liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Szabó, Zoltán
    et al.
    Linköping University, Department of Medical and Health Sciences, Cardiothoracic Anaesthesia and Intensive care. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Berg, Sören
    Linköping University, Department of Medical and Health Sciences, Cardiothoracic Anaesthesia and Intensive care. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Sjökvist, Stefan
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology. Thermirage AB, Linköping, Sweden.
    Gustafsson, Torbjörn
    Thermirage AB, Linköping.
    Carleberg, Per
    Thermirage AB, Linköping.
    Uppsäll, Magnus
    Thermirage AB, Linköping.
    Wren, Joakim
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Ahn, Henrik
    Linköping University, Department of Medical and Health Sciences, Thoracic Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Real-time intraoperative visualization of myocardial circulation using augmented reality terperature display2013In: The International Journal of Cardiovascular Imaging, ISSN 1569-5794, E-ISSN 1875-8312, Vol. 29, no 2, p. 521-528Article in journal (Refereed)
    Abstract [en]

    For direct visualization of myocardial ischemia during cardiac surgery, we tested the feasibility of presenting infrared (IR) tissue temperature maps in situ during surgery. A new augmented reality (AR) system, consisting of an IR camera and an integrated projector having identical optical axes, was used, with a high resolution IR camera as control. The hearts of five pigs were exposed and an elastic band placed around the middle of the left anterior descending coronary artery to induce ischemia. A proximally placed ultrasound Doppler probe confirmed reduction of flow. Two periods of complete ischemia and reperfusion were studied in each heart. There was a significant decrease in IR-measured temperature distal to the occlusion, with subsequent return to baseline temperatures after reperfusion (baseline 36.9 ± 0.60 (mean ± SD) versus ischemia 34.1 ± 1.66 versus reperfusion 37.4 ± 0.48; p < 0.001), with no differences occurring in the non-occluded area. The AR presentation was clear and dynamic without delay, visualizing the temperature changes produced by manipulation of the coronary blood flow, and showed concentrically arranged penumbra zones during ischemia. Surface myocardial temperature changes could be assessed quantitatively and visualized in situ during ischemia and subsequent reperfusion. This method shows potential as a rapid and simple way of following myocardial perfusion during cardiac surgery. The dynamics in the penumbra zone could potentially be used for visualizing the effect of therapy on intraoperative ischemia during cardiac surgery.

  • 2.
    Zajac, Jakub
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Eriksson, Jonatan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Alehagen, Urban
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Cardiology in Linköping.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Bolger, Ann F
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Department of Medicine, University of California San Francisco, CA, USA.
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Mechanical dyssynchrony alters left ventricular flow energetics in failing hearts with LBBB: a 4D flow CMR pilot study.2018In: The International Journal of Cardiovascular Imaging, ISSN 1569-5794, E-ISSN 1875-8312, Vol. 34, no 4, p. 587-596Article in journal (Refereed)
    Abstract [en]

    The impact of left bundle branch block (LBBB) related mechanical dyssynchrony on left ventricular (LV) diastolic function remains unclear. 4D flow cardiovascular magnetic resonance (CMR) has provided reliable markers of LV dysfunction: reduced volume and kinetic energy (KE) of the portion of LV inflow which passes directly to outflow (Direct Flow) has been demonstrated in failing hearts compared to normal hearts. We sought to investigate the impact of mechanical dyssynchrony on diastolic function by comparing 4D flow in myopathic LVs with and without LBBB. CMR data were acquired at 3 T in 22 heart failure patients; 11 with LBBB and 11 without LBBB matched according to several demographic and clinical parameters. An established 4D flow analysis method was used to separate the LV end-diastolic (ED) volume into functional flow components based on the blood's timing and route through the heart cavities. While the Direct Flow volume was not different between the groups, the KE possessed at ED was lower in LBBB patients (P = 0.018). Direct Flow entering the LV during early diastolic filling possessed less KE at ED in LBBB patients compared to non-LBBB patients, whereas no intergroup difference was observed during late filling. Pre-systolic KE of LV Direct Flow was reduced in patients with LBBB compared to matched patients with normal conduction. These intriguing findings propose that 4D flow specific measures can serve as markers of LV mechanical dyssynchrony in heart failure patients, and could possibly be investigated as predictors of response to cardiac resynchronization therapy.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf