liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Augier, Eric
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Dulman, Russell S.
    National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA.
    Singley, Erick
    National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA.
    Heilig, Markus
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    A Method for Evaluating the Reinforcing Properties of Ethanol in Rats without Water Deprivation, Saccharin Fading or Extended Access Training2017In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 119, article id e53305Article in journal (Refereed)
    Abstract [en]

    Operant oral self-administration methods are commonly used to study the reinforcing properties of ethanol in animals. However, the standard methods require saccharin/sucrose fading, water deprivation and/or extended training to initiate operant responding in rats. This paper describes a novel and efficient method to quickly initiate operant responding for ethanol that is convenient for experimenters and does not require water deprivation or saccharin/sucrose fading, thus eliminating the potential confound of using sweeteners in ethanol operant self-administration studies. With this method, Wistar rats typically acquire and maintain self-administration of a 20% ethanol solution in less than two weeks of training. Furthermore, blood ethanol concentrations and rewards are positively correlated for a 30 min self-administration session. Moreover, naltrexone, an FDA-approved medication for alcohol dependence that has been shown to suppress ethanol self-administration in rodents, dose-dependently decreases alcohol intake and motivation to consume alcohol for rats self-administering 20% ethanol, thus validating the use of this new method to study the reinforcing properties of alcohol in rats.

  • 2.
    Bagheri, Maryam
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Rezakhani, Arjang
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Roghani, Mehrdad
    Neurophysiology Research Center, Shahed University, Iran.
    Joghataei, Mohammad T.
    Iran University of Medical Science, Iran.
    Mohseni, Simin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Protocol for Three-dimensional Confocal Morphometric Analysis of Astrocytes2015In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 106, p. e53113-Article in journal (Refereed)
    Abstract [en]

    As glial cells in the brain, astrocytes have diverse functional roles in the central nervous system. In the presence of harmful stimuli, astrocytes modify their functional and structural properties, a condition called reactive astrogliosis. Here, a protocol for assessment of the morphological properties of astrocytes is presented. This protocol includes quantification of 12 different parameters i.e. the surface area and volume of the tissue covered by an astrocyte (astrocyte territory), the entire astrocyte including branches, cell body, and nucleus, as well as total length and number of branches, the intensity of fluorescence immunoreactivity of antibodies used for astrocyte detection, and astrocyte density (number/1,000 mu m(2)). For this purpose three-dimensional (3D) confocal microscopic images were created, and 3D image analysis software such as Volocity 6.3 was used for measurements. Rat brain tissue exposed to amyloid beta(1-40) (A beta(1-40)) with or without a therapeutic intervention was used to present the method. This protocol can also be used for 3D morphometric analysis of other cells from either in vivo or in vitro conditions.

  • 3.
    Braian, Clara
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Svensson, Mattias
    Karolinska Institute, Sweden.
    Brighenti, Susanna
    Karolinska Institute, Sweden.
    Lerm, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Parasa, Venkata R.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Karolinska Institute, Sweden.
    A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection2015In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 104, p. 1-9, article id e53084Article in journal (Refereed)
    Abstract [en]

    Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.

  • 4.
    Castells-Nobau, Anna
    et al.
    Radboud University of Nijmegen, Netherlands.
    Nijhof, Bonnie
    Radboud University of Nijmegen, Netherlands.
    Eidhof, Ilse
    Radboud University of Nijmegen, Netherlands.
    Wolf, Louis
    Radboud University of Nijmegen, Netherlands.
    Scheffer-de Gooyert, Jolanda M.
    Radboud University of Nijmegen, Netherlands.
    Monedero Cobeta, Ignacio
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences. University of Autonoma Madrid, Spain.
    Torroja, Laura
    University of Autonoma Madrid, Spain.
    van der Laak, Jeroen A. W. M.
    Radboud University of Nijmegen, Netherlands; Radboud University of Nijmegen, Netherlands.
    Schenck, Annette
    Radboud University of Nijmegen, Netherlands.
    Two Algorithms for High-throughput and Multi-parametric Quantification of Drosophila Neuromuscular Junction Morphology2017In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 123, article id e55395Article in journal (Refereed)
    Abstract [en]

    Synaptic morphology is tightly related to synaptic efficacy, and in many cases morphological synapse defects ultimately lead to synaptic malfunction. The Drosophila larval neuromuscular junction (NMJ), a well-established model for glutamatergic synapses, has been extensively studied for decades. Identification of mutations causing NMJ morphological defects revealed a repertoire of genes that regulate synapse development and function. Many of these were identified in large-scale studies that focused on qualitative approaches to detect morphological abnormalities of the Drosophila NMJ. A drawback of qualitative analyses is that many subtle players contributing to NMJ morphology likely remain unnoticed. Whereas quantitative analyses are required to detect the subtler morphological differences, such analyses are not yet commonly performed because they are laborious. This protocol describes in detail two image analysis algorithms Drosophila NMJ Morphometrics and Drosophila NMJ Bouton Morphometrics, available as Fiji-compatible macros, for quantitative, accurate and objective morphometric analysis of the Drosophila NMJ. This methodology is developed to analyze NMJ terminals immunolabeled with the commonly used markers Dlg-1 and Brp. Additionally, its wider application to other markers such as Hrp, Csp and Syt is presented in this protocol. The macros are able to assess nine morphological NMJ features: NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length, number of islands, number of branches, number of branching points and number of active zones in the NMJ terminal.

  • 5.
    Henricson, Joakim
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    Toll John, Rani
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Anderson, Chris
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    Björk Wilhelms, Daniel
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Diffuse Reflectance Spectroscopy: Getting the Capillary Refill Test Under Ones Thumb2017In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 130, article id e56737Article in journal (Refereed)
    Abstract [en]

    The capillary refill test was introduced in 1947 to help estimate circulatory status in critically ill patients. Guidelines commonly state that refill should occur within 2 s after releasing 5 s of firm pressure (e.g., by the physicians finger) in the normal healthy supine patient. A slower refill time indicates poor skin perfusion, which can be caused by conditions including sepsis, blood loss, hypoperfusion, and hypothermia. Since its introduction, the clinical usefulness of the test has been debated. Advocates point out its feasibility and simplicity and claim that it can indicate changes in vascular status earlier than changes in vital signs such as heart rate. Critics, on the other hand, stress that the lack of standardization in how the test is performed and the highly subjective nature of the naked eye assessment, as well as the tests susceptibility to ambient factors, markedly lowers the clinical value. The aim of the present work is to describe in detail the course of the refill event and to suggest potentially more objective and exact endpoint values for the capillary refill test using diffuse polarization spectroscopy.

    The full text will be freely available from 2019-12-02 09:45
  • 6.
    Nyström, Sofie
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging2017In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 128, article id e56279Article in journal (Refereed)
    Abstract [en]

    Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimers and Parkinsons disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive beta-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.

  • 7.
    Ree, Anbjorn
    et al.
    Univ Oslo, Norway.
    Morrison, India
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Olausson, Håkan
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Sailer, Uta
    Univ Oslo, Norway.
    Heilig, Markus
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    Mayo, Leah
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Using Facial Electromyography to Assess Facial Muscle Reactions to Experienced and Observed Affective Touch in Humans2019In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 145, article id e59228Article in journal (Refereed)
    Abstract [en]

    Affective

  • 8.
    Ström, Jakob O
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences.
    Theodorsson, Annette
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Ingberg, Edvin
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences.
    Isaksson, Ida-Maria
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences.
    Theodorsson, Elvar
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Chemistry.
    Ovariectomy and 17β-estradiol replacement in rats and mice: a visual demonstration2012In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 64, p. 4013-Article in journal (Refereed)
    Abstract [en]

    Estrogens are a family of female sexual hormones with an exceptionally wide spectrum of effects. When rats and mice are used in estrogen research they are commonly ovariectomized in order to ablate the rapidly cycling hormone production, replacing the 17β-estradiol exogenously. There is, however, lack of consensus regarding how the hormone should be administered to obtain physiological serum concentrations This is crucial since the 17β-estradiol level/administration method profoundly influences the experimental results1-3. We have in a series of studies characterized the different modes of 17β-estradiol administration, finding that subcutaneous silastic capsules and per-oral nut-cream Nutella are superior to commercially available slow-release pellets (produced by the company Innovative Research of America) and daily injections in terms of producing physiological serum concentrations of 17β-estradiol4-6. Amongst the advantages of the nut-cream method, that previously has been used for buprenorphine administration7, is that when used for estrogen administration it resembles peroral hormone replacement therapy and is non-invasive. The subcutaneous silastic capsules are convenient and produce the most stable serum concentrations. This video article contains step-by-step demonstrations of ovariectomy and 17β-estradiol hormone replacement by silastic capsules and peroral Nutella in rats and mice, followed by a discussion of important aspects of the administration procedures.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf