liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Amirijoo, Mehdi
    et al.
    Linköping University, Department of Computer and Information Science, RTSLAB - Real-Time Systems Laboratory. Linköping University, The Institute of Technology.
    Gunnarsson, Svante
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Hansson, Jörgen
    Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
    Son, Sang H.
    University of Virginia, USA.
    Quantifying and Suppressing the Measurement Disturbance in Feedback Controlled Real-Time Systems2008In: Real-time systems, ISSN 0922-6443, E-ISSN 1573-1383, Vol. 40, no 1, p. 44-76Article in journal (Refereed)
    Abstract [en]

    In the control of continuous and physical systems, the controlled system is sampled sufficiently fast to capture the dynamics of the system. In general, this property cannot be applied to the control of computer systems as the measured variables are often computed over a data set, e.g., deadline miss ratio. In this paper we quantify the disturbance present in the measured variable as a function of the data set size and the sampling period, and we propose a feedback control structure that suppresses the measurement disturbance. The experiments we have carried out show that a controller using the proposed control structure outperforms a traditional control structure with regard to performance reliability.

  • 2.
    Amirijoo, Mehdi
    et al.
    Linköping University, Department of Computer and Information Science, RTSLAB - Real-Time Systems Laboratory. Linköping University, The Institute of Technology.
    Hansson, Jörgen
    Linköping University, Department of Computer and Information Science, RTSLAB - Real-Time Systems Laboratory. Linköping University, The Institute of Technology.
    Son, Sang H.
    University of Virginia, USA.
    Gunnarsson, Svante
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Experimental Evaluation of Linear Time-Invariant Models for Feedback Performance Control in Real-Time Systems2007In: Real-time systems, ISSN 0922-6443, E-ISSN 1573-1383, Vol. 35, no 3, p. 209-238Article in journal (Refereed)
    Abstract [en]

    In recent years a new class of soft real-time applications operating in unpredictable environments has emerged. Typical for these applications is that neither the resource requirements nor the arrival rates of service requests are known or available a priori. It has been shown that feedback control is very effective to support the specified performance of dynamic systems that are both resource insufficient and exhibit unpredictable workloads. To efficiently use feedback control scheduling it is necessary to have a model that adequately describes the behavior of the system. In this paper we experimentally evaluate the accuracy of four linear time-invariant models used in the design of feedback controllers. We introduce a model (DYN) that captures additional system dynamics, which a previously published model (STA) fails to include. The accuracy of the models are evaluated by validating the models with regard to measured data from the controlled system and through a set of experiments where we evaluate the performance of a set of feedback control schedulers tuned using these models. From our evaluations we conclude that second order models (e.g., DYN) are more accurate than first order models (e.g. STA). Further we show that controllers tuned using second order models perform better than controllers tuned using first order models.

  • 3.
    Pop, Paul
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory.
    Eles, Petru Ion
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory.
    Peng, Zebo
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory.
    Schedulability-Driven Communication Synthesis for Time-Triggered Embedded Systems2004In: Real-time systems, ISSN 0922-6443, E-ISSN 1573-1383, Vol. 26, no 3, p. 297-325Article in journal (Refereed)
    Abstract [en]

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication delays with four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments.

  • 4.
    Pop, Traian
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory.
    Pop, Paul
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory.
    Eles, Petru Ion
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory.
    Peng, Zebo
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory.
    Andrei, Alexandru
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory.
    Timing analysis of the FlexRay communication protocol2008In: Real-time systems, ISSN 0922-6443, E-ISSN 1573-1383, Vol. 39, no 1-3, p. 205-235Article in journal (Refereed)
    Abstract [en]

    FlexRay is a communication protocol heavily promoted on the market by a large group of car manufacturers and automotive electronics suppliers. However, before it can be successfully used for safety-critical applications that require predictability, timing analysis techniques are necessary for providing bounds for the message communication times. In this paper, we propose techniques for determining the timing properties of messages transmitted in both the static and the dynamic segments of a FlexRay communication cycle. The analysis techniques for messages are integrated in the context of a holistic schedulability analysis that computes the worst-case response times of all the tasks and messages in the system. We have evaluated the proposed analysis techniques using extensive experiments. We also present and evaluate three optimisation algorithms that can be used to improve the schedulability of a system that uses FlexRay. © 2007 Springer Science+Business Media, LLC.

  • 5.
    Rafiliu, Sergiu
    et al.
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Eles, Petru
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Peng, Zebo
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, The Institute of Technology.
    Stability of adaptive feedback-based resource managers for systems with execution time variations2013In: Real-time systems, ISSN 0922-6443, E-ISSN 1573-1383, ISSN 0922-6443, Vol. 49, no 3, p. 367-400Article in journal (Refereed)
    Abstract [en]

    Today’s embedded systems are exposed to variations in load demand due to complex software applications, dynamic hardware platforms, and the impact of the run-time environment. When these variations are large, and efficiency is required, adaptive on-line resource managers may be deployed on the system to control its resource usage. An often neglected problem is whether these resource managers are stable, meaning that the resource usage is controlled under all possible scenarios. In this paper we develop mathematical models for real-time embedded systems and we derive conditions which, if satisfied, lead to stable systems. For the developed system models, we also determine bounds on the worst case response times of tasks. We also give an intuition of what stability means in a real-time context and we show how it can be applied for several resource managers. We also discuss how our results can be extended in various ways.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf