liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Roy, Chandan
    et al.
    Linköping University, Department of Computer and Information Science. Linköping University, The Institute of Technology.
    Kovordanyi, Rita
    Linköping University, Department of Computer and Information Science, MDALAB - Human Computer Interfaces. Linköping University, The Institute of Technology.
    Tropical cyclone track forecasting techniques: A review2012In: Atmospheric research, ISSN 0169-8095, E-ISSN 1873-2895, Vol. 104-105, p. 40-69Article, review/survey (Refereed)
    Abstract [en]

    Delivering accurate cyclone forecasts in time is of key importance when it comes to saving human lives and reducing economic loss. Difficulties arise because the geographical and climatological characteristics of the various cyclone formation basins are not similar, which entail that a single forecasting technique cannot yield reliable performance in all ocean basins. For this reason, global forecasting techniques need to be applied together with basin-specific techniques to increase the forecast accuracy. As cyclone track is governed by a range of factors variations in weather conditions, wind pressure, sea surface temperature, air temperature, ocean currents, and the earths rotational force-the coriolis force, it is a formidable task to combine these parameters and produce reliable and accurate forecasts. In recent years, the availability of suitable data has increased and more advanced forecasting techniques have been developed, in addition to old techniques having been modified. In particular, artificial neural network based techniques are now being considered at meteorological offices. This new technique uses freely available satellite images as input, can be run on standard PCs, and can produce forecasts with good accuracy. For these reasons, artificial neural network based techniques seem especially suited for developing countries which have limited capacity to forecast cyclones and where human casualties are the highest. © 2011 Elsevier B.V.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf