liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aeppli, Christoph
    et al.
    Stockholm University, Sweden .
    Bastviken, David
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Andersson, Per
    Swedish Museum Nat Hist, Sweden .
    Gustafsson, Orjan
    Stockholm University, Sweden .
    Chlorine Isotope Effects and Composition of Naturally Produced Organochlorines from Chloroperoxidases, Flavin-Dependent Halogenases, and in Forest Soil2013In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 47, no 13, p. 6864-6871Article in journal (Refereed)
    Abstract [en]

    The use of stable chlorine isotopic signatures (delta Cl-37) of organochlorine compounds has been suggested as a tool to determine both their origins and transformations in the environment. Here we investigated the delta Cl-37 fractionation of two important pathways for enzymatic natural halogenation: chlorination by chloroperoxidase (CPO) and flavin-dependent halogenases (FDH). Phenolic products of CPO were highly Cl-37 depleted (delta Cl-37 = -12.6 +/- 0.9 parts per thousand); significantly more depleted than all known industrially produced organochlorine compounds (delta Cl-37 = -7 to +6 parts per thousand). In contrast, four FDH products did not exhibit any observable isotopic shifts (delta Cl-37 = -0.3 +/- 0.6 parts per thousand). We attributed the different isotopic effect to the distinctly different chlorination mechanisms employed by the two enzymes. Furthermore, the delta Cl-37 in bulk organochlorines extracted from boreal forest soils were only slightly depleted in Cl-37 relative to inorganic Cl. In contrast to previous suggestions that CPO plays a key role in production of soil organochlorines, this observation points to the additional involvement of either other chlorination pathways, or that dechlorination of naturally produced organochlorines can neutralize delta Cl-37 shifts caused by CPO chlorination. Overall, this study demonstrates that chlorine isotopic signatures are highly useful to understand sources and cycling of organochlorines in nature. Furthermore, this study presents delta Cl-37 values of FDH products as well of bulk organochlorines extracted from pristine forest soil for the first time.

  • 2.
    Bastviken, David
    et al.
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Lucia Santoro, Ana
    Univ Fed Rio de Janeiro.
    Marotta, Humberto
    Univ Fed Rio de Janeiro.
    Queiroz Pinho, Luana
    Univ Fed Rio de Janeiro.
    Fernandes Calheiros, Debora
    Ctr Agr Res Pantanal Embrapa Pantanal.
    Crill, Patrick
    Stockholm University.
    Enrich-Prast, Alex
    Univ Fed Rio de Janeiro.
    Methane Emissions from Pantanal, South America, during the Low Water Season: Toward More Comprehensive Sampling2010In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 44, no 14, p. 5450-5455Article in journal (Refereed)
    Abstract [en]

    Freshwater environments contribute 75% of the natural global methane (CH4) emissions. While there are indications that tropical lakes and reservoirs emit 58-400% more CH4 per unit area than similar environments in boreal and temperate biomes, direct measurements of tropical lake emissions are scarce. We measured CH4 emissions from 16 natural shallow lakes in the Pantanal region of South America, one of the worlds largest tropical wetland areas, during the low water period using floating flux chambers. Measured fluxes ranged from 3.9 to 74.2 mmol m(-2) d(-1) with the average from all studied lakes being 8.8 mmol m(-2) d(-1) (131.8 mg CH4 m(-2) d(-1)), of which ebullition accounted for 91% of the flux (28-98% on individual lakes). Diel cycling of emission rates was observed and therefore 24-h long measurements are recommended rather than short-term measurements not accounting for the full diel cycle. Methane emission variability within a lake may be equal to or more important than between lake variability in floodplain areas as this study identified diverse habitats within lakes having widely different flux rates. Future measurements with static floating chambers should be based on many individual chambers distributed in the various subenvironments of a lake that may differ in emissions in order to account for the within lake variability.

  • 3.
    Bastviken, David
    et al.
    Stockholm University.
    Sandén, Per
    Linköping University, The Tema Institute, Centre for Climate Science and Policy Research . Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Svensson, Teresia
    Linköping University, The Tema Institute, Centre for Climate Science and Policy Research . Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Ståhlberg, Carina
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Magounakis, Malin
    Linköping University, The Tema Institute, Centre for Climate Science and Policy Research . Linköping University, Faculty of Arts and Sciences.
    Öberg, Gunilla
    Linköping University, The Tema Institute, Centre for Climate Science and Policy Research . Linköping University, Faculty of Arts and Sciences.
    Chloride retention and release in a boreal forest soil: effects of soil water residence time and nitrogen and chloride loads2006In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 40, no 9, p. 2977-2982Article in journal (Refereed)
    Abstract [en]

    The common assumption that chloride (Cl-) is conservative in soils and can be used as a groundwater tracer is currently being questioned, and an increasing number of studies indicate that Cl- can be retained in soils. We performed lysimeter experiments with soil from a coniferous forest in southeast Sweden to determine whether pore water residence time and nitrogen and Cl- loads affected Cl- retention. Over the first 42 days there was a net retention of Cl- with retention rates averaging 3.1 mg Cl- m-2 d-1 (68% of the added Cl- retained over 42 days). Thereafter, a net release of Cl- at similar rates was observed for the remaining experimental period (85 d). Longer soil water residence time and higher Cl- load gave higher initial retention and subsequent release rates than shorter residence time and lower Cl- load did. Nitrogen load did not affect Cl transformation rates. This study indicates that simultaneous retention and release of Cl- can occur in soils, and that rates may be considerable relative to the load. The retention of Cl- observed was probably due to chlorination of soil organic matter or ion exchange. The cause of the shift between net retention and net release is unclear, but we hypothesize that the presence of O2 or the presence of microbially available organic matter regulates Cl- retention and release rates.

  • 4.
    Bastviken, David
    et al.
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Svensson, Teresia
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Karlsson, Susanne
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Sandén, Per
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Öberg, Gunilla
    IRES, UBC, Canada.
    Temperature sensitivity indicates enzyme controlled chlorination of soil organic matter2009In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 43, no 10, p. 3569-3573Article in journal (Refereed)
    Abstract [en]

    Old assumptions that chloride is inert and that most chlorinated organic matter in soils is anthropogenic have been challenged by findings of naturally formed organochlorines. Such natural chlorination has been recognized for several decades, but there are still very few measurements of chlorination rates or estimates of the quantitative importance of terrestrial chlorine transformations. While much is known about the formation of specific compounds, bulk chlorination remains poorly understood in terms of mechanisms and effects of environmental factors. We quantified bulk chlorination rates in coniferous forest soil using 36Cl-chloride in tracer experiments at different temperatures and with and without molecular oxygen (O2). Chlorination was enhanced by the presence of O2 and had a temperature optimum at 20 °C. Minimum rates were found at high temperatures (50 °C) or under anoxic conditions. The results indicate (1) that most of the chlorination between 4 and 40 °C was biotic and driven by O2 dependent enzymes, and (2) that there is also slower background chlorination occurring under anoxic conditions at 20 °C and under oxic conditions at 50 °C. Hence, while oxic and biotic chlorination clearly dominated, chlorination by other processes including possible abiotic reactions was also detected.

  • 5.
    Benskin, Jonathan
    et al.
    University of Alberta, Canada.
    Ahrens, Lutz
    Institute for Coastal Research, Geesthacht, Tyskland.
    Muir, Derek
    Environment Canada, Kanada.
    Scott, Brian
    Environment Canada, Kanada.
    Spencer, Christine
    Environment Canada, Kanada.
    Rosenberg, Bruno
    Department of Fisheries and Oceans, Canada.
    Tomy, Gregg
    Department of Fisheries and Oceans, Canada.
    Kylin, Henrik
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Lohmann, Rainer
    University of Rhode Island, USA.
    Martin, Jonathan
    University of Alberta, Canada.
    Manufacturing Origin of Perfluorooctanoate (PFOA) in Atlantic and Canadian Arctic Seawater2012In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 46, no 2, p. 677-685Article in journal (Refereed)
    Abstract [en]

    The extent to which different manufacturing sources and long-range transport pathways contribute to perfluorooctanoate (PFOA) in the world’s oceans, particularly in remote locations, is widely debated. Here, the relative contribution of historic (i.e., electrochemically fluorinated) and contemporary (i.e., telomer) manufacturing sources was assessed for PFOA in various seawater samples by an established isomer profiling technique. The ratios of individual branched PFOA isomers were indistinguishable from those in authentic historic standards in 93% of the samples examined, indicating that marine processes had little influence on isomer profiles, and that isomer profiling is a valid source apportionment tool for seawater. Eastern Atlantic PFOA was largely (83−98%) of historic origin, but this decreased to only 33% close to the Eastern U.S. seaboard. Similarly, PFOA in the Norwegian Sea was near exclusively historic, but the relative contribution decreased to ∼50% near the Baltic Sea. Such observations of contemporary PFOA in coastal source regions coincided with elevated concentrations, suggesting that the continued production and use of PFOA is currently adding to the marine burden of this contaminant. In the Arctic, a spatial trend was observed whereby PFOA in seawater originating from the Atlantic was predominantly historic (up to 99%), whereas water in the Archipelago (i.e., from the Pacific) was predominantly of contemporary origin (as little as 17% historic). These data help to explain reported temporal and spatial trends from Arctic wildlife biomonitoring, and suggest that the dominant PFOA source(s) to the Pacific and Canadian Arctic Archipelago are either (a) from direct emissions of contemporary PFOA via manufacturing or use in Asia, or (b) from atmospheric transport and oxidation of contemporary PFOA-precursors.

  • 6.
    Benskin, Jonathan P.
    et al.
    University of Alberta, Canada .
    Muir, Derek C. G.
    Environm Canada, Canada .
    Scott, Brian F.
    Environm Canada, Canada .
    Spencer, Christine
    Environm Canada, Canada .
    De Silva, Amila O.
    Environm Canada, Canada .
    Kylin, Henrik
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Martin, Jonathan W.
    University of Alberta, Canada .
    Morris, Adam
    University of Guelph, Canada .
    Lohmann, Rainer
    University of Rhode Isl, RI 02882 USA .
    Tomy, Gregg
    Department Fisheries and Oceans Canada, Canada .
    Rosenberg, Bruno
    Department Fisheries and Oceans Canada, Canada .
    Taniyasu, Sachi
    National Institute Adv Ind Science and Technology, Japan .
    Yamashita, Nobuyoshi
    National Institute Adv Ind Science and Technology, Japan .
    Perfluoroalkyl Acids in the Atlantic and Canadian Arctic Oceans2012In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 46, no 11, p. 5815-5823Article in journal (Refereed)
    Abstract [en]

    We report here on the spatial distribution of C-4, C-6, and C-8 perfluoroalkyl sulfonates, C-6-C-14 perfluoroalkyl carboxylates, and perfluorooctanesulfonamide in the Atlantic and Arctic Oceans, including previously unstudied coastal waters of North and South America, and the Canadian Arctic Archipelago. Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were typically the dominant perfluoroalkyl acids (PFAAs) in Atlantic water. In the midnorthwest Atlantic/Gulf Stream, sum PFAA concentrations (Sigma PFAAs) were low (77-190 pg/L) but increased rapidly upon crossing into U.S. coastal water (up to 5800 pg/L near Rhode Island). Sigma PFAAs in the northeast Atlantic were highest north of the Canary Islands (280-980 pg/L) and decreased with latitude. In the South Atlantic, concentrations increased near Rio de la Plata (Argentina/Uruguay; 350-540 pg/L Sigma PFAAs), possibly attributable to insecticides containing N-ethyl perfluorooctanesulfonamide, or proximity to Montevideo and Buenos Aires. In all other southern hemisphere locations, Sigma PFAAs were less than210 pg/L. PFOA/PFOS ratios were typically greater than= 1 in the northern hemisphere, similar to 1 near the equator, and less than= 1 in the southern hemisphere. In the Canadian Arctic, Sigma PFAAs ranged from 40 to 250 pg/L, with perfluoroheptanoate, PFOA, and PFOS among the PFAAs detected at the highest concentrations. PFOA/PFOS ratios (typically greater thangreater than1) decreased from Baffin Bay to the Amundsen Gulf; possibly attributable to increased atmospheric inputs. These data help validate global emissions models and contribute to understanding of long-range transport pathways and sources of PFAAs to remote regions.

  • 7.
    Börjesson, Gunnar
    et al.
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Samuelsson, J.
    Department of Radio and Space Science, Chalmers Technical University, SE-412 96 Gothenburg, Sweden.
    Chanton, J.
    Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320, United States.
    Methane oxidation in Swedish landfills quantified with the stable carbon isotope technique in combination with an optical method for emitted methane2007In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 41, no 19, p. 6684-6690Article in journal (Refereed)
    Abstract [en]

    Methane budgets (production = emissions + oxidation + recovery) were estimated for six landfill sites in Sweden. Methane oxidation was measured in downwind plumes with a stable isotope technique (Chanton, J. P., et al., Environ. Sci. Technol. 1999, 33, 3755-3760.) Positions in plumes for isotope sampling as well as methane emissions were determined with an optical instrument (Fourier Transform InfraRed) in combination with N2O as tracer gas (Galle, B., et al., Environ. Sci. Technol. 2001, 35, 21-25.) Two landfills had been closed for years prior to the measurements, while four were active. Measurements at comparable soil temperatures showed that the two closed landfills had a significantly higher fraction of oxidized methane (38-42% of emission) relative to the four active landfills (4.6-15% of emission). These results highlight the importance of installing and maintaining effective landfill covers and also indicate that substantial amounts of methane escape from active landfills. Based on these results we recommend that the IPCC default values for methane oxidation in managed landfills could be set to 10% for active sites and 20% for closed sites. Gas recovery was found to be highly variable at the different sites, with values from 14% up to 65% of total methane production. The variance can be attributed to different waste management practices. © 2007 American Chemical Society.

  • 8.
    Conley, D.J.
    et al.
    Department of Marine Ecology, Natl. Environ. Research Institute, P.O. Box 358, DK-4000 Roskilde, Denmark.
    Humborg, C.
    Department of Systems Ecology, Stockholm University, SE-106 91 Stockholm, Sweden.
    Rahm, Lars
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Savchuk, O.P.
    Department of Systems Ecology, Stockholm University, SE-106 91 Stockholm, Sweden.
    Wulff, F.
    Department of Systems Ecology, Stockholm University, SE-106 91 Stockholm, Sweden.
    Hypoxia in the baltic sea and basin-scale changes in phosphorus biogeochemistry2002In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 36, no 24, p. 5315-5320Article in journal (Refereed)
    Abstract [en]

    Deep-water oxygen concentrations in the Baltic Sea are influenced by eutrophication, but also by saltwater inflows from the North Sea. In the last two decades, only two major inflows have been recorded and the lack of major inflows is believed to have resulted in a long-term stagnation of the deepest bottom water. Analyzing data from 1970 to 2000 at the basin scale, we show that the estimated volume of water with oxygen, <2 mL L-1, was actually at a minimum at the end of the longest so-called stagnation period on record. We also show that annual changes in dissolved inorganic phosphate water pools were positively correlated to the area of bottom covered by hypoxic water, but not to changes in total phosphorus load, thus addressing the legacy of eutrophication on a basinwide scale. The variations in phosphorus pools that have occurred during the past decades do not reflect any human action to reduce inputs. The long residence time and internally controlled variation of the large P pool in the Baltic Sea has important implications for management of both N and P inputs into this eutrophicated enclosed basin.

  • 9.
    Dickhut, Rebecca
    et al.
    Virginia Institute for Marine Science, USA.
    Cincinelli, Alessandra
    Università degli Studi di Firenze, Italien.
    Cochran, Michel
    Virginia Institute for Marine Science, USA.
    Kylin, Henrik
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Aerosol-Mediated Transport and Deposition of Brominated Diphenyl Ethers to Antarctica2012In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 46, no 6, p. 3135-3140Article in journal (Refereed)
    Abstract [en]

    Brominated diphenyl ethers (BDE47, 99, 100, and 209) were measured in air, snow and sea ice throughout western Antarctica between 2001 and 2007. BDEs in Antarctic air were predominantly associated with aerosols and were low compared to those in remote regions of the northern hemisphere, except in Marguerite Bay following the fire at Rothera research station in Sept 2001, indicating that this event was a local source of BDE209 to the Antarctic environment. Aerosol BDE47/100 reflects a mixture of commercial pentaBDE products; however, BDE99/100 is suggestive of photodegradation of BDE99 during long-range atmospheric transport (LRAT) in the austral summer. BDEs in snow were lower than predicted based on snow scavenging of aerosols indicating that atmospheric deposition events may be episodic. BDE47, -99, and -100 significantly declined in Antarctic sea ice between 2001 and 2007; however, BDE209 did not decline in Antarctic sea ice over the same time period. Significant losses of BDE99 and -100 from sea ice were recorded over a 19 day period in spring 2001 demonstrating that seasonal ice processes result in the preferential loss of some BDEs. BDE47/100 and BDE99/100 in sea ice samples reflect commercial pentaBDE products, suggesting that photodegradation of BDE99 is minimal during LRAT in the austral winter.

  • 10.
    Dienus, Olaf
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Ryhov County Hospital, Sweden.
    Sokolova, Ekaterina
    Chalmers, Sweden.
    Nyström, Fredrik
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Ryhov County Hospital, Sweden; Luleå University of Technology, Sweden.
    Matussek, Andreas
    Ryhov County Hospital, Sweden.
    Löfgren, Sture
    Ryhov County Hospital, Sweden.
    Blom, Lena
    Chalmers, Sweden; City Gothenburg, Sweden.
    Pettersson, Thomas J. R.
    Chalmers, Sweden.
    Lindgren, Per-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Ryhov County Hospital, Sweden.
    Norovirus Dynamics in Wastewater Discharges and in the Recipient Drinking Water Source: Long-Term Monitoring and Hydrodynamic Modeling2016In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 50, no 20, p. 10851-10858Article in journal (Refereed)
    Abstract [en]

    Norovirus (NoV) that enters drinking water sources with wastewater discharges is a common cause of waterborne outbreaks. The impact of wastewater treatment plants (WWTPs) on the river Gota alv (Sweden) was studied using monitoring and hydrodynamic modeling. The concentrations of NoV genogroups (GG) I and II in samples collected at WWTPs and drinking water intakes (source water) during one year were quantified using duplex real-time reverse-transcription polymerase chain reaction. The mean (standard deviation) NoV GGI and GGII genome concentrations were 6.2 (1.4) and 6.8 (1.8) in incoming wastewater and 5.3 (1.4) and 5.9 (1.4) log(10) genome equivalents (g.e.) L-1 in treated wastewater, respectively. The reduction at the WWTPs varied between 0.4 and 1.1 log(10) units. In source water, the concentration ranged from below the detection limit to 3.8 log(10) g.e. L-1. NoV GGII was detected in both wastewater and source water more frequently during the cold than the warm period of the year. The spread of NoV in the river was simulated using a three-dimensional hydrodynamic model. The modeling results indicated that the NoV GGI and GGII genome concentrations in source water may occasionally be up to 2.8 and 1.9 log(10) units higher, respectively, than the concentrations measured during the monitoring project.

  • 11.
    Galle, B
    et al.
    Swedish Environm Res Inst, IVL, S-40258 Gothenburg, Sweden Linkoping Univ, Dept Water & Environm Studies, S-58183 Linkoping, Sweden.
    Samuelsson, J
    Svensson, Bo
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Börjesson, Gunnar
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy2001In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 35, no 1, p. 21-25Article in journal (Refereed)
    Abstract [en]

    Methane is an important climate gas contributing significantly to global warming. A large part of the anthropogenic emissions of methane comes from landfills. Due to the biogenic origin of these emissions and the inhomogeneous characteristics of landfills and their soil cover, these emissions show large spatial variation. Thus, development of reliable and cost-effective methods for measurements of these emissions is an important task and a challenge to the scientific community. Traditionally, field chamber methods have been used but also different area integrating methods based on downwind plume measurements. These measurements have been supported by meteorological data either directly from local measurements or by controlled release of tracer gas from the landfill providing the dispersion characteristics of the plume. in this paper we describe a method, the Time Correlation Tracer method, combining controlled tracer gas release from the landfill with time-resolved concentration measurements downwind the landfill using FTIR absorption spectroscopy. The method has been tested and used on measurements at a landfill in southern Sweden over the past 1.5 years. The method has proven to be a usable method for measurements of total methane emission from landfills, and under favorable meteorological conditions we estimate an achievable accuracy of 15-30%. The real time analysis capability of the FTIR makes it possible to judge the success of the measurement already on site and to decide whether more measurements are necessary. The measurement strategy is relatively simple and straightforward, and one person can make a measurement from a medium sized landfill (1-4 ha) within a few days to a week depending on the meteorological situation.

  • 12.
    Gonsior, Michael
    et al.
    University of Maryland, MD 20688 USA.
    Schmitt-Kopplin, Philippe
    Helmholtz Zentrum Munchen, Germany; Technical University of Munich, Germany.
    Stavklint, Helena
    Tekniska Verken Linkoping AB, S-58115 Linkoping, Sweden.
    Richardson, Susan D.
    University of S Carolina, SC 29208 USA.
    Hertkorn, Norbert
    Helmholtz Zentrum Munchen, Germany.
    Bastviken, David
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Changes in Dissolved Organic Matter during the Treatment Processes of a Drinking Water Plant in Sweden and Formation of Previously Unknown Disinfection Byproducts2014In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 48, no 21, p. 12714-12722Article in journal (Refereed)
    Abstract [en]

    The changes in dissolved organic matter (DOM) throughout the treatment processes in a drinking water treatment plant in Sweden and the formation of disinfection byproducts (DBPs) were evaluated by using ultra-high-resolution mass spectrometry (resolution of similar to 500000 at m/z 400) and nuclear magnetic resonance (NMR). Mass spectrometric results revealed that flocculation induced substantial changes in the DOM and caused quantitative removal of DOM constituents that usually are associated with DBP formation While half of the chromophoric DOM (CDOM) was removed by flocculation, similar to 4-5 mg L-1 total organic carbon remained in the finished water. A conservative approach revealed the formation of similar to 800 mass spectrometry ions with unambiguous molecular formula assignments that contained at least one halogen atom. These molecules likely represented new DBPs, which could not be prevented by the flocculation process. The most abundant m/z peaks, associated with formed DBPs, could be assigned to C5HO3Cl3, C5HO3Cl2Br, C5HO3ClBr2 using isotope simulation patterns. Other halogen-containing formulas suggested the presence of halogenated polyphenolic and aromatic acid-type structures, which was supported by possible structures that matched the lower molecular mass range (maximum of 10 carbon atoms) of these DBPs. H-1 NMR before and after disinfection revealed an similar to 2% change in the overall H-1 NMR signals supporting a significant change in the DOM caused by disinfection. This study underlines the fact that a large and increasing number of people are exposed to a very diverse pool of organohalogens through water by both drinking and uptake through the skin upon contact. Nontarget analytical approaches are indispensable for revealing the magnitude of this exposure and to test alternative ways to reduce it.

  • 13.
    Gustavsson, Malin
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Department of Water and Environmental Studies.
    Karlsson, Susanne
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Oeberg, Gunilla
    University of British Columbia.
    Sandén, Per
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Department of Water and Environmental Studies.
    Svensson, Teresia
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Valinia, Salar
    Swedish University of Agriculture Science.
    Thiry, Yves
    Andra, Chatenay Malabry, France .
    Bastviken, David
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Organic Matter Chlorination Rates in Different Boreal Soils: The Role of Soil Organic Matter Content2012In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 46, no 3, p. 1504-1510Article in journal (Refereed)
    Abstract [en]

    Transformation of chloride (Cl-) to organic chlorine (Cl-org) occurs naturally in soil but it is poorly understood how and why transformation rates vary among environments. There are still few measurements of chlorination rates in soils, even though formation of Cl-org has been known for two decades. In the present study, we compare organic matter (OM) chlorination rates, measured by Cl-36 tracer experiments, in soils from eleven different locations (coniferous forest soils, pasture soils and agricultural soils) and discuss how various environmental factors effect chlorination. Chlorination rates were highest in the forest soils and strong correlations were seen with environmental variables such as soil OM content and Cl- concentration. Data presented support the hypothesis that OM levels give the framework for the soil chlorine cycling and that chlorination in more organic soils over time leads to a larger Cl-org pool and in turn to a high internal supply of Cl- upon dechlorination. This provides unexpected indications that pore water Cl- levels may be controlled by supply from dechlorination processes and can explain why soil Cl- locally can be more closely related to soil OM content and the amount organically bound chlorine than to Cl- deposition.

  • 14.
    Herbert, Jr. R.B.
    et al.
    Herbert Jr., R.B., Department of Earth Sciences, Uppsala University, Villavägen 16, S-752 36, Uppsala, Sweden.
    Malmstrom, M.
    Malmström, M., Dept. of Chem. Eng. and Technology, Royal Institute of Technology, S-100 44, Stockholm, Sweden.
    Ebenå, Gustav
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Salmon, U.
    Dept. of Civ. and Environ. Eng., Royal Institute of Technology, S-100 44, Stockholm, Sweden, Centre for Water Research, University of Western Australia, Nedlands, WA 6009, Australia.
    Ferrow, E.
    Department of Geology, Lund University, S-223 62, Lund, Sweden.
    Fuchs, M.
    Department of Geology, Lund University, S-223 62, Lund, Sweden.
    Quantification of abiotic reaction rates in mine tailings: Evaluation of treatment methods for eliminating iron- and sulfur-oxidizing bacteria2005In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 39, no 3, p. 770-777Article in journal (Refereed)
    Abstract [en]

    Effective treatment techniques for eliminating iron-oxidizing (IOB) and sulfur-oxidizing bacteria (SOB) are required for the comparison of abiotic and microbial sulfide oxidation rates and mechanisms in mine tailings. This study evaluates the effect of autoclaving, repeated heating, ethanol treatment, antibiotic treatment, ?-radiation, and washing with deionized water on tailings characteristics and concentrations of IOB and SOB. Most probable number enumeration indicates that IOB and SOB were present at very low concentrations or below detection limits following treatment with all methods except rinsing and antibiotics treatment, where higher concentrations of IOB and SOB were present. The physical, chemical, and mineralogical characterization of the tailings indicated no changes in bulk mineralogy or bulk chemical composition as a result of treatment. However, an increase in oxidized sulfur species at the tailings surface, as determined by X-ray photoelectron spectroscopy, was observed for the heating, autoclaving, and antibiotics treatments. Batch weathering experiments, used to evaluate the effect of treatment on element release rates, indicated that the final element release rates (after > 30 d) were similar between treated and untreated control samples. On the basis of the results of this study, experiments over relatively long periods (> 30 d) are to be recommended for the establishment of microbial and abiotic weathering rates in mill tailings samples. For the determination of abiotic reaction rates, treatment by ?-radiation is suggested to be the most appropriate method for sulfide-rich tailings.

  • 15.
    Jantunen, Liisa
    et al.
    Environment Canada, Canada.
    Wong, Fiona
    Stockholm University.
    Gawor, Anya
    Environment Canada.
    Kylin, Henrik
    Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Helm, Paul
    Ontario Ministry of the Environment, Canada.
    Stern, Gary
    University of Manitoba, Canada.
    Strachan, William
    Environment Canada, Canada.
    Burniston, Deborah
    Environment Canada, Canada.
    Bidleman, Terry
    Umeå University.
    20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean2015In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 49, no 23, p. 13844-13852Article in journal (Refereed)
    Abstract [en]

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air−water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water−air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air−surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  • 16.
    Kylin, Henrik
    et al.
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Bouwman, Henk
    North West University, South Africa .
    Hydration State of the Moss Hylocomium splendens and the Lichen Cladina stellaris Governs Uptake and Revolatilization of Airborne alpha- and gamma-Hexachlorocyclohexane2012In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 46, no 20, p. 10982-10989Article in journal (Refereed)
    Abstract [en]

    The partitioning of alpha- and gamma-hexachlorocyclohexane between air and the moss Hylocomium splendens and the lichen Cladina stellaris were studied under laboratory conditions. After cultivation of the sample material to obtain a common starting point free from outside influence, the material was divided into four different treatment categories with different hydration/desiccation regimes. The concentrations of the analytes were 3-5 times higher in the hydrated moss or lichen than in the desiccated material. The results are in contrast to how these compounds are taken up by pine needles in which there is a continuous accumulation, more rapid during periods with high temperatures and dry weather. In general, the different adaptations to water economy is a more important explanatory factor for the concentration of airborne hydrophobic pollutants in mosses, lichens, and vascular plants than their designation as "plants" in a broad sense. It is, therefore, not advisible to mix data from different organism groups for monitoring or modeling purposes.

  • 17.
    Laner, David
    et al.
    TU Wien, Austria.
    Cencic, Oliver
    TU Wien, Austria.
    Svensson, Niclas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Krook, Joakim
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining2016In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 50, no 13, p. 6882-6891Article in journal (Refereed)
    Abstract [en]

    Landfill mining has been proposed as an innovative strategy to mitigate environmental risks associated with landfills, to recover secondary raw materials and energy from the deposited waste, and to enable high-valued land uses at the site. The present study quantitatively assesses the importance of specific factors and conditions for the net contribution of landfill mining to global warming using a novel, set-based modeling approach and provides policy recommendations for facilitating the development of projects contributing to global warming mitigation. Building on life-cycle assessment, scenario modeling and sensitivity analysis methods are used to identify critical factors for the climate impact of landfill mining. The net contributions to global warming of the scenarios range from -1550 (saving) to 640 (burden) kg CO(2)e per Mg of excavated waste. Nearly 90% of the results total variation can be explained by changes in four factors, namely the landfill gas management in the reference case (i.e., alternative to mining the landfill), the background energy system, the composition of the excavated waste, and the applied waste-to-energy technology. Based on the analyses, circumstances under which landfill mining should be prioritized or not are identified and sensitive parameters for the climate impact assessment of landfill mining are highlighted.

  • 18.
    Laturnus, Frank
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Thematic Studies, Department of Communications Studies, Art and Visual Communication .
    Svensson, Teresia
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Thematic Studies.
    Wiencke, Christian
    Alfred Wegener Institute, Germany.
    Öberg, Gunilla
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Thematic Studies, Environmental Science.
    Ultraviolet radiation affects emission of ozone-depleting substances by marine macroalgae: Results from a laboratory incubation study2004In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 38, no 24, p. 6605-6609Article in journal (Refereed)
    Abstract [en]

    The depletion of stratospheric ozone due to the effects of ozone-depleting substances, such as volatile organohalogens, emitted into the atmosphere from industrial and natural sources has increased the amount of ultraviolet radiation reaching the earth's surface. Especially in the subpolar and polar regions, where stratospheric ozone destruction is the highest, individual organisms and whole ecosystems can be affected. In a laboratory study, several species of marine macroalgae occurring in the polar and northern temperate regions were exposed to elevated levels of ultraviolet radiation. Most of the macroalgae released significantly more chloroform, bromoform, dibromomethane, and methyl iodide-all volatile organohalogens. Calculating on the basis of the release of total chlorine, bromine, and iodine revealed that, except for two macroalgae emitting chlorine and one alga emitting iodine, exposure to ultraviolet radiation caused macroalgae to emit significantly more total chlorine, bromine, and iodine. Increasing levels of ultraviolet radiation due to possible further destruction of the stratospheric ozone layer as a result of ongoing global atmospheric warming may thus increase the future importance of marine macroalgae as a source for the global occurrence of reactive halogencontaining compounds.

  • 19.
    Lavonen, Elin E.
    et al.
    Swedish University of Agriculture Science SLU, Sweden .
    Gonsior, Michael
    Linköping University, The Tema Institute. Linköping University, Faculty of Arts and Sciences.
    Tranvik, Lars J.
    Uppsala University, Sweden .
    Schmitt-Kopplin, Philippe
    Helmholtz Zentrum Munchen, Germany .
    Kohler, Stephan J.
    Swedish University of Agriculture Science SLU, Sweden .
    Selective Chlorination of Natural Organic Matter: Identification of Previously Unknown Disinfection Byproducts2013In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 47, no 5, p. 2264-2271Article in journal (Refereed)
    Abstract [en]

    Natural organic matter (NOM) serve as precursors for disinfection byproducts (DBPs) in drinking water production making NOM removal essential in predisinfection treatment processes. We identified molecular formulas of chlorinated DBPs after chlorination and chloramination in four Swedish surface water treatment plants (WTPs) using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chlorine-containing formulas were detected before and after disinfection and were therefore classified to identify DBPs. In total, 499 DBPs were detected, of which 230 have not been reported earlier. The byproducts had, as a group, significantly lower ratio of hydrogen to carbon (H/C) and significantly higher average carbon oxidation state (Cos), double bond equivalents per carbon (DBE/C) and ratio of oxygen to carbon (O/C) compared to Cl-containing components present before disinfection and CHO formulas in samples taken both before and after disinfection. Electrophilic substitution, the proposed most significant reaction pathway for chlorination of NOM, results in carbon oxidation and decreased H/C while O/C and DBE/C is left unchanged. Because the identified DBPs had significantly higher DBE/C and O/C than the CHO formulas we concluded that chlorination of NOM during disinfection is selective toward components with relatively high double bond equivalency and number of oxygen atoms per carbon. Furthermore, choice of disinfectant, dose, and predisinfection treatment at the different WTPs resulted in distinct patterns in the occurrence of DBP formulas.

  • 20.
    Montelius, Malin
    et al.
    Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Thiry, Yves
    Andra, France.
    Marang, Laura
    EDF, France.
    Ranger, Jacques
    INRA Centre Nancy, France.
    Cornelis, Jean-Thomas
    Catholic University of Louvain, Belgium.
    Svensson, Teresia
    Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Bastviken, David
    Linköping University, The Tema Institute, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Experimental Evidence of Large Changes in Terrestrial Chlorine Cycling Following Altered Tree Species Composition2015In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 49, no 8, p. 4921-4928Article in journal (Refereed)
    Abstract [en]

    Organochlorine molecules (Cl-org) are surprisingly abundant in soils and frequently exceed chloride (Cl-) levels. Despite the widespread abundance of Cl-org and the common ability of microorganisms to produce Cl-org, we lack fundamental knowledge about how overall chlorine cycling is regulated in forested ecosystems. Here we present data from a long-term reforestation experiment where native forest was cleared and replaced with five different tree species. Our results show that the abundance and residence times of Cl- and Cl-org after 30 years were highly dependent on which tree species were planted on the nearby plots. Average Cl- and Cl-org content in soil humus were higher, at experimental plots with coniferous trees than in those with deciduous trees. Plots with Norway spruce had the highest net accumulation of Cl- and Cl-org over the experiment period, and showed a 10 and 4 times higher Cl- and Cl-org storage (kg ha(-1)) in the biomass, respectively, and 7 and 9 times higher storage of Cl- and Cl-org in the soil humus layer, compared to plots with oak. The results can explain why local soil chlorine levels are frequently independent of atmospheric deposition, and provide opportunities for improved modeling of chlorine distribution and cycling in terrestrial ecosystems.

  • 21.
    Pickering, Lauren
    et al.
    University of British Columbia, Vancouver, Canada.
    Black, Andrew
    University of British Columbia, Vancouver, Canada.
    Gilbert, Chanelle
    University of British Columbia, Vancouver, Canada.
    Jeronimo, Matthew
    University of British Columbia, Vancouver, Canada.
    Nesic, Zoran
    University of British Columbia, Vancouver, Canada.
    Pilz, Juergen
    University of Klagenfurt, Klagenfurt, Austria.
    Svensson, Teresia
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Öberg, Gunilla
    University of British Columbia, Vancouver, Canada.
    Portable Chamber System for Measuring Chloroform Fluxes from Terrestrial Environments – Methodological Challenges2013In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 47, no 24, p. 14298-14305Article in journal (Refereed)
    Abstract [en]

    This study describes a system designed to measure chloroform flux from terrestrial systems, providing a reliable first assessment of the spatial variability of flux over an area. The study takes into account that the variability of ambient air concentrations is unknown. It includes quality assurance procedures, sensitivity assessments, and testing of materials used to ensure that the flux equation used to extrapolate from concentrations to fluxes is sound and that the system does not act as a sink or a source of chloroform. The results show that many materials and components commonly used in sampling systems designed for CO2, CH4, and N2O emit chloroform and other volatile chlorinated compounds (VOCls) and are thus unsuitable in systems designed for studies of such compounds. To handle the above-mentioned challenges, we designed a system with a non-steady-state chamber and a closed-loop air-circulation unit returning scrubbed air to the chamber. Based on empirical observations, the concentration increase during a deployment was assumed to be linear. Four samples were collected consecutively and a line was fitted to the measured concentrations. The slope of the fitted line and the y-axis intercept were input variables in the equation used to transform concentration change data to flux estimates. The soundness of the flux equation and the underlying assumptions were tested and found to be reliable by comparing modeled and measured concentrations. Fluxes of chloroform in a forest clear-cut on the east coast of Vancouver Island, BC, during the year were found to vary from −130 to 620 ng m–2 h–1. The study shows that the method can reliably detect differences of approximately 50 ng m–2 h–1 in chloroform fluxes. The statistical power of the method is still comparatively strong down to differences of 35 ng m–2 h–1, but for smaller differences, the results should be interpreted with caution.

  • 22.
    Redon, Paul-Olivier
    et al.
    Andra, Research and Development Division, Châtenay-Malabry, France.
    Abdesselam, Abdelouas
    Subatech, Ecole des Mines de Nantes, Université de Nantes, France.
    Bastviken, David
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Cecchini, Sébastien
    Département R&D, Office National des Forêts, Fotainebleau, France.
    Nicolas, Manuel
    Département R&D, Office National des Forêts, Fotainebleau, France.
    Thiry, Yves
    Andra, Research and Development Division, Châtenay-Malabry, France.
    Chloride and Organic Chlorine in Forest Soils: Storage, Resicence Times, and Influence of Ecological Conditons2011In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 45, no 17, p. 7202-7208Article in journal (Refereed)
    Abstract [en]

    Recent studies have shown that extensive chlorination of natural organic matter significantly affects chlorine (Cl) residence time in soils. This natural biogeochemical process must be considered when developing the conceptual models used as the basis for safety assessments regarding the potential health impacts of 36-chlorine released from present and planned radioactive waste disposal facilities. In this study, we surveyed 51 French forested areas to determine the variability in chlorine speciation and storage in soils. Concentrations of total chlorine (Cltot) and organic chlorine (Clorg) were determined in litterfall, forest floor and mineral soil samples. Clorg constituted 11–100% of Cltot, with the highest concentrations being found in the humus layer (34–689 mg Clorg kg–1). In terms of areal storage (53 – 400 kg Clorg ha–1) the mineral soil dominated due to its greater thickness (40 cm). Clorg concentrations and estimated retention of organochlorine in the humus layer were correlated with Cl input, total Cl concentration, organic carbon content, soil pH and the dominant tree species. Clorg concentration in mineral soil was not significantly influenced by the studied environmental factors, however increasing Cl:C ratios with depth could indicate selective preservation of chlorinated organic molecules. Litterfall contributions of Cl were significant but generally minor compared to other fluxes and stocks. Assuming steady-state conditions, known annual wet deposition and measured inventories in soil, the theoretical average residence time calculated for total chlorine (inorganic (Clin) and organic) was 5-fold higher than that estimated for Clin alone. Consideration of the Clorg pool is therefore clearly important in studies of overall Cl cycling in terrestrial ecosystems.

  • 23.
    Selin, Henrik
    Linköping University, The Tema Institute. Linköping University, Faculty of Arts and Sciences.
    Letter: Comment on "Intercontinental transport of air pollution: Will emerging science lead to a new hemispheric treaty?"2004In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 38, no 6, p. 1912-1913Article in journal (Other academic)
    Abstract [en]

    n/a

  • 24.
    Shakeri Yekta, Sepehr
    et al.
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Gonsior, Michael
    University of Maryland Center for Environmental Science.
    Schmitt-Kopplin, Philippe
    German Research Center for Environmental Health, Helmholtz Zentrum Munich, Neuherberg.
    Svensson, Bo H
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Characterization of dissolved organic matter in full scale continuous stirred tank biogas reactors using ultrahigh resolution mass spectrometry: a qualitative overview.2012In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 46, no 22, p. 12711-12719Article in journal (Refereed)
    Abstract [en]

    Dissolved organic matter (DOM) was characterized in eight full scale continuous stirred tank biogas reactors (CSTBR) using solid-phase extraction and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). An overview of the DOM molecular complexity in the samples from biogas reactors with conventional operational conditions and various substrate profiles is provided by assignments of unambiguous exact molecular formulas for each measured mass peak. Analysis of triplicate samples for each reactor demonstrated the reproducibility of the solid-phase extraction procedure and ESI-FT-ICR-MS which allowed precise evaluation of the DOM molecular differences among the different reactors. Cluster analysis on mass spectrometric data set showed that the biogas reactors treating sewage sludge had distinctly different DOM characteristics compared to the codigesters treating a combination of organic wastes. Furthermore, the samples from thermophilic and mesophilic codigesters had different DOM composition in terms of identified masses and corresponding intensities. Despite the differences, the results demonstrated that compositionally linked organic compounds comprising 28-59% of the total number of assigned formulas for the samples were shared in all the reactors. This suggested that the shared assigned formulas in studied CSTBRs might be related to common biochemical transformation in anaerobic digestion process and therefore, performance of the CSTBRs.

  • 25. Suer, P.
    et al.
    Gitye, K.
    Sydkraft Sakab AB, 692 85 Kumla, Sweden.
    Allard, B.
    Man - Technol. - Environ. Res. Ctr., Örebro University, 701 82 Örebro, Sweden.
    Speciation and transport of heavy metals and macroelements during electroremediation2003In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 37, no 1, p. 177-181Article in journal (Refereed)
    Abstract [en]

    Electroremediation makes treatment of contaminated clay soils possible. The external electrical field causes several transport processes and changes in soil chemistry. This study concerns the leachability and transport of calcium, magnesium, copper, zinc, lead, nickel manganese, chromium, and iron during treatment with an electric field of soil from a chlor-alkali factory. As expected, most elements were removed from the acidic part of the soil and accumulated in the zone where pH changed from acidic to alkaline. However, acidic leaching of the soil in this zone did not mobilize the elements. Lead formed both an anionic complex which electromigration transported toward the anode as well as a cationic lead fraction which moved toward the cathode. The anionic complex could be lead sulfate. Lead from both fractions was strongly attached to the soil after treatment. The low availability of metals and macroelements after electrokinetic remediation could make electroremediation, excavation, and deposition of the accumulation zone an alternative for the treatment of contaminated soils.

  • 26.
    Svensson, Teresia
    et al.
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Montelius, Malin
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Andersson, Malin
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Lindberg, Cecilia
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Reyier, Henrik
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Rietz, Karolina
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Danielsson, Åsa
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Bastviken, David
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Influence of Multiple Environmental Factors on Organic Matter Chlorination in Podsol Soil2017In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 51, no 24, p. 14114-14123Article in journal (Refereed)
    Abstract [en]

    Natural chlorination of organic matter is common in soils. The abundance of chlorinated organic compounds frequently exceeds chloride in surface soils, and the ability to chlorinate soil organic matter (SOM) appears widespread among microorganisms. Yet, the environmental control of chlorination is unclear. Laboratory incubations with Cl-36 as a Cl tracer were performed to test how combinations of environmental factors, including levels of soil moisture, nitrate, chloride, and labile organic carbon, influenced chlorination of SOM from a boreal forest. Total chlorination was hampered by addition of nitrate or by nitrate in combination with water but enhanced by addition of chloride or most additions including labile organic matter (glucose and maltose). The greatest chlorination was observed after 15 days when nitrate and water were added together with labile organic matter. The effect that labile organic matter strongly stimulated the chlorination rates was confirmed by a second independent experiment showing higher stimulation at increased availability of labile organic matter. Our results highlight cause-effect links between chlorination and the studied environmental variables in podsol soil-with consistent stimulation by labile organic matter that did overrule the negative effects of nitrate.

    The full text will be freely available from 2018-11-27 13:56
  • 27.
    Thanh Duc, Nguyen
    et al.
    Stockholm University, Sweden .
    Silverstein, Samuel
    Stockholm University, Sweden .
    Lundmark, Lars
    Umeå University, Sweden .
    Reyier, Henrik
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Crill, Patrick
    Stockholm University, Sweden .
    Bastviken, David
    Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
    Automated Flux Chamber for Investigating Gas Flux at Water-Air Interfaces2013In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 47, no 2, p. 968-975Article in journal (Refereed)
    Abstract [en]

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Representative measurements of GHG fluxes from aquatic ecosystems to the atmosphere are vital for quantitative understanding of relationships between biogeochemistry and climate. Fluxes occur at high temporal variability at diet or longer scales, which are not captured by traditional short-term deployments (often in the order of 30 min) of floating flux chambers. High temporal frequency measurements are necessary but also extremely labor intensive if manual flux chamber based methods are used. Therefore, we designed an inexpensive and easily mobile automated flux chamber (AFC) for extended deployments. The AFC was designed to measure in situ accumulation of gas in the chamber and also to collect gas samples in an array of sample bottles for subsequent analysis in the laboratory, providing two independent ways of CH4 concentration measurements. We here present the AFC design and function together with data from initial laboratory tests and from a field deployment.

  • 28. Von, Sydow L.M.
    et al.
    Grimvall, A.B.
    Borén, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Organic Analytical Chemistry .
    Laniewski, K.
    Nielsen, A.T.
    Natural background levels of trifluoroacetate in rain and snow2000In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 34, no 15, p. 3115-3118Article in journal (Refereed)
    Abstract [en]

    It has been shown that some of the fluorinated ethane derivatives being introduced as CFC-replacements can be transformed to TFA (trifluoroacetate) in the atmosphere. Moreover, TFA is extremely stable in the environment, and this has raised questions regarding how widespread TFA is in the environment. We found that TFA is ubiquitous in precipitation: samples of rain from Ireland and Poland and snow from Canada, Sweden, New Zealand, and East Antarctica contained 1-1100 ng/L, and, studying a firn core drilled in Antarctica, concentrations of 3-56 ng/L were measured in layers formed during the 19th century. We have confirmed the preindustrial presence of significant background concentrations of trifluoroacetate in historic precipitation samples from the analysis of firn. Extensive procedures were enforced to prevent sample contamination.It has been shown that some of the fluorinated ethane derivatives being introduced as CFC-replacements can be transformed to TFA (trifluoroacetate) in the atmosphere. Moreover, TFA is extremely stable in the environment, and this has raised questions regarding how widespread TFA is in the environment. We found that TFA is ubiquitous in precipitation: samples of rain from Ireland and Poland and snow from Canada, Sweden, New Zealand, and East Antarctica contained 1-1100 ng/L, and, studying a firn core drilled in Antarctica, concentrations of 3-56 ng/L were measured in layers formed during the 19th century. We have confirmed the preindustrial presence of significant background concentrations of trifluoroacetate in historic precipitation samples from the analysis of firn. Extensive procedures were enforced to prevent sample contamination.

  • 29. Von, Sydow L.M.
    et al.
    Nielsen, A.T.
    Grimvall, Anders
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Mathematics, Statistics .
    Borén, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Organic Analytical Chemistry .
    Chloro- and bromoacetates in natural archives of firn from Antarctica2000In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 34, no 2, p. 239-245Article in journal (Refereed)
    Abstract [en]

    A firn core was drilled in Dronning Maud Land, Antarctica, to investigate the presence of haloacetates in snow that had accumulated over the past 200 years. By employing GC-MS detection of methyl esters of haloacetic acids, we were able to measure haloacetate concentrations down to one or a few nanograms per liter. Trichloroacetate (TCA) and dibromoacetate (DBA) were found in firn at concentrations that clearly exceeded the blank level of the applied analytical procedure, with mean concentrations estimated to 12 and 6 ng/L, respectively. There were also indications that mono- and dichloroacetate (MCA and DCA) were present in firn, whereas monobromoacetate (MBA) was found only in samples of surficial snow. We concluded that there is a significant natural background level of TCA and DBA in precipitation based on the following: (i) several of samples represented snow accumulated in the 19th century, (ii) haloacetates can be expected to be immobile in Antarctic firn, (iii) extensive measures were taken to prevent sample contamination, and (iv) blank levels of the analytical procedure used were low and stable. In addition, our results suggested that MCA and DCA also occur naturally in precipitation.

1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf