liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Krasnoshchekov, Dmitry
    et al.
    Russian Acad Sci, Russia.
    Ovtchinnikov, Vladimir
    Russian Acad Sci, Russia.
    Polishchuk, Valentin
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering.
    Dissimilarity of the Earths Inner Core Surface Under South America and Northeastern Asia Revealed by Core Reflected Phases2019In: Journal of Geophysical Research - Solid Earth, ISSN 2169-9313, E-ISSN 2169-9356, Vol. 124, no 5, p. 4862-4878Article in journal (Refereed)
    Abstract [en]

    Resolving topography of the inner core boundary (ICB) and the structure and composition of the nearby region is key to improving our understanding of solidification of the Earths inner core. Observations of travel times and amplitudes of short-period seismic phases of PKiKP and PcP reflected, respectively, off the inner and outer boundary of the liquid core, provide essential constraints on the properties of this region. We revisit heterogeneities of ICB using a total of more than 1,300 new differential travel times and amplitude ratios of PKiKP and PcP measured at 3.2-35.2 degrees and reflected off the cores boundaries under Northeastern Asia and South America. We observe a statistically significant systematic bias between the measurements collected in the two spots. We carefully examine its origin in terms of contributions by various Earths shells and find that most of variance in PKiKP-PcP differential travel times measured above the epicentral distance of 16.5 degrees in Northeastern Asia can be accounted for by mantle corrections. We find slight disparity of about 1-3 km between the outer core thickness under Asia and America; the ICB density jump under Northeastern Asia is about 0.3 g/cm(3), which is three times as small as under South America. The findings are interpretable either as evidence for inner core hemispherical asymmetry, whereby crystallization dominates in the West and melting in the East (not vice versa), or in terms of two disconnected mosaic patches with contrasting properties.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf