
    Newcastle University, England .
    Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus)2014In: Biofouling (Print), ISSN 0892-7014, E-ISSN 1029-2454, Vol. 30, no 2, p. 143-152Article in journal (Refereed)
    Abstract [en]

    In laboratory-based biofouling assays, the influence of physico-chemical surface characteristics on barnacle settlement has been tested most frequently using the model organism Balanus amphitrite (= Amphibalanus amphitrite). Very few studies have addressed the settlement preferences of other barnacle species, such as Balanus improvisus (= Amphibalanus improvisus). This study aimed to unravel the effects of surface physico-chemical cues, in particular surface-free energy (SFE) and surface charge, on the settlement of cyprids of B. improvisus. The use of well-defined surfaces under controlled conditions further facilitates comparison of the results with recent similar data for B. amphitrite. Zero-day-old cyprids of B. improvisus were exposed to a series of model surfaces, namely self-assembled monolayers (SAMs) of alkanethiols with varying end-groups, homogenously applied to gold-coated polystyrene (PS) Petri dishes. As with B. amphitrite, settlement of cyprids of B. improvisus was influenced by both SFE and charge, with higher settlement on low-energy (hydrophobic) surfaces and negatively charged SAMs. Positively charged SAMs resulted in low settlement, with intermediate settlement on neutral SAMs of similar SFE. In conclusion, it is demonstrated that despite previous suggestions to the contrary, these two species of barnacle show similar preferences in response to SFE; they also respond similarly to charge. These findings have positive implications for the development of novel antifouling (AF) coatings and support the importance of consistency in substratum choice for assays designed to compare surface preferences of fouling organisms.

  • 2.
    Ederth, Thomas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Nygren, Patrik
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Pettitt, M. E.
    University of Birmingham.
    Oumlstblom, M.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Du, Chun-Xia
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Broo, Klas
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Callow, M. E.
    University of Birmingham.
    Callow, J.
    University of Birmingham.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Anomalous settlement behavior of Ulva linza zoospores on cationic oligopeptide surfaces2008In: Biofouling (Print), ISSN 0892-7014, E-ISSN 1029-2454, Vol. 24, no 4, p. 303-312Article in journal (Refereed)
    Abstract [en]

    Identification of settlement cues for marine fouling organisms opens up new strategies and methods for biofouling prevention, and enables the development of more effective antifouling materials. To this end, the settlement behaviour of zoospores of the green alga Ulva linza onto cationic oligopeptide self-assembled monolayers (SAMs) has been investigated. The spores interact strongly with lysine- and arginine-rich SAMs, and their settlement appears to be stimulated by these surfaces. Of particular interest is an arginine-rich oligopeptide, which is effective in attracting spores to the surface, but in a way which leaves a large fraction of the settled spores attached to the surface in an anomalous fashion. These 'pseudo-settled' spores are relatively easily detached from the surface and do not undergo the full range of cellular responses associated with normal commitment to settlement. This is a hitherto undocumented mode of settlement, and surface dilution of the arginine-rich peptide with a neutral triglycine peptide demonstrates that both normal and anomalous settlement is proportional to the surface density of the arginine-rich peptide. The settlement experiments are complemented with physical studies of the oligopeptide SAMs, before and after extended immersion in artificial seawater, using infrared spectroscopy, null ellipsometry and contact angle measurements.

  • 3.
    Nugraha, Roni
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Finlay, John A.
    University of Birmingham, England.
    Hill, Sophie
    University of Birmingham, England.
    Fyrner, Timmy
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Yandi, Wetra
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Callow, Maureen E.
    University of Birmingham, England.
    Callow, James A.
    University of Birmingham, England.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Antifouling properties of oligo(lactose)-based self-assembled monolayers2015In: Biofouling (Print), ISSN 0892-7014, E-ISSN 1029-2454, Vol. 31, no 1, p. 123-134Article in journal (Refereed)
    Abstract [en]

    The antifouling (AF) properties of oligo(lactose)-based self-assembled monolayers (SAMs), using four different proteins, zoospores of the green alga Ulva linza and cells of the diatom Navicula incerta, were investigated. The SAM-forming alkylthiols, which contained 1, 2 or 3 lactose units, showed significant variation in AF properties, with no differences in wettability. Non-specific adsorption of albumin and pepsin was low on all surfaces. Adsorption of lysozyme and fibrinogen decreased with increasing number of lactose units in the SAM, in agreement with the generally observed phenomenon that thicker hydrated layers provide higher barriers to protein adsorption. Settlement of spores of U. linza followed an opposite trend, being greater on the bulkier, more hydrated SAMs. These SAMs are more ordered for the larger saccharide units, and it is therefore hypothesized that the degree of order, and differences in crystallinity or stiffness between the surfaces, is an important parameter regulating spore settlement on these surfaces.

  • 4.
    Petrone, Luigi
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Di Fino, Alessio
    Newcastle University.
    Aldred, Nick
    Newcastle University.
    Sukkaew, Pitsiri
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Clare, Anthony S
    Newcastle University.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Effects of surface charge and Gibbs surface energy on the settlement behaviour of barnacle cyprids (Balanus amphitrite)2011In: Biofouling (Print), ISSN 0892-7014, E-ISSN 1029-2454, Vol. 27, no 9, p. 1043-1055Article in journal (Refereed)
    Abstract [en]

    Gibbs surface energy has long been considered to be an important parameter in the design of fouling-resistant surfaces for marine applications. Rigorous testing of the hypothesis that settlement is related to Gibbs surface energy however has never been accomplished, due mainly to practical limitations imposed by the necessary combination of surface engineering and biological evaluation methods. In this article, the effects of surface charge and Gibbs surface energy on the settlement of cyprids of an important fouling barnacle, Balanus amphitrite, were evaluated. Settlement assays were conducted on a range of self-assembled monolayers (SAMs) (CH(3)-, OH-, COOH-, N(CH(3))(3)(+)-, NH(2)-terminated), presented in gold-coated polystyrene well plates, varying in terms of their surface charge and Gibbs surface energy. Contrary to contemporary theory, settlement was not increased by high-energy surfaces, rather the opposite was found to be the case with cyprids settling in greater numbers on a low-energy CH(3)- SAM compared to a high-energy OH- SAM. Settlement was also greater on negatively-charged SAMs, compared to neutral and positively-charged SAMs. These findings are discussed in the context of data drawn from surfaces that varied in multiple characteristics simultaneously, as have been used previously for such experiments. The finding that surface charge, rather than total surface energy, may be responsible for surface selection by cyprids, will have significant implications for the design of future fouling-resistant materials.

  • 5.
    Vater, Svenja M.
    et al.
    Heidelberg University, Germany; Karlsruhe Institute Technology, Germany.
    Finlay, John
    University of Birmingham, England.
    Callow, Maureen E.
    University of Birmingham, England.
    Callow, James A.
    University of Birmingham, England.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering. Nanyang Technology University, Singapore.
    Grunze, Michael
    Karlsruhe Institute Technology, Germany.
    Rosenhahn, Axel
    Heidelberg University, Germany; Karlsruhe Institute Technology, Germany; Ruhr University of Bochum, Germany.
    Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces2015In: Biofouling (Print), ISSN 0892-7014, E-ISSN 1029-2454, Vol. 31, no 2, p. 229-239Article in journal (Refereed)
    Abstract [en]

    Interaction of zoospores of Ulva linza with cationic, arginine-rich oligopeptide self-assembled monolayers (SAMs) is characterized by rapid settlement. Some spores settle (ie permanently attach) in a normal manner involving the secretion of a permanent adhesive, retraction of the flagella and cell wall formation, whilst others undergo pseudosettlement whereby motile spores are trapped (attached) on the SAM surface without undergoing the normal metamorphosis into a settled spore. Holographic microscopy was used to record videos of swimming zoospores in the vicinity of surfaces with different cationic oligopeptide concentrations to provide time-resolved insights into processes associated with attachment of spores. The data reveal that spore attachment rate increases with increasing cationic peptide content. Accordingly, the decrease in swimming activity in the volume of seawater above the surface accelerated with increasing surface charge. Three-dimensional trajectories of individual swimming spores showed a hit and stick motion pattern, exclusively observed for the arginine-rich peptide SAMs, whereby spores were immediately trapped upon contact with the surface.

  • 6.
    Yandi, Wetra
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics.
    Mieszkin, Sophie
    University of Birmingham, England; Newcastle University, England.
    Callow, Maureen E.
    University of Birmingham, England.
    Callow, James A.
    University of Birmingham, England.
    Finlay, John A.
    University of Birmingham, England; Newcastle University, England.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering. Nanyang Technology University, Singapore.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Antialgal activity of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes against the marine alga Ulva2017In: Biofouling (Print), ISSN 0892-7014, E-ISSN 1029-2454, Vol. 33, no 2, p. 169-183Article in journal (Refereed)
    Abstract [en]

    Marine biofouling has detrimental effects on the environment and economy, and current antifouling coatings research is aimed at environmentally benign, non-toxic materials. The possibility of using contact-active coatings is explored, by considering the antialgal activity of cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The antialgal activity was investigated via zoospore settlement and sporeling growth assays of the marine algae Ulva linza and U. lactuca. The assay results for PDMAEMA brushes were compared to those for anionic and neutral surfaces. It was found that only PDMAEMA could disrupt zoospores that come into contact with it, and that it also inhibits the subsequent growth of normally settled spores. Based on the spore membrane properties, and characterization of the PDMAEMA brushes over a wide pH range, it is hypothesized that the algicidal mechanisms are similar to the bactericidal mechanisms of cationic polymers, and that further development could lead to successful contact-active antialgal coatings.

  • 7.
    Yandi, Wetra
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Mieszkin, Sophie
    University of Birmingham, Birmingham, UK.
    di Fino, Alessio
    Newcastle University, Newcastle, UK.
    Martin-Tanchereau, Pierre
    International Paint Ltd, Gateshead, UK.
    Callow, Maureen E
    University of Birmingham, Birmingham, UK.
    Callow, James A.
    University of Birmingham, Birmingham, UK.
    Tyson, Lyndsey
    International Paint Ltd, Gateshead, UK.
    Clare, Anthony S.
    Newcastle University, Newcastle, UK.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling2016In: Biofouling (Print), ISSN 0892-7014, E-ISSN 1029-2454, Vol. 32, no 6, p. 609-625Article in journal (Refereed)
    Abstract [en]

    The resistance of charged polymers to biofouling was investigated by subjecting cationic (PDMAEMA), anionic (PSPMA), neutral (PHEMA-co-PEG10MA), and zwitterionic (PSBMA) brushes to assays testing protein adsorption; attachment of the marine bacterium Cobetia marina; settlement and adhesion strength of zoospores of the green alga Ulva linza; settlement of barnacle (Balanus amphitrite and B. improvisus) cypris larvae; and field immersion tests. Several results go beyond the expected dependence on direct electrostatic attraction; PSPMA showed good resistance towards attachment of C. marina, low settlement and adhesion of U. linza zoospores, and significantly lower biofouling than on PHEMA-co-PEG10MA or PSBMA after a field test for one week. PDMAEMA showed potential as a contact-active anti-algal coating due to its capacity to damage attached spores. However, after field testing for eight weeks, there were no significant differences in biofouling coverage among the surfaces. While charged polymers are unsuitable as antifouling coatings in the natural environment, they provide valuable insights into fouling processes, and are relevant for studies due to charging of nominally neutral surfaces.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf