liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Johansson, Johannes D.
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Loyd, Dan
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Wren, Joakim
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Impact of cysts during radio frequency (RF) lesioning in deep brain structures: a simulation and in-vitro study2007In: Journal of Neural Engineering, ISSN 1741-2560, E-ISSN 1741-2552, Vol. 4, no 2, p. 87-95Article in journal (Refereed)
    Abstract [en]

    Radiofrequency lesioning of nuclei in the thalamus or the basal ganglia can be used to reduce symptoms caused by e.g. movement disorders such as Parkinson's disease. Enlarged cavities containing cerebrospinal fluid (CSF) are commonly present in the basal ganglia and tend to increase in size and number with age. Since the cavities have different electrical and thermal properties compared with brain tissue, it is likely that they can affect the lesioning process and thereby the treatment outcome. Computer simulations using the finite element method and in vitro experiments have been used to investigate the impact of cysts on lesions' size and shape. Simulations of the electric current and temperature distributions as well as convective movements have been conducted for various sizes, shapes and locations of the cysts as well as different target temperatures. Circulation of the CSF caused by the heating was found to spread heat effectively and the higher electric conductivity of the CSF increased heating of the cyst. These two effects were together able to greatly alter the resulting lesion size and shape when the cyst was in contact with the electrode tip. Similar results were obtained for the experiments.

    Download full text (pdf)
    FULLTEXT02
  • 2.
    Lih Lee, Wee
    et al.
    Curtin University, Australia.
    Tan, Tele
    Curtin University, Australia.
    Falkmer, Torbjörn
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Pain and Rehabilitation Center. Curtin University, Australia.
    Hong Leung, Yee
    Curtin University, Australia.
    Single-trial event-related potential extraction through one-unit ICA-with-reference2016In: Journal of Neural Engineering, ISSN 1741-2560, E-ISSN 1741-2552, Vol. 13, no 6, article id 066010Article in journal (Refereed)
    Abstract [en]

    Objective. In recent years, ICA has been one of the more popular methods for extracting event-related potential (ERP) at the single-trial level. It is a blind source separation technique that allows the extraction of an ERP without making strong assumptions on the temporal and spatial characteristics of an ERP. However, the problem with traditional ICA is that the extraction is not direct and is time-consuming due to the need for source selection processing. In this paper, the application of an one-unit ICA-with-Reference (ICA-R), a constrained ICA method, is proposed. Approach. In cases where the time-region of the desired ERP is known a priori, this time information is utilized to generate a reference signal, which is then used for guiding the one-unit ICA-R to extract the source signal of the desired ERP directly. Main results. Our results showed that, as compared to traditional ICA, ICA-R is a more effective method for analysing ERP because it avoids manual source selection and it requires less computation thus resulting in faster ERP extraction. Significance. In addition to that, since the method is automated, it reduces the risks of any subjective bias in the ERP analysis. It is also a potential tool for extracting the ERP in online application.

  • 3.
    Pham, Tuan D.
    et al.
    Bioinformatics Research Group, School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia.
    Salvetti, Federica
    Pisa University, Via Caruso, 14-56122 Pisa, Italy.
    Wang, Bing
    University of New South Wales, Canberra, ACT 2600, Australia.
    Diani, Marco
    Pisa University, Via Caruso, 14-56122 Pisa, Italy.
    Heindel, Walter
    University of M¨unster, A Schweitzer Straße 33, D-48129 M¨unster, University of M¨unster, A Schweitzer Straße 33, D-48129 M¨unster,Germany.
    Knecht, Stefan
    University of M¨unster, A Schweitzer Straße 33, D-48129 M¨unster, Germany.
    Wersching, Heike
    University of Munster, A Schweitzer Straße 33, D-48129 M¨unster, Germany/University of Munster, Domagkstraße.
    Baune, Bernhard T
    School of Medicine, University of Adelaide, SA 5005, Australia.
    Berger, Klaus
    University of M¨unster, Domagkstraße 3,Munster, Germany.
    The hidden-Markov brain comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)2011In: Journal of Neural Engineering, ISSN 1741-2560, E-ISSN 1741-2552, Vol. 8, no 1, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.

  • 4.
    Åström, Mattias
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Johansson, Johannes
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Hariz, Marwan
    Institute of Neurology London.
    Eriksson, Ola
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Wårdell, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    The effect of cystic cavities on deep brain stimulation in the basal ganglia: A simulation-based study2006In: Journal of Neural Engineering, ISSN 1741-2560, E-ISSN 1741-2552, Vol. 3, no 2, p. 132-138Article in journal (Refereed)
    Abstract [en]

    Although the therapeutic effect of deep brain stimulation (DBS) is well recognized, a fundamental understanding of the mechanisms responsible is still not known. In this study finite element method (FEM) modelling and simulation was used in order to study relative changes of the electrical field extension surrounding a monopolar DBS electrode positioned in grey matter. Due to the frequently appearing cystic cavities in the DBS-target globus pallidus internus, a nucleus of grey matter with and without a cerebrospinal fluid filled cystic cavity was modelled. The position, size and shape of the cyst were altered in relation to the electrode. The simulations demonstrated an electrical field around the active element with decreasing values in the radial direction. A stepwise change was present at the edge between grey and white matters. The cyst increased the radial extension and changed the shape of the electrical field substantially. The position, size and shape of the cyst were the main influencing factors. We suggest that cystic cavities in the DBS-target may result in closely related unexpected structures or neural fibre bundles being stimulated and could be one of the reasons for suboptimal clinical effects or stimulation-induced side effects. © 2006 IOP Publishing Ltd.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf