liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergqvist, Jonas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tress, Wolfgang
    Laboratory of Photonics and Interfaces, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
    Forchheimer, Daniel
    Nanostructure Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
    Melianas, Armantas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tang, Zheng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Haviland, David
    Nanostructure Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    New method for lateral mapping of bimolecular recombination in thin film organic solar cells2016In: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 24, no 8, p. 1096-1108Article in journal (Refereed)
    Abstract [en]

    The best organic solar cells are limited by bimolecular recombination. Tools to study these losses are available; however, they are only developed for small area (laboratory-scale) devices and are not yet available for large area (production-scale) devices. Here we introduce the Intermodulation Light Beam-Induced Current (IMLBIC) technique, which allows simultaneous spatial mapping of both the amount of extracted photocurrent and the bimolecular recombination over the active area of a solar cell. We utilize the second-order non-linear dependence on the illumination intensity as a signature for bimolecular recombination. Using two lasers modulated with different frequencies, we record the photocurrent response at each modulation frequency and the bimolecular recombination in the second-order intermodulation response at the sum and difference of the two frequencies. Drift-diffusion simulations predict a unique response for different recombination mechanisms. We successfully verify our approach by studying solar cells known to have mainly bimolecular recombination and thus propose this method as a viable tool for lateral detection and characterization of the dominant recombination mechanisms in organic solar cells. We expect that IMLBIC will be an important future tool for characterization and detection of recombination losses in large area organic solar cells.

  • 2.
    Xie, Zhibin
    et al.
    Department of Materials Science and Engineering, National University of Singapore.
    Midya, Anupam
    Department of Chemistry, National University of Singapore.
    Loh, Kian Ping
    Department of Chemistry, National University of Singapore.
    Adams, Stefan
    Department of Materials Science and Engineering, National University of Singapore.
    Blackwood, Daniel John
    Department of Materials Science and Engineering, National University of Singapore.
    Wang, John
    Department of Materials Science and Engineering, National University of Singapore.
    Zhang, Xuanjun
    Department of Chemistry, National University of Singapore.
    Chen, Zhikuan
    Institute of Materials Research & Engineering, 3 Research Link, Singapore.
    Highly efficient dye-sensitized solar cells using phenothiazine derivative organic dyes2010In: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 18, no 8, p. 573-581Article in journal (Refereed)
    Abstract [en]

    Two novel organic dyes have been synthesized using electron rich phenothiazine as electron donors and oligothiophene vinylene as conjugation spacers. The two dyes (2E)-2-cyano-3-(5-(5-((E)-2-(10-(2-ethylhexyl)-10H-phenothiazin-7-yl)vinyl)thiophen-2-yl)thiophen-2-yl)acrylic acid (PTZ-1) and (2E)-3-(5-(5-(4,5-bis((E)-2-(10-(2-ethylhexyl)-10H-phenothiazin-3-yl)vinyl)thiophen-2-yl)thiophen-2-yl)thiophen-2-yl)-2-cyanoacrylic acid (PTZ-2) were fully characterized and employed in dye-sensitized solar cells (DSCs) to explore the effect of disubstituted donors on photovoltaic (PV) performance. The solar cells sensitized by the PTZ1 dye have a high IPCE plateau of 80% and achieve a short-circuit photocurrent density of 12.98 mA/cm2, an open-circuit voltage of 0.713 V, and a fill factor (ff) of 66.6%, corresponding to a conversion efficiency of 6.17% under AM 1.5 100 mW/cm2 illumination. The different performance of the solar cells based on the two dyes can be understood from the studies of the electron kinetics by electrochemical impedance spectroscopy (EIS). These investigations reveal that disubstituted donors in the organic sensitizers of three or more conjugation units deteriorate the PV performance due to enhanced recombination.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf