liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Heintz, Fredrik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Doherty, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    A knowledge processing middleware framework and its relation to the JDL data fusion model2006In: Journal of Intelligent & Fuzzy Systems, ISSN 1064-1246, E-ISSN 1875-8967, Vol. 17, no 4, p. 335-351Article in journal (Refereed)
    Abstract [en]

    Any autonomous system embedded in a dynamic and changing environment must be able to create qualitative knowledge and object structures representing aspects of its environment on the fly from raw or preprocessed sensor data in order to reason qualitatively about the environment and to supply such state information to other nodes in the distributed network in which it is embedded. These structures must be managed and made accessible to deliberative and reactive functionalities whose successful operation is dependent on being situationally aware of the changes in both the robotic agent's embedding and internal environments. DyKnow is a knowledge processing middleware framework which provides a set of functionalities for contextually creating, storing, accessing and processing such structures. The framework is implemented and has been deployed as part of a deliberative/reactive architecture for an autonomous unmanned aerial vehicle. The architecture itself is distributed and uses real-time CORBA as a communications infrastructure. We describe the system and show how it can be used to create more abstract entity and state representations of the world which can then be used for situation awareness by an unmanned aerial vehicle in achieving mission goals. We also show that the framework is a working instantiation of many aspects of the JDL data fusion model.

  • 2.
    Heintz, Fredrik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Doherty, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    DyKnow: An approach to middleware for knowledge processing2004In: Journal of Intelligent & Fuzzy Systems, ISSN 1064-1246, E-ISSN 1875-8967, Vol. 15, no 1, p. 3-13Article in journal (Refereed)
    Abstract [en]

    Any autonomous system embedded in a dynamic and changing environment must be able to create qualitative knowledge and object structures representing aspects of its environment on the fly from raw or preprocessed sensor data in order to reason qualitatively about the environment. These structures must be managed and made accessible to deliberative and reactive functionalities which are dependent on being situationally aware of the changes in both the robotic agent's embedding and internal environment. DyKnow is a software framework which provides a set of functionalities for contextually accessing, storing, creating and processing such structures. The system is implemented and has been deployed in a deliberative/reactive architecture for an autonomous unmanned aerial vehicle. The architecture itself is distributed and uses real-time CORBA as a communications infrastructure. We describe the system and show how it can be used in execution monitoring and chronicle recognition scenarios for UAV applications.

  • 3.
    Pettersson, Per Olof
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Doherty, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Probabilistic roadmap based path planning for an autonomous unmanned helicopter2006In: Journal of Intelligent & Fuzzy Systems, ISSN 1064-1246, E-ISSN 1875-8967, Vol. 17, no 4, p. 395-405Article in journal (Refereed)
    Abstract [en]

    The emerging area of intelligent unmanned aerial vehicle (UAV) research has shown rapid development in recent years and offers a great number of research challenges for artificial intelligence. For both military and civil applications, there is a desire to develop more sophisticated UAV platforms where the emphasis is placed on development of intelligent capabilities. Imagine a mission scenario where a UAV is supplied with a 3D model of a region containing buildings and road structures and is instructed to fly to an arbitrary number of building structures and collect video streams of each of the building's respective facades. In this article, we describe a fully operational UAV platform which can achieve such missions autonomously. We focus on the path planner integrated with the platform which can generate collision free paths autonomously during such missions. Both probabilistic roadmap-based (PRM) and rapidly exploring random trees-based (RRT) algorithms have been used with the platform. The PRM-based path planner has been tested together with the UAV platform in an urban environment used for UAV experimentation.

  • 4.
    Pham, Tuan
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Quantifying visual perception of texture with fuzzy metric entropy2016In: Journal of Intelligent & Fuzzy Systems, ISSN 1064-1246, E-ISSN 1875-8967, Vol. 31, no 2, p. 1089-1097Article in journal (Refereed)
    Abstract [en]

    The quantitative categorization of textures according to their visual appearances is an important area of research in computer vision and image understanding, because texture analysis and its applications are found useful in many areas of health, medicine, sciences, and engineering. For the first time, the theory of chaos and fuzzy sets are applied in this paper to measure the spatial dynamics of the texture spectrum. Experiments carried out on the well-known Brodatz texture database suggest the promising application of the method proposed for texture quantification.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf