liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Banerjee, Abhijeet
    et al.
    National University of Singapore, Singapore.
    Chattopadhyay, Sudipta
    Saarland University, Saarbrücken, Germany.
    Roychoudhury, Abhik
    National University of Singapore, Singapore.
    On Testing Embedded Software2016In: Advances in Computers, ISSN 0065-2458, Vol. 101, p. 121-153Article in journal (Refereed)
    Abstract [en]

    For the last few decades, embedded systems have expanded their reach into major aspects of human lives. Starting from small handheld devices (such as smartphones) to advanced automotive systems (such as anti-lock braking systems), usage of embedded systems has increased at a dramatic pace. Embedded software are specialized software that are intended to operate on embedded devices. In this chapter, we shall describe the unique challenges associated with testing embedded software. In particular, embedded software are required to satisfy several non-functional constraints, in addition to functionality-related constraints. Such non-functional constraints may include (but not limited to), timing/energy-consumption related constrains or reliability requirements, etc. Additionally, embedded systems are often required to operate in interaction with the physical environment, obtaining their inputs from environmental factors (such as temperature or air pressure). The need to interact with a dynamic, often non-deterministic physical environment, further increases the challenges associated with testing, and validation of embedded software. In the past, testing and validation methodologies have been studied extensively. This chapter, however, explores the advances in software testing methodologies, specifically in the context of embedded software. This chapter introduces the reader to key challenges in testing non-functional properties of software by means of realistic examples. It also presents an easy-to-follow, classification of existing research work on this topic. Finally, the chapter is concluded with a review of promising future directions in the area of embedded software testing.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf