liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ali, Amjad
    et al.
    COMSATS Univ Islamabad, Pakistan; Univ Okara, Pakistan.
    Raza, Rizwan
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. COMSATS Univ Islamabad, Pakistan.
    Shakir, Muhammad Imran
    King Saud Univ, Saudi Arabia; Univ Calif Los Angeles, CA 90095 USA.
    Iftikhar, Asia
    COMSATS Univ Islamabad, Pakistan.
    Alvi, Farah
    COMSATS Univ Islamabad, Pakistan.
    Ullah, Muhammad Kaleem
    COMSATS Univ Islamabad, Pakistan.
    Hamid, Abdul
    Univ Okara, Pakistan.
    Kim, Jung-Sik
    Loughborough Univ, England.
    Promising electrochemical study of titanate based anodes in direct carbon fuel cell using walnut and almond shells biochar fuel2019In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 434, article id 126679Article in journal (Refereed)
    Abstract [en]

    The direct carbon fuel cell (DCFC) is an efficient device that converts the carbon fuel directly into electricity with 100% theoretical efficiency contrary to practical efficiency around 60%. In this paper four perovskite anode materials La0.4Sr0.6M0.09Ti0.91O3-delta (M = Ni, Fe, Co, Zn) have been prepared using sol-gel technique to measure the performance of the device using solid fuel. These materials have shown reasonable stability and conductivity at 700 degrees C. Further structural analysis of as-prepared anode material using XRD technique reveals a single cubic perovskite structure with average crystallite size roughly 47 nm. Walnut and almond shells biochar have also been examined as a fuel in DCFC at the temperature range 400-700 degrees C. In addition, Elemental analysis of walnut and almond shells has shown high carbon content and low nitrogen and sulfur contents in the obtained biochar. Subsequently, the superior stability of as-prepared anode materials is evident by thermogravimetric analysis in pure N-2 gas atmosphere. Conversely, the LSFT anode has shown the highest electronic conductivity of 7.53Scm(-1) at 700 degrees C. The obtained power density for LSFTO3-delta composite anode mixed in sub-bituminous coal, walnut and almond shells biochar is of 68, 55, 48 mWcm(-2) respectively. A significant improvement in performance of DCFC (78 mWcm(-2)) was achieved.

  • 2.
    Ali, Amjad
    et al.
    COMSATS Univ Islamabad, Pakistan; Univ Okara, Pakistan.
    Raza, Rizwan
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. COMSATS Univ Islamabad, Pakistan.
    Shakir, Muhammad Imran
    King Saud Univ, Saudi Arabia; Univ Calif Los Angeles, CA 90095 USA.
    Rafique, Asia
    COMSATS Univ Islamabad, Pakistan.
    Alvi, Farah
    COMSATS Univ Islamabad, Pakistan.
    Ullah, Muhammad Kaleem
    COMSATS Univ Islamabad, Pakistan.
    Hamid, Abdul
    Univ Okara, Pakistan.
    Kim, Jung-Sik
    Loughborough Univ, England.
    Promising electrochemical study of titanate based anodes in direct carbon fuel cell using walnut and almond shells biochar fuel (vol 434, 126679, 2019)2019In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 438, article id 226932Article in journal (Refereed)
    Abstract [en]

    n/a

  • 3.
    Ao, Xiang
    et al.
    Huazhong University of Science and Technology, Peoples R China.
    Jiang, Jianjun
    Huazhong University of Science and Technology, Peoples R China.
    Ruan, Yunjun
    Huazhong University of Science and Technology, Peoples R China.
    Li, Zhishan
    Huazhong University of Science and Technology, Peoples R China.
    Zhang, Yi
    Wuhan Institute Technology, Peoples R China.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Wang, Chundong
    Huazhong University of Science and Technology, Peoples R China; Chinese Academic Science, Peoples R China.
    Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery2017In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 359, p. 340-348Article in journal (Refereed)
    Abstract [en]

    Tin oxide (SnO2) has been considered as one of the most promising anodes for advanced rechargeable batteries due to its advantages such as high energy density, earth abundance and environmental friendly. However, its large volume change during the Li-Sn/Na-Sn alloying and de-alloying processes will result in a fast capacity degradation over a long term cycling. To solve this issue, in this work we design and synthesize a novel honeycomb-like composite composing of carbon encapsulated SnO2 nanospheres embedded in carbon film by using dual templates of SiO2 and NaCl. Using these composites as anodes both in lithium ion batteries and sodium-ion batteries, no discernable capacity degradation is observed over hundreds of long term cycles at both low current density (100 mA g(-1)) and high current density (500 mA g(-1)). Such a good cyclic stability and high delivered capacity have been attributed to the high conductivity of the supported carbon film and hollow encapsulated carbon shells, which not only provide enough space to accommodate the volume expansion but also prevent further aggregation of SnO2 nanoparticles upon cycling. By engineering electrodes of accommodating high volume expansion, we demonstrate a prototype to achieve high performance batteries, especially high-power batteries. (C) 2017 Elsevier B.V. All rights reserved.

  • 4.
    Friedlein, Rainer
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry .
    Crispin, Xavier
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Salaneck, William R
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry .
    Molecular parameters controlling the energy storage capability of lithium polyaromatic hydrocarbon intercalation compounds2004In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 129, no 1, p. 29-33Article in journal (Refereed)
    Abstract [en]

    One route for improving the performance of Li-based batteries is to optimize the carbon-based electrode. In order to find the best carbon-based materials, the specific roles of the molecular and solid-state contributions have to be understood. Here, the molecular contributions are analyzed. A semi-quantitative method is proposed to compare the charge storage capability of polyaromatic hydrocarbon molecules (PAHs). For planar PAHs, the ability to store electrical energy is found to be to a large extend determined by a single parameter, that is the electronic hardness (half the electronic gap) Multiplied the number of carbon atom in the molecule. A compilation of results for oligophenyls, oligoacenes and medium-size planar systems suggests trends in the dependence of the energy storage capability on the size and shape of the molecules. (C) 2003 Elsevier B.V. All rights reserved.

  • 5.
    Klemenso, Trine
    et al.
    Technical University of Denmark.
    Nielsen, Jimmi
    Technical University of Denmark.
    Blennow, Peter
    Y`Technical University of Denmark.
    Persson, Asa H
    Technical University of Denmark.
    Stegk, Tobias
    Technical University of Denmark.
    Holl Christensen, Bjarke
    Danish Technology Institute.
    Sønderby, Steffen
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers2011In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 196, no 22, p. 9459-9466Article in journal (Refereed)
    Abstract [en]

    Metal-supported solid oxide fuel cells are believed to have commercial advantages compared to conventional anode (Ni-YSZ) supported cells, with the metal-supported cells having lower material costs, increased tolerance to mechanical and thermal stresses, and lower operational temperatures. The implementation of a metallic support has been challenged by the need to revise the cell fabrication route, as well as electrode microstructures and material choices, to compete with the energy output and stability of full ceramic cells. less thanbrgreater than less thanbrgreater thanThe metal-supported SOFC design developed at Riso DTU has been improved, and an electrochemical performance beyond the state-of-the-art anode-supported SOFC is demonstrated possible, by introducing a CGO barrier layer in combination with Sr-doped lanthanum cobalt oxide (LSC) cathode. Area specific resistances (ASR) down to 0.27 Omega cm(2), corresponding to a maximum power density of 1.14 W cm(-2) at 650 degrees C and 0.6 V. were obtained on cells with barrier layers fabricated by magnetron sputtering. The performance is dependent on the density of the barrier layer, indicating Sr(2+) diffusion is occurring at the intermediate SOFC temperatures. The optimized design further demonstrate improved durability with steady degradation rates of 0.9% kh(-1) in cell voltage for up to 3000 h galvanostatic testing at 650 degrees C and 0.25 A cm(-2).

  • 6. Polverino, Pierpaolo
    et al.
    Frisk, Erik
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Jung, Daniel
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Krysander, Mattias
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Pianese, Cesare
    Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems2017In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 357, p. 26-40Article in journal (Refereed)
    Abstract [en]

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  • 7.
    Rafique, Asia
    et al.
    COMSATS Univ Islamabad, Pakistan; Govt Punjab, Pakistan.
    Raza, Rizwan
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. COMSATS Univ Islamabad, Pakistan.
    Ali, Amjad
    COMSATS Univ Islamabad, Pakistan; Univ Okara, Pakistan.
    Ahmad, Muhammad Ashfaq
    COMSATS Univ Islamabad, Pakistan.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    An efficient carbon resistant composite Ni0.6Zn0.4O2-delta-GDC anode for biogas fuelled solid oxide fuel cell2019In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 438, article id 227042Article in journal (Refereed)
    Abstract [en]

    This paper describes the fabrication of Ni0.6Zn0.4-Gd0.2Ce0.8O2-delta (NiZn-GDC) via a two-step wet chemical synthesis technique. This composite was found to be more thermally stable and carbon resistive under the intense reducing environment of biogas. This was confirmed by different characterization techniques. The maximum power density P-max, was achieved at 600 degrees C as 820 mW/cm(2) and 548 mW/cm(2) with hydrogen and biogas, respectively. Different characterization techniques have been performed, such as X-ray diffractometry (XRD), scanning electron microscopy (SEM/EDX), UV visible spectroscopy, and Raman spectroscopy. The XRD pattern by Rietveld refinement showed two-phase structures of the anode composite with an average crystallite size of 25 35 nm before and after reduction with methane. The optical band gap (E-g(opt)) of NiZn-GDC was calculated to be 2.24eV from the Tauc plot using absorbance data. The Nyquist plot was also drawn to study the AC electrochemical impedance spectra (EIS) of the nanocomposite anode from 450 degrees C to 600 degrees C in air. The maximum DC conductivity of 1.37 S/cm was observed at a temperature of 600 degrees C using the four-probe DC technique.

  • 8.
    Sønderby, Steffen
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Klemensø, Trine
    Technical University of Denmark.
    Christensen, Bjarke H.
    Danish Technological Institute.
    Almtoft, Klaus P.
    Danish Technological Institute.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nielsen, Lars P.
    Danish Technological Institute.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnetron sputtered Gadolina-doped Ceria Diffusion Barriers for Metal-supported Solid Oxide Fuel Cells2014In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 267, p. 452-458Article in journal (Refereed)
    Abstract [en]

    Gadolinia-doped ceria (GDC) thin films are deposited by reactive magnetron sputtering in an industrial-scale setup and implemented as barrier layers between the cathode and electrolyte in metal-based solid oxide fuel cells consisting of a metal support, an electrolyte of ZrO2 co-doped with Sc2O3 and Y2O3 (ScYSZ) and a Sr-doped lanthanum cobalt oxide cathode. In order to optimize the deposition of GDC to obtain high electrochemical performance of the cells, the influence of film thickness and adatom mobility is studied. The adatom mobility is varied by tuning the deposition temperature and substrate bias voltage.

    A GDC layer thickness of 0.6 µm is found to effectively block Sr diffusion when bias voltage and deposition temperature is tuned to promote dense coatings. The adatom mobility has a large influence on the film density. Low temperature and bias voltage result in underdense column boundaries which function as channels for Sr to diffuse to the GDC-ScYSZ interface. By tuning deposition temperature, bias voltage and film thickness area specific resistances down to 0.34 Ωcm2 are achieved at cell tests performed at an operating temperature of 650 °C.

  • 9.
    Wagner, Michal
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Rebis, Tomasz
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Enhancing charge storage of conjugated polymer electrodes with phenolic acids2016In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 302, p. 324-330Article in journal (Refereed)
    Abstract [en]

    We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices. (C) 2015 Elsevier B.V. All rights reserved.

  • 10.
    Wang, Shangdai
    et al.
    Shanghai Univ, Peoples R China.
    Ning, Ping
    Shanghai Univ, Peoples R China.
    Huang, Shoushuang
    Shanghai Univ, Peoples R China.
    Wang, Wenwen
    Shanghai Univ, Peoples R China.
    Fei, Siming
    Shanghai Univ, Peoples R China.
    He, Qingquan
    Shanghai Univ, Peoples R China.
    Zai, Jiantao
    Shanghai Jiao Tong Univ, Peoples R China.
    Jiang, Yong
    Shanghai Univ, Peoples R China.
    Hu, Zhang-Jun
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering. Shanghai Univ, Peoples R China.
    Qian, Xuefeng
    Shanghai Jiao Tong Univ, Peoples R China.
    Chen, Zhiwen
    Shanghai Univ, Peoples R China.
    Multi-functional NiS2/FeS2/N-doped carbon nanorods derived from metal-organic frameworks with fast reaction kinetics for high performance overall water splitting and lithium-ion batteries2019In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 436, article id 226857Article in journal (Refereed)
    Abstract [en]

    The development of cost-effective, highly efficient and robust multi-functional electrode materials can dramatically reduce the overall cost of electrochemical devices. We here report the controlled synthesis of NiS2/FeS2 nanoparticles encapsulated in N-doped carbon nanorods (NiS2/FeS2/NC) through carbonization and sulfurization of Fe/Ni-based bimetallic metal-organic frameworks. Benefiting from both structural and compositional characteristics, the resulting NiS2/FeS2/NC nanorods possess abundant active sites, high electrical conductivity and rapid mass transfer, thereby delivering 10 and 20 mA cm(-2) at overpotential of 172 mV and 231 mV towards the hydrogen evolution reaction and oxygen evolution reaction with robust stability in 1.0 M KOH solution, respectively. When employed as a bifunctional electrocatalyst for overall water splitting, it requires only 1.58 V to deliver a current density of 10 mA cm(-2) in 1.0 M KOH, outperforming that of the commercial Pt/C parallel to RuO2. Additionally, lithium-ion batteries tests also show high reversible capacity (718 mA h g(-1) at 100 mA g(-1)) and excellent cycling stability and rate performance. The work in this paper not only provides a promising strategy for designing efficient multi-functional electrode materials with similar morphology and structure, but also can be extended to the synthesis of other mixed metal sulfides for energy conversion and storage.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf