liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Johansson, Tomas
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    An iterative procedure for solving a Cauchy problem for second order elliptic equations2004Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 272, s. 46-54Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 2.
    Karlsson, John
    et al.
    Linköpings universitet, Matematiska institutionen, Matematisk statistik. Linköpings universitet, Tekniska fakulteten.
    Löbus, Jörg-Uwe
    Linköpings universitet, Matematiska institutionen, Matematisk statistik. Linköpings universitet, Tekniska fakulteten.
    Infinite dimensional Ornstein-Uhlenbeck processes with unbounded diffusion: Approximation, quadratic variation, and Itô formula2016Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 289, nr 17-18, s. 2192-2222Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The paper studies a class of Ornstein-Uhlenbeck processes on the classical Wiener space. These processes are associated with a diffusion type Dirichlet form whose corresponding diffusion operator is unbounded in the Cameron- Martin space. It is shown that the distributions of certain finite dimensional Ornstein-Uhlenbeck processes converge weakly to the distribution of such an infinite dimensional Ornstein-Uhlenbeck process. For the infinite dimensional processes, the ordinary scalar quadratic variation is calculated. Moreover, relative to the stochastic calculus via regularization, the scalar as well as the tensor quadratic variation are derived. A related Itô formula is presented.

  • 3.
    Kozlov, Vladimir
    et al.
    Linköpings universitet, Matematiska institutionen, Matematik och tillämpad matematik. Linköpings universitet, Tekniska högskolan.
    Nazarov, Alexander
    St.-Petersburg Department of Steklov Institute, St.-Petersburg, Russia; St Petersburg State University, Russia .
    The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge2014Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 287, nr 10, s. 1142-1165Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We consider the Dirichlet problem in a wedge for parabolic equation whose coefficients are measurable function of t. We obtain coercive estimates in weighted L-p,L-q-spaces. The concept of "critical exponent" introduced in the paper plays here the crucial role. Various important properties of the critical exponent are proved. We give applications to the Dirichlet problem for linear and quasi-linear non-divergence parabolic equations with discontinuous in time coefficients in cylinders Omega x (0, T), where Omega is a bounded domain with an edge or with a conical point.

  • 4.
    Kozlov, Vladimir
    et al.
    Linköpings universitet, Matematiska institutionen, Matematik och tillämpad matematik. Linköpings universitet, Tekniska högskolan.
    Rossmann, J
    University of Rostock, Germany .
    Asymptotics of solutions of the heat equation in cones and dihedra2012Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 285, nr 11-12, s. 1422-1449Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The authors deal with the asymptotics of solutions of the first boundary value problem for the heat equation near vertices of cones or edges. They obtain estimates for the remainder in weighted Lp, q Sobolev spaces. The paper generalizes the main result of Kozlov and Mazya 6 to the case \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$p,q\not=2$\end{document} and to edges.

  • 5.
    Kozlov, Vladimir
    et al.
    Linköpings universitet, Matematiska institutionen, Analys och didaktik. Linköpings universitet, Tekniska fakulteten.
    Rossmann, Jurgen
    Univ Rostock, Germany.
    On the Neumann problem for the nonstationary Stokes system in angles and cones2023Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 296, nr 4, s. 1504-1533Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The authors consider the Neumann problem for the nonstationary Stokes system in a two-dimensional angle or a three-dimensional cone. They obtain existence and uniqueness results for solutions in weighted Sobolev spaces and prove a regularity assertion for the solutions.

    Fulltekst (pdf)
    fulltext
  • 6.
    Lifshits, Mikhail
    et al.
    Linköpings universitet, Matematiska institutionen, Matematisk statistik. Linköpings universitet, Tekniska högskolan. St. Petersburg State University, Russia.
    Linde, Werner
    Friedrich-Schiller-Universität Jena, Germany.
    Fractional integration operators of variable order: continuity and compactness properties2014Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 287, nr 8-9, s. 980-1000Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Let alpha : [0, 1] -greater than R be a Lebesgue-almost everywhere positive function. We consider the Riemann-Liouville operator of variable order defined by (R-alpha(.) f) (t) := 1/Gamma(alpha(t)) integral(t)(0)(t - s)(alpha(t)-1) f(s) ds, t is an element of [0, 1], as an operator from L-p[0, 1] to L-q[0, 1]. Our first aim is to study its continuity properties. For example, we show that R-alpha(.) is always bounded (continuous) in L-p[0, 1] provided that 1 less than p less than= infinity. Surprisingly, this becomes false for p = 1. In order R-alpha(.) to be bounded in L-1 [0, 1], the function alpha(.) has to satisfy some additional assumptions. In the second, central part of this paper we investigate compactness properties of R-alpha(.). We characterize functions alpha(.) for which R-alpha(.) is a compact operator and for certain classes of functions alpha(.) we provide order-optimal bounds for the dyadic entropy numbers e(n)(R-alpha(.)).

  • 7.
    Malý, Lukáš
    Linköpings universitet, Matematiska institutionen, Matematik och tillämpad matematik. Linköpings universitet, Tekniska högskolan.
    Calderón-type theorems for operators with non-standard endpoint behavior on Lorentz spaces2012Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 285, nr 11-12, s. 1450-1465Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Calderón theorem states that every quasilinear operator, which is bounded both from to , and from  to  for properly ordered values of , is bounded on some rearrangement-invariant space if and only if the so-called Calderón operator is bounded on the corresponding representation space. We will establish Calderón-type theorems for non-standard endpoint behavior, where Lorentz Λ and M spaces will be the endpoints of the interpolation segment. Two distinctive types of non-standard behavior are to be discussed; we’ll explore the operators bounded both from Λ(X1) to Λ(Y1), and from Λ(X2) to M(Y2) using duality arguments, thus, we need to study the operators bounded both from Λ(X1) to M(Y1), and from M(X2) to M(Y2) first. For that purpose, we evaluate Peetre's K-functional for varied pairs of Lorentz spaces.

  • 8.
    Maz´ya, Vladimir G.
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Matematiska institutionen, Tillämpad matematik.
    Rossman, Jurgen
    Rostock University.
    Pointwise estimates for Green's kernel of a mixed boundary value problem to the Stokes system in a polyhedral cone2005Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 278, nr 15, s. 1766-1810Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The paper deals with a mixed boundary value problem for the Stokes system in a polyhedral cone. Here different boundary conditions (in particular, Dirichlet, Neumann, free surface conditions) are prescribed on the sides of the polyhedron. The authors obtain regularity results for weak solutions in weighted L2 Sobolev spaces and prove point estimates of Green's matrix.

  • 9.
    Maz´ya, Vladimir G.
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Matematiska institutionen, Tillämpad matematik.
    Rossmann, Jurgen
    University of Rostock.
    Lp estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains2007Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 280, nr 7, s. 751-793Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A mixed boundary value problem for the Stokes system in a polyhedral domain is considered. Here different boundary conditions (in particular, Dirichlet, Neumann, free surface conditions) are prescribed on the faces of the polyhedron. The authors prove the existence of solutions in (weighted and non-weighted) Lp Sobolev spaces and obtain regularity assertions for weak solutions. The results are based on point estimates of Green's matrix.

1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf