liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 93
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Afzal, Adeel
    et al.
    University of Bari Aldo Moro, Italy; King Fahd University of Petr and Minerals, Saudi Arabia; University of Hafr Al Batin, Saudi Arabia.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Di Franco, Cinzia
    CNR IFN UOS Bari, Italy.
    Ditaranto, Nicoletta
    University of Bari Aldo Moro, Italy.
    Cioffi, Nicola
    University of Bari Aldo Moro, Italy; University of Bari Aldo Moro, Italy.
    Scamarcio, Gaetano
    CNR IFN UOS Bari, Italy; University of Bari Aldo Moro, Italy.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Torsi, Luisa
    University of Bari Aldo Moro, Italy; University of Bari Aldo Moro, Italy.
    Electrochemical deposition of gold on indium zirconate (InZrOx with In/Zr atomic ratio 1.0) for high temperature automobile exhaust gas sensors2015In: Journal of Solid State Electrochemistry, ISSN 1432-8488, E-ISSN 1433-0768, Vol. 19, no 9, p. 2859-2868Article in journal (Refereed)
    Abstract [en]

    Automobile exhaust gas emissions are causing serious damage to urban air quality in and around major cities of the world, which demands continuous monitoring of exhaust emissions. The chief components of automobile exhaust include carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons. Indium zirconate (InZrOx) and gold/indium zirconate (Au/InZrOx) composite nanopowders are believed to be interesting materials to detect these substances. To this end, characterization and gas sensing properties of InZrOx and Au/InZrOx composite nanopowders are discussed. InZrOx nanoparticles with In/Zr atomic ratio of 1.00 (+/- 0.05) are synthesized via pH-controlled co-precipitation of In and Zr salts in aqueous ammonia. Gold (Au) nanoparticles are subsequently deposited on InZrOx using an in situ sacrificial Au electrolysis procedure. The products are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The gas sensing performance of Au/InZrOx composite nanopowder is studied by depositing a thick powder film on interdigitated electrode structures patterned on SiC substrate to facilitate high temperature operation. The resistivity of the Au/InZrOx layer is the sensor signal, and the sensors could be operated at 500-600 A degrees C, which is a suitable temperature range for engine exhaust measurements. The control sensing measurements reveal that Au/InZrOx composite nanopowder exhibits higher response towards 2-20 % O-2 gas as compared to pristine InZrOx nanoparticles. Further studies show that when applied to exhaust gases such as CO and nitric oxide (NO), the response of Au/InZrOx sensors is significantly higher towards NO in this temperature range. Thus, sensor performance characteristics of Au/InZrOx composite nanopowder are promising in terms of their applications in automobile exhaust emission control.

  • 2.
    Alene Asres, Georgies
    et al.
    University of Oulu, Finland.
    Dombovari, Aron
    University of Oulu, Finland.
    Sipola, Teemu
    University of Oulu, Finland.
    Puskas, Robert
    University of Szeged, Hungary.
    Kukovecz, Akos
    University of Szeged, Hungary; MTA SZTE Lendulet Porous Nanocomposites Research Grp, Hungary.
    Konya, Zoltan
    University of Szeged, Hungary; MTA SZTE React Kinet and Surface Chemistry Research Grp, Hungary.
    Popov, Alexey
    University of Oulu, Finland.
    Lin, Jhih-Fong
    University of Oulu, Finland.
    Lorite, Gabriela S.
    University of Oulu, Finland.
    Mohl, Melinda
    University of Oulu, Finland.
    Toth, Geza
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Kordas, Krisztian
    University of Oulu, Finland.
    A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, no 25610Article in journal (Refereed)
    Abstract [en]

    In this work, WS2 nanowire-nanoflake hybrids are synthesized by the sulfurization of hydrothermally grown WO3 nanowires. The influence of temperature on the formation of products is optimized to grow WS2 nanowires covered with nanoflakes. Current-voltage and resistance-temperature measurements carried out on random networks of the nanostructures show nonlinear characteristics and negative temperature coefficient of resistance indicating that the hybrids are of semiconducting nature. Bottom gated field effect transistor structures based on random networks of the hybrids show only minor modulation of the channel conductance upon applied gate voltage, which indicates poor electrical transport between the nanowires in the random films. On the other hand, the photo response of channel current holds promise for cost-efficient solution process fabrication of photodetector devices working in the visible spectral range.

  • 3.
    Andersson, Mike
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland, SenSiC AB, Kista, Sweden .
    Bastuck, Manuel
    Saarland University, Lab for Measurement Technology, Germany.
    Huotari, Joni
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Lappalainen, Jyrki
    University of Oulu, Finland.
    Schuetze, Andreas
    Saarland University, Germany.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    SiC-FET sensors for selective and quantitative detection of VOCs down to ppb level2016In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 168, p. 216-220Article in journal (Refereed)
    Abstract [en]

    With the increased interest in development of cheap, simple means for indoor air quality monitoring, and specifically in relation to certain well-known pollutant substances with adverse health effects even at very low concentrations, such as different Volatile Organic Compounds (VOCs), this contribution aims at providing an overview of the development status of the silicon carbide field effect transistor (SiC FET) based sensor platform for ppb level detection of VOCs. Optimizing the transducer design, the gas-sensitive material(s) composition, structure and processing, its mode of operation - applying temperature cycled operation in conjunction with multivariate data evaluation - and long-term performance it has been possible to demonstrate promising resultsregarding the sensor technology’s ability to achieve both single-digit ppb sensitivity towards e.g. naphthalene as well as selective detection of individual substances in a mixture of different VOCs.

  • 4.
    Andersson, Mike
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Bastuk, Manuel
    Saarland University, Saarbruecken, Germany.
    Huotari, Joni
    University of Oulu, Finland.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Schütze, Andreas
    Saarland University, Saarbruecken, Germany.
    Lappalainen, Jyrki
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Optimization of the Field Effect Transistor transducer platform for the development of air quality sensors2016In: Proceedings EMRS 2016, 2016Conference paper (Refereed)
  • 5.
    Andersson, Mike
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Technology and application opportunities for SiC-FET gas sensors2012In: Solid State Gas Sensors - Industrial Application / [ed] Maximilian Fleischer and Mirko Lehmann, Springer Berlin/Heidelberg, 2012, p. 189-214Chapter in book (Refereed)
    Abstract [en]

    The development of SiC-FET gas sensors has proceeded for about fifteen years. The maturity of the SiC material and a deeper understanding of the transduction mechanisms and sensor surface processes behind the sensitivity to a number of target substances have recently allowed the development of market-ready sensors for certain applications. Some examples presented below are a sensor system for domestic boiler control, an ammonia sensor for control of the SCR (selective catalytic reduction) and SNCR (Selective Non-Catalytic Reduction) NOx abatement processes as well as other more or less market-ready applications. In parallel, the basic research continues in order to reach more demanding markets/new applications and also to possibly lower the production costs of the sensors. Therefore, current research and future challenges are also treated, such as the development of new types of conducting ceramics for ohmic contacts to SiC in order to increase the operation temperature beyond the present state of the art.

  • 6.
    Andersson, Mike
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Pearce, Ruth
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. NPL, London from March 2012.
    Recent trends in Silicon Carbide (SiC) and Graphene based gas sensors2013In: Semiconductor Gas Sensors / [ed] R. Jaaniso and O. K. Tan, Woodhead Publishing Limited, 2013, p. 117-158Chapter in book (Refereed)
    Abstract [en]

    The introduction of silicon carbide (SiC) as the semiconductorin gas sensitive field effect devices has tremendously improved this sensor platform extending the temperature range and number of detectable gases. Here we review the recent trends in research, starting with transducer mechanisms, latest findings regarding the detection mechanism, and present new material combinations as sensing layers and smart operation of the field effect sensors enabling one sensor to act as a sensor array. Introducing epitaxially-grown graphene on SiC as gas sensing layer shows the potential of ppb detection of NO2 .

  • 7.
    Andersson, Mike
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Pearce, Ruth
    National Physical Laboratory, Teddington, Middlesex, UK.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    New generation SiC based field effect transistor gas sensors2013In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 179, no SI, p. 95-106Article in journal (Refereed)
    Abstract [en]

    With the advances in SiC processing and high temperature packaging technology over the past few years as well as the accumulation of knowledge regarding the sensing characteristics of different gate metal/insulator material combinations for different gaseous substances SiC based field effect high temperature sensors are moving towards commercial maturity. The route towards commercialization has, however, also led to the necessity of making new considerations regarding the basic transducer design and operation. The focus of this paper is thus the investigation of some basic transducer related parameters influence on sensor device performance, e.g. sensitivity and long-term stability, and characteristics to exemplify the importance of taking design, processing and operation parameters into account when developing field effect sensor devices for commercial applications. less thanbrgreater than less thanbrgreater thanTwo different types of devices, enhancement and depletion type MISFET sensors, with different gate dimensions and two different gate metallisations, Pt and Ir, have been processed. I/V-characteristics have been obtained under exposure to various concentrations of H-2, NH3, CO and O-2 and different bias conditions and the influence of gate dimensions and bias conditions on the sensitivity and dynamic range investigated. The long-term stability has also been studied and compared between different devices and bias conditions for conceptually different gas compositions. The results show that the type of basic transducer device, its design and mode of operation has a large influence on sensor performance. Depletion type devices offer better possibilities for tuning of sensitivity and dynamic range as well as improved longterm stability properties, whereas enhancement type devices require much less control of the processing to ensure good repeatability and yield. Some results have also been verified for two possible applications of SiC based field effect sensors, ammonia slip monitoring for the control of SCR/SNCR and combustion control in domestic/district heating facilities.

  • 8.
    Bastuck, Manuel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Huotari, J.
    University of Oulu, Finland.
    Sauerwald, T.
    University of Saarland, Germany.
    Lappalainen, J.
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Schuetze, A.
    University of Saarland, Germany.
    Exploring the selectivity of WO3 with iridium catalyst in an ethanol/naphthalene mixture using multivariate statistics2016In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 618, p. 263-270Article in journal (Refereed)
    Abstract [en]

    Temperature cycled operation and multivariate statistics have been used to compare the selectivity of two gate (i.e. sensitive) materials for gas-sensitive, silicon carbide based field effect transistors towards naphthalene and ethanol in different mixtures of the two substances. Both gates have a silicon dioxide (SiO2) insulation layer and a porous iridium (Ir) electrode. One of it has also a dense tungsten trioxide (WO3) interlayer between Ir and SiO2. Both static and transient characteristics play an important role and can contribute to improve the sensitivity and selectivity of the gas sensor. The Ir/SiO2 is strongly influenced by changes in ethanol concentration, and is, thus, able to quantify ethanol in a range between 0 and 5 ppm with a precision of 500 ppb, independently of the naphthalene concentrations applied in this investigation. On the other hand, this sensitivity to ethanol reduces its selectivity towards naphthalene, whereas Ir/WO3/SiO2 shows an almost binary response to ethanol. Hence, the latter has a better selectivity towards naphthalene and can quantify legally relevant concentrations down to 5 ppb with a precision of 2.5 ppb, independently of a changing ethanol background between 0 and 5 ppm. (C) 2016 Elsevier B.V. All rights reserved.

    The full text will be freely available from 2018-08-04 14:48
  • 9.
    Bastuck, Manuel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Schuetze, A.
    University of Saarland, Germany.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Characterizing the Influence of Gate Bias on Electrical and Catalytical Properties of a Porous Platinum Gate on Field Effect Gas Sensors2016In: 2016 IEEE SENSORS, IEEE , 2016Conference paper (Refereed)
    Abstract [en]

    In this work, we exposed an MIS capacitor with porous platinum as gate material to different concentrations of CO and NH3. Its capacitance and typical reaction products (water, CO2 and NO) were monitored at high and low oxygen concentration and different gate bias voltages. We found that the gate bias influences the switch-point of the binary CO response usually seen when either changing the temperature at constant gas concentrations or the CO/O-2 ratio at constant temperature. For NH3, the sensor response as well as product reaction rates increase with bias voltages up to 6 V. A capacitance overshoot is observed when switching on or off either gas at low gate bias, suggesting increasing oxygen surface coverage with decreasing gate bias.

  • 10.
    Bastuk, Emanuel
    et al.
    Saarland University, Saarbruecken, Germany.
    Bur, Christian
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Saarland University, Saarbruecken, Germany.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Schütze, Andreas
    Saarland University, Saarbruecken, Germany.
    Identification of ammonia and carbon monoxide based on the hysteresis of a gas sensitive silicon carbide field effect transistor2013In: Transducers 2013 & Eurosensors XXVII, IEEE , 2013, p. 250-253Conference paper (Refereed)
    Abstract [en]

    In this work gate bias cycled operation (GBCO) is used on a gas-sensitive SiC field effect transistor(“GasFET”) to increase the sensitivity and selectivity. Gate bias ramps introduce strong hysteresis in the sensor signal. The shape of this hysteresis is shown to be an appropriate feature both for the discrimination of various gases (NH3, CO, NO, CH4) and also different gas concentrations (250 and 500 ppm). The shape is very sensitive to ambient conditions. Thus, the influence of oxygen concentration and relative humidity as well as sensor temperature is investigated and reasons for the observed signal changes are discussed.

  • 11.
    Bastuk, Manuel
    et al.
    Saarland University, Saarbruecken, Germany.
    Bur, Christian
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Saarland University, Saarbruecken, Germany.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Schütze, Andreas
    Saarland University, Saarbruecken, Germany.
    Gas identification based on bias induced hysteresis of a gas-sensitive SiC field effect transistor2014In: Journal of Sensors and Sensor Systems, Vol. 3, p. 9-19Article in journal (Refereed)
    Abstract [en]

    In this work dynamic variation of gate bias is used on a gas-sensitive SiC field effect transistor ("GasFET") to optimize its sensitivity and increase its selectivity. Gate bias ramps introduce strong hysteresis in the sensor signal. The shape of this hysteresis is shown to be an appropriate feature both for the discrimination of various gases (ammonia, carbon monoxide, nitrogen monoxide and methane) as well as for different gas concentrations (250 and 500 ppm). The shape is very sensitive to ambient conditions as well as to the bias sweep rate. Thus, the influences of oxygen concentration, relative humidity, sensor temperature and cycle duration, i.e., sweep rate, are investigated and reasons for the observed signal changes, most importantly the existence of at least two different and competing processes taking place simultaneously, are discussed. Furthermore, it is shown that even for very fast cycles, in the range of seconds, the gas-induced shape change in the signal is strong enough to achieve a reliable separation of gases using gate bias cycled operation and linear discriminant analysis (LDA) making this approach suitable for practical application.

  • 12.
    Bertuccio, Giuseppe
    et al.
    Politecnico di Milano, Como Campus, Italy.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Shi, Yongbiao
    Politecnico di Milano, Como Campus, Italy.
    Lanzieri, Claudio
    Silicon Carbide X-Ray Detectors Operating at Room and High Temperature2014Conference paper (Refereed)
    Abstract [en]

    Silicon Carbide (SiC) is a wide bandgap semiconductor with attractive physical properties for manufacturing X-ray detectors [1]. The density of SiC crystal allow an X‑ray absorption similar to Silicon. The wide bandgap of SiC (3.2 eV) allows to make high Schottky barriers and minimises the reverse current from thermal generation of charge carriers. The SiC breakdown field (2 MV/cm) and the high saturation velocities of the charge carriers (200 mm/ns) make the detector response very fast and not affected by charge trapping degradation.

    In this talk, we present the SiC X-ray detectors we have developed. The detectors show leakage current densities as low as J=0.1 pA/cm2 at +25°C, three orders of magnitude lower than those of the best silicon detectors and make SiC detectors practically noiseless at room temperature. The detectors have been tested also at high temperatures: at T=+100°C the J= 1 nA/cm2, allowing excellent X-ray spectrometry even at such high temperatures, forbidden to conventional semiconductor detectors. In addition we will show that our SiC detectors can also operate while the temperature is freely changing of tens of °C, without affecting spectra quality.

    The possibility to make the detector operating without any cooling system even at high temperature with adequate energy resolution can open new perspectives in X‑ray spectrometry applications, even ever considered before.

  • 13.
    Bouhafs, Chamseddine
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Zakharov, A. A.
    Lund University, Sweden.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Giannazzo, F.
    CNR IMM, Italy.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Kuhne, Philipp
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Iakimov, Tihomir
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Hofmann, Tino
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. University of Nebraska Lincoln, NE 68588 USA.
    Schubert, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. University of Nebraska Lincoln, NE 68588 USA.
    Roccaforte, F.
    CNR IMM, Italy.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Multi-scale investigation of interface properties, stacking order and decoupling of few layer graphene on C-face 4H-SiC2017In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 116, p. 722-732Article in journal (Refereed)
    Abstract [en]

    In this work, we report a multi-scale investigation using several nano-, micro and macro-scale techniques of few layer graphene (FLG) sample consisting of large monolayer (ML) and bilayer (BL) areas grown on C-face 4H-SiC (000-1) by high-temperature sublimation. Single 1 x 1 diffraction patterns are observed by micro-low-energy electron diffraction for ML, BL and trilayer graphene with no indication of out-of-plane rotational disorder. A SiOx layer is identified between graphene and SiC by X-ray photoelectron emission spectroscopy and reflectance measurements. The chemical composition of the interface layer changes towards SiO2 and its thickness increases with aging in normal ambient conditions. The formation mechanism of the interface layer is discussed. It is shown by torsion resonance conductive atomic force microscopy that the interface layer causes the formation of non-ideal Schottky contact between ML graphene and SiC. This is attributed to the presence of a large density of interface states. Mid-infrared optical Hall effect measurements revealed Landau-level transitions in FLG that have a square-root dependence on magnetic field, which evidences a stack of decoupled graphene sheets. Contrary to previous works on decoupled C-face graphene, our BL and FLG are composed of ordered decoupled graphene layers without out-of-plane rotation. (C) 2017 Elsevier Ltd. All rights reserved.

  • 14.
    Bounechada, Djamela
    et al.
    Chalmers, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden Chalmers, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden .
    Darmastuti, Zhafira
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Skoglundh, Magnus
    Chalmers, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden Chalmers, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden.
    Carlsson, Per-Anders
    Chalmers, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden Chalmers, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden.
    Vibrational Study of SOx Adsorption on Pt/SiO22014In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 51, p. 29713-29723Article in journal (Refereed)
    Abstract [en]

    The formation of ad-SOx species on Pt/SiO2 upon exposure to SO2 in concentrations ranging from 10 to 50 ppm at between 200 and 400 degrees C has been studied by in situ diffuse reflectance infrared Fourier transformed spectroscopy. In parallel, first-principles calculations have been carried out to consolidate the experimental interpretations. It was found that sulfate species form on the silica surface with a concomitant removal/rearrangement of silanol groups. Formation of ad-SOx species occurs only after SO2 oxidation to SO3 on the platinum surface. Thus, SO2 oxidation to SO3 is the first step in the SOx adsorption process, followed by spillover of SO3 to the oxide, and finally, the formation of sulfate species on the hydroxyl positions on the oxide. The sulfate formation is influenced by both temperature and SO2 concentration. Furthermore, exposure to hydrogen is shown to be sufficiently efficient as to remove ad-SOx species from the silica surface.

  • 15.
    Bounechada, Djamela
    et al.
    Chalmers Institute of Technology, Gothenburg.
    Darmastuti, Zhafira
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Ojamae, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Skoglundh, Magnus
    Competence Centre for Catalysis / Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
    Carlsson, P-A
    Competence Centre for Catalysis / Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
    Vibrational analysis of SO2 on Pt / SiO2 systemManuscript (preprint) (Other academic)
    Abstract [en]

    In situ diffuse reflectance infrared Fourier transformed spectroscopy was used to study the interactions of SOx species with Pt/SiO2 between 200 and 400°C, and for SO2 concentrations between 10 and 50 ppm, which represents a concentration range where MISFET sensors exhibit good responses. In parallel, first-principles calculations have been carried out to support the experimental interpretations. It was found that sulfate species were formed on the silica surface, accompanied with removal/rearrangement of silanol groups upon exposure to SO2. Both experimental and theoretical calculations also suggest that the surface species were only formed after SO2 oxidation to SO3 on the metal surface. These evidences support the idea of SO2 oxidation to SO3 as the first step in the process of sulfate formation, followed by spillover of SO3 to the oxide, and finally the formation of sulfate species on the hydroxyl positions on the oxide. The results also indicate that the sulfate formation on silica depends both on the temperature and the SO2 concentration. Furthermore, hydrogen exposure was shown to be efficient for sulfur removal from the silica surface.

  • 16.
    Bur, Christian
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Department of Physics and Mechatronics Engineering, Lab for Measurement Technology, Saarland University, Saarbrücken, Germany.
    Selectivity Enhancement of Gas Sensitive Field Effect Transistors by Dynamic Operation2015Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Gas sensitive field effect transistors based on silicon carbide, SiC-FETs, have been applied to various applications mainly in the area of exhaust and combustion monitoring. So far, these sensors have normally been operated at constant temperatures and adaptations to specific applications have been done by material and transducer platform optimization.

    In this thesis, the methodology of dynamic operation for selectivity enhancement is systematically developed for SiC-FETs. Temperature cycling, which is well known for metal oxide gas sensors, is transferred to SiC-FETs. Additionally, gate bias modulation is introduced increasing the performance further.

    The multi-dimensional sensor data are evaluated by use of pattern recognition mainly based on multivariate statistics. Different strategies for feature selection, crossvalidation, and classification methods are studied.

    After developing the methodology of dynamic operation, i.e., applying the virtual multi-sensor approach on SiC-FETs, the concept is validated by two different case studies under laboratory conditions: Discrimination of typical exhaust gases and quantification of nitrogen oxides in a varying background is presented. Additionally, discrimination and quantification of volatile organic compounds in the low parts-perbillion range for indoor air quality applications is demonstrated. The selectivity of SiC-FETs is enhanced further by combining temperature and gate bias cycled operation. Stability is increased by extended training.

  • 17.
    Bur, Christian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Saarland University, Saarbruecken, Germany.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Helwig, Nikolai
    Saarland University, Saarbruecken, Germany.
    Schütze, Andreas
    Saarland University, Saarbruecken, Germany.
    Detecting Volatile Organic Compounds in the ppb range with platinum-gate SiC-Field Effect Transistors2013In: SENSORS, 2013 IEEE, IEEE , 2013, p. 1-4Conference paper (Refereed)
    Abstract [en]

    In this work, the use of a platinum gate gas-sensitive SiC Field Effect Transistor (SiC-FET) was studied for the detection of low concentrations of hazardous Volatile Organic Compounds (VOC). For this purpose, a new gas mixing system was built providing VOCs down to sub-ppb levels by permeation ovens and gas pre-dilution. Measurements have shown that benzene, naphthalene and formaldehyde can be detected in the ppb range and indicate a detection limit of 1-2 ppb for benzene and naphthalene. The sensitivity is high with a response of 5.5 mV for 10 ppb naphthalene in a humid atmosphere (at 20% relative humidity) and with additional 2 ppm ethanol the response to naphthalene was still 1.3 mV. Formaldehyde can be detected down to approximately 100 ppb under humid conditions. This is the first time that a metal gated SiC-FET was used to detect hazardous VOCs in the low ppb range making SiC-FETs suitable candidates for indoor air quality applications.

  • 18.
    Bur, Christian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Saarland University, Saarbruecken, Germany.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Schütze, Andreas
    Saarland University, Saarbruecken, Germany.
    Detecting Volatile Organic Compounds in the ppb Range with Gas Sensitive Platinum gate SiC-Field Effect Transistors2014In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 14, no 9, p. 3221-3228Article in journal (Refereed)
    Abstract [en]

    In this paper, the use of a platinum gate gas-sensitive SiC field-effect transistor (SiC-FET) was studied for the detection of low concentrations of hazardous volatile organic compounds (VOCs). For this purpose, a new gas mixing system was realized providing VOCs down to sub-parts per billion levels with permeation ovens and gas predilution. Benzene, naphthalene, and formaldehyde were chosen as major indoor air pollutants and their characteristics are briefly reviewed. Measurements have shown that the selected VOCs can be detected by the SiC-FET in the parts per billion range and indicate a detection limit of ~1 ppb for benzene and naphthalene and ~10 ppb for formaldehyde in humid atmospheres. For 10-ppb naphthalene at 20% r.h., the sensor response is high with 12 mV, respectively, a relative response of 1.4%. Even in a background of 2-ppm ethanol, the relative response is still 0.3%. Quantification independent of the humidity level can be achieved using temperature cycled operation combined with pattern recognition, here linear discriminant analysis. Discrimination of benzene, naphthalene, and formaldehyde is also possible.

  • 19.
    Bur, Christian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Saarland University, Saarbruecken, Germany.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Schütze, Andreas
    Saarland University, Saarbruecken, Germany.
    Increasing the Selectivity of Pt-Gate SiC FieldEffect Gas Sensors by Dynamic Temperature Modulation2014In: Proc of E-MRS 2014, Lille, France, May 26-30, 2014, p. 1-9Conference paper (Refereed)
    Abstract [en]

    Based on a diode coupled silicon carbide field effect transistor with platinum as catalytic gate material, the influence of dynamic temperature modulation on the selectivity of GasFETs has been investigated. This operating mode, studied intensively for semiconductor gas sensors, has only recently been applied to field effect transistors. A suitable temperature cycle (T-cycle) for detection of typical exhaust gases (CO, NO, C3H6, H2, NH3) was developed and combined with appropriate signal processing. The sensor data was evaluated using multivariate statistics, e.g. linear discriminant analysis (LDA). Measurements have proven that typical exhaust gases can be discriminated in backgrounds with 0%, 10% and 20% oxygen. Furthermore, we are able to quantify the mentioned gases and to determine unknown concentrations based on training data. Very low levels of relative humidity (r.h.) below a few percent influence the sensor response considerably but for higher levels the cross interference of humidity is negligible. In addition, experiments regarding stability and reproducibility were performed.

  • 20.
    Bur, Christian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Saarland University, Saarbruecken, Germany.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Schütze, Andreas
    Saarland University, Saarbruecken, Germany.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    The influence of gate bias on the CO sensing characteristics of SiC based field effect sensors2014In: Proc of IMCS 2014, Buenos Aires, Argentine, March 17-19, 2014, p. 133-136Conference paper (Refereed)
    Abstract [en]

    SiC based Field Effect Transistor gas sensors with Pt as gate material have previously been shown to exhibit a binary CO response, sharply switching between a small and a large value with increasing CO or decreasing O2 concentration or temperature. In this study Pt gates with different structures have been fabricated by dc magnetron sputtering at different argon pressures and subjected to various CO/O2 mixtures under various temperatures and gate bias conditions. The influence of gate bias and gate structure on the CO response switch point has been investigated. The results suggest that the more porous the gate material or smaller the bias, the lower the temperature or higher the CO concentration required in order to induce the transition between a small and a large response towards CO. These trends are suggested to reflect the adsorption, spill-over, and reaction characteristics of oxygen chemisorbed to the Pt and insulator surfaces.

  • 21.
    Bur, Christian
    et al.
    Saarland University, Saarbrücken, Germany.
    Bastuck, Manuel
    Saarland University, Saarbrücken,, Germany.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Schütze, Andreas
    Saarland University, Saarbrücken, Germany.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Influence of a Changing Gate Bias on the Sensing Properties of SiC Field Effect Gas Sensors2012In: IMCS 2012, 2012, p. 140-143Conference paper (Other academic)
    Abstract [en]

    Field effect transistors based on silicon carbide have previously been used with temperature cycled operation to enhance the selectivity. In this study the influence of a changing gate bias on the sensing properties of a platinum gate FET has been studied in order to extend the virtual multi-sensor approach. The sensor exhibits gas specific hysteresis when changing the gate bias indicating that additional information regarding selectivity is contained in the transient behavior. Measurements also showed that especially the shape of the sensor signal changes dramatically with different gas exposures (e.g. H2, CO or NH3) during relaxation after step changes of the gate bias. The changing shape primarily reflects the gas itself and not the concentration so that the selectivity of the sensor is increased.

  • 22.
    Bur, Christian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Bastuck, Manuel
    University of Saarland, Germany .
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Schuetze, Andreas
    University of Saarland, Germany .
    Selectivity enhancement of SiC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics2014In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 193, p. 931-940Article in journal (Refereed)
    Abstract [en]

    In this paper temperature modulation and gate bias modulation of a gas sensitive field effect transistor based on silicon carbide (SiC-FET) are combined in order to increase the selectivity. Data evaluation based on extracted features describing the shape of the sensor response was performed using multivariate statistics, here by Linear Discriminant Analysis (LDA). It was found that both temperature cycling and gate bias cycling are suitable for quantification of different concentrations of carbon monoxide. However, combination of both approaches enhances the stability of the quantification, respectively the discrimination of the groups in the LDA scatterplot. Feature selection based on the stepwise LDA algorithm as well as selection based on the loadings plot has shown that features both from the temperature cycle and from the bias cycle are equally important for the identification of carbon monoxide, nitrogen dioxide and ammonia. In addition, the presented method allows discrimination of these gases independent of the gas concentration. Hence, the selectivity of the FET is enhanced considerably.

  • 23.
    Bur, Christian
    et al.
    Saarland University, Saarbrücken, Germany.
    Bastuk, Emanuel
    Saarland University, Saarbrücken, Germany.
    Schütze, Andreas
    Saarland University, Saarbruecken, Germany.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Combination of temperature cycled and gate bias cycled operation to enhance the selectivity of MISiC-FET gas sensors2013In: Transducers 2013 & Eurosensors XXVII, IEEE , 2013, p. 2041-2044Conference paper (Other academic)
    Abstract [en]

    In this paper temperature modulation and gate bias modulation of a gas sensitive field effect transistor are combined in order to increase the selectivity. Data evaluation was performed using multivariate statistics, here by Linear Discriminant Analysis. It was found that both temperature cycling and gate bias cycling are suitable for quantification of different concentrations of carbon monoxide. However, combination of both approaches enhances the quality of the separation. In addition, the presented method allows discrimination of carbon monoxide, nitrogen dioxide and ammonia independent of the gas concentration.

  • 24.
    Bur, Christian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. Saarland University, Lab for Measurement Technology, Germany.
    Bastuk, Manuel
    Saarland University, Lab for Measurement Technology, Germany.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Schuetze, Andreas
    Saarland University, Germany.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Discrimination and Quantification of Volatile Organic Compounds in the ppb-Range with Gas Sensitive SiC-FETs Using Multivariate Statistics2015In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 214, p. 225-233Article in journal (Refereed)
    Abstract [en]

    Gas sensitive field effect transistors based on silicon carbide, SiC-FETs, have been studied for indoor air quality applications. The selectivity of the sensors was increased by temperature cycled operation, TCO, and data evaluation based on multivariate statistics. Discrimination of benzene, naphthalene, and formaldehyde independent of the level of background humidity is possible by using shape describing features as input for Linear Discriminant Analysis, LDA, or Partial Least Squares – Discriminant Analysis, PLS-DA. Leave-one-out cross-validation leads to a correct classification rate of 90 % for LDA, and for PLS-DA a classification rate of 83 % is achieved. Quantification of naphthalene in the relevant concentration range, i.e. 0 ppb to 40 ppb, was performed by Partial Least Squares Regression and a combination of LDA with a second order polynomial fit function. The resolution of the model based on a calibration with three concentrations was approximately 8 ppb at 40 ppb naphthalene for both algorithms.

    Hence, the suggested strategy is suitable for on demand ventilation control in indoor air quality application systems.

  • 25.
    Bur, Christian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Saarland University, Lab for Measurement Technology, Germany.
    Bastuk, Manuel
    Saarland University, Lab for Measurement Technology, Germany.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Schuetze, Andreas
    Saarland University, Germany.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Discrimination and Quantification of Volatile Organic Compounds in the ppb-Range with Gas Sensitive SiC-Field Effect Transistors2014Conference paper (Refereed)
    Abstract [en]

    Gas sensitive FETs based on SiC have been studied for the discrimination and quantification of hazardous volatile organiccompounds (VOCs) in the low ppb range. The sensor performance was increased by temperature cycled operation (TCO) anddata evaluation based on multivariate statistics, here Linear Discriminant Analysis (LDA). Discrimination of formaldehyde,naphthalene and benzene with varying concentrations in the ppb range is demonstrated. In addition, it is shown that naphthalenecan be quantified in the relevant concentration range independent of the relative humidity and against a high ethanol background.Hence, gas sensitive SiC-FETs are suitable sensors for determining indoor air quality.

  • 26.
    Bur, Christian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Saarland University, Saarbruecken, Germany.
    Bastuk, Manuel
    Saarland University, Saarbruecken, Germany.
    Schütze, Andreas
    Saarland University, Saarbruecken, Germany.
    Juuti, Jari
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. University of Oulu, Oulu, Finland.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. University of Oulu, Oulu, Finland.
    Characterization of ash particles with a microheater andgas-sensitive SiC field-effect transistors2014In: Journal of Sensors and Sensor Systems, ISSN 2194-8771, Vol. 3, p. 305-313Article in journal (Refereed)
    Abstract [en]

    Particle emission from traffic, power plants or, increasingly, stoves and fireplaces poses a serious risk for human health. The harmfulness of the particles depends not only on their size and shape but also on adsorbates. Particle detectors for size and concentration are available on the market; however, determining content and adsorbents is still a challenge. In this work, a measurement setup for the characterization of dust and ash particle content with regard to their adsorbates is presented. For the proof of concept, ammonia-contaminated fly ash samples from a coal-fired power plant equipped with a selective non-catalytic reduction (SNCR) system were used. The fly ash sample was placed on top of a heater substrate situated in a test chamber and heated up to several hundred degrees. A silicon carbide field-effect transistor (SiC-FET) gas sensor was used to detect desorbing species by transporting the headspace above the heater to the gas sensor with a small gas flow. Accumulation of desorbing species in the heater chamber followed by transfer to the gas sensor is also possible. A mass spectrometer was placed downstream of the sensor as a reference. A clear correlation between the SiC-FET response and the ammonia spectra of the mass spectrometer was observed. In addition, different levels of contamination can be distinguished. Thus, with the presented setup, chemical characterization of particles, especially of adsorbates which contribute significantly to the harmfulness of the particles, is possible.

  • 27.
    Darmastuti, Zhafira
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    SiC-FET Gas Sensors Developed for Control of the Flue Gas Desulfurization System in Power Plants Experimental and Modeling: Experimental and Modeling2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Electricity and power generation is an essential part of our life. However, powergeneration activities also create by-products (such as sulphur oxides, nitrogen oxides,carbon monoxide, etc), which can be dangerous when released to the atmosphere.Sensors, as part of the control system, play very vital role for the fluegas cleaning processes in power plants. This thesis concerns the development ofSilicon Carbide Field Effect Transistor (SiC-FET) gas sensors as sensors for sulfurcontaining gases (SO2 and H2S) used as part of the environmental control systemin power plants. The works includes sensor deposition and assembly, sensinglayer characterization, operation mode development, performance testing of thesensors in a gas mixing rig in the laboratory and field test in a desulfurization pilotunit, and both experimental and theoretical studies on the detection mechanismof the sensors.

    The sensor response to SO2 was very small and saturated quickly. SO2 is a verystable gas and therefore reaction with other species requires a large energy input.SO2 mostly reacts with the catalyst through physisorption, which results in lowresponse level. Another problem was that once it finally reacted with oxygen andadsorbed on the surface of the catalyst in form of a sulfate compound, it is desorbedwith difficulty. Therefore, the sensor signal saturated after a certain timeof exposure to SO2. Different gate materials were tested in static operation (Pt,Ir, Au), but the saturation phenomena occurred in all three cases. Dynamic sensoroperation using temperature cycling and multivariate data analysis could mitigatethis problem. Pt-gate sensors were operated at several different temperatures in acyclic fashion. One of the applied temperatures was chosen to be very high for ashort time to serve as cleaning step. This method was also termed the virtual multisensor method because the data generated could represent the data from multiplesensors in static operation at different temperatures. Then, several features of thesignal, such as mean value and slope, were extracted and processed with multivariatedata analysis. Linear Discrimination Analysis (LDA) was chosen since itiiiallows controlled data analysis. It was shown that it was possible to quantify SO2with a 2-step LDA. The background was identified in the first step and SO2 wasquantified in the second step. Pt sensors in dynamic operation and 2-step LDAevaluation has also demonstrated promising results for SO2 measurement in thelaboratory as well as in a desulfurization pilot unit. For a commercial sensor, algorithmhave to be developed to enable on-line measurement in real time.

    It was observed that Ir-gate sensors at 350oC were very sensitive to H2S. The responseobtained by Ir sensors to H2S was almost five times larger than that of Ptsensors, which might be due to the higher oxygen coverage of Ir. Moreover, Irsensors were also more stable with less drift during the operation as a result ofhigher thermal stability. However, the recovery time for Ir sensors was very long,due to the high desorption energy. Overall, the Ir sensors performed well whentested for a leak detection application (presence of oxygen and dry environment).The geothermal application, where heat is extracted from the earth, requires thesensor to be operated in humid condition in the absence (or very low concentration)of oxygen, and this poses a problem. Temperature cycle operation and smartdata evaluation might also be an option for future development.

    Along with the sensor performance testing, a study on the detection mechanismwas also performed for SO2 sensor, both experimentally and theoretically. The experimentincluded the study of the species formed on the surface of the catalystwith DRIFT (diffuse reflectance infrared frourier transform) spectroscopy and theanalysis of the residual gas with mass spectroscopy. Explanatory investigation ofthe surface reactions was performed using quantum-chemical calculations. Theoreticalcalculations of the infrared (IR) vibration spectra was employed to supportthe identification of peaks in the DRIFT measurement. Based on the study on theresidual gas analysis and quantum-chemical calculations, a reaction mechanismfor the SO2 molecule adsorption on the sensor surface was suggested.

    List of papers
    1. SiC-FET based SO2 sensor for power plant emission applications
    Open this publication in new window or tab >>SiC-FET based SO2 sensor for power plant emission applications
    Show others...
    2014 (English)In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 194, p. 511-520Article in journal (Refereed) Published
    Abstract [en]

    Thermal power plants produce SO2 during combustion of fuel containing sulfur. One way to decrease the SO2 emission from power plants is to introduce a sensor as part of the control system of the desulphurization unit. In this study, SiC-FET sensors were studied as one alternative sensor to replace the expensive FTIR (Fourier Transform Infrared) instrument or the inconvenient wet chemical methods. The gas response for the SiC-FET sensors comes from the interaction between the test gas and the catalytic gate metal, which changes the electrical characteristics of the devices. The performance of the sensors depends on the ability of the test gas to be adsorbed, decomposed, and desorbed at the sensor surface. The feature of SO2, that it is difficult to desorb from the catalyst surface, makes it known as catalyst poison. It is difficult to quantify the SO2 with static operation, even at the optimum operation temperature of the sensor due to low response levels and saturation already at low concentration of SO2. The challenge of SO2 desorption can be reduced by introducing dynamic operation in a designed temperature cycle operation (TCO). The intermittent exposure to high temperature can help to desorb SO2. Simultaneously, additional features extracted from the sensor data can be used to reduce the influence of sensor drift. The TCO operation, together with pattern recognition, may also reduce the baseline and response variation due to changing concentration of background gases (4-10% O-2 and 0-70% RH), and thus it may improve the overall sensor performance. In addition to the laboratory experiment, testing in the desulphurization pilot unit was performed. Desulphurization pilot unit has less controlled environment compared to the laboratory conditions. Therefore, the risk of influence from the changing concentration of background gas is higher. In this study, linear discriminant analysis (LDA) and partial least square (PLS) were employed as pattern recognition methods. It was demonstrated that using LDA quantification of SO2 into several groups of concentrations up to 2000 ppm was possible. Additionally, PLS analysis indicated a good agreement between the predicted value from the model and the SO2 concentration from the reference instrument of the pilot plant.

    Place, publisher, year, edition, pages
    Elsevier, 2014
    Keyword
    SO2 sensors; SiC-FET; Pt; Temperature cycled operation (TCO); Desulphurization; Power plant
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-105569 (URN)10.1016/j.snb.2013.11.089 (DOI)000331575400067 ()
    Available from: 2014-03-31 Created: 2014-03-27 Last updated: 2017-12-05Bibliographically approved
    2. Hierarchical methods to improve the performance of the SiC - FET as SO2 sensors in flue gas desulphurization system
    Open this publication in new window or tab >>Hierarchical methods to improve the performance of the SiC - FET as SO2 sensors in flue gas desulphurization system
    Show others...
    2015 (English)In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 206, p. 609-616Article in journal (Refereed) Published
    Abstract [en]

    Experiments were performed both in the laboratory and a desulfurization pilot unit in order to improve the SiC-FET sensor performance using two-step data evaluation. In both cases, a porous Pt-gate enhancement type SiC-FET was utilized in a temperature cycled operation (TCO). Liner Discriminant Analysis (LDA) was chosen as the method for multivariate data analysis. Hierarchical methods with two-step LDA worked quite well in the laboratory tests with SO2 concentrations varied from 25-200 ppm. The same data evaluation was also applied to tests in the desulfurization pilot unit, with higher gas flow and a larger SO2 concentration range (up to 5000 ppm). The results from the SO2 quantification showed a significantly improved fit to corresponding reference instrument (FTIR) values.

    Place, publisher, year, edition, pages
    Elsevier, 2015
    National Category
    Other Engineering and Technologies not elsewhere specified
    Identifiers
    urn:nbn:se:liu:diva-106212 (URN)10.1016/j.snb.2014.09.113 (DOI)000345234200079 ()
    Available from: 2014-04-29 Created: 2014-04-29 Last updated: 2017-12-05
    3. Vibrational analysis of SO2 on Pt / SiO2 system
    Open this publication in new window or tab >>Vibrational analysis of SO2 on Pt / SiO2 system
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    In situ diffuse reflectance infrared Fourier transformed spectroscopy was used to study the interactions of SOx species with Pt/SiO2 between 200 and 400°C, and for SO2 concentrations between 10 and 50 ppm, which represents a concentration range where MISFET sensors exhibit good responses. In parallel, first-principles calculations have been carried out to support the experimental interpretations. It was found that sulfate species were formed on the silica surface, accompanied with removal/rearrangement of silanol groups upon exposure to SO2. Both experimental and theoretical calculations also suggest that the surface species were only formed after SO2 oxidation to SO3 on the metal surface. These evidences support the idea of SO2 oxidation to SO3 as the first step in the process of sulfate formation, followed by spillover of SO3 to the oxide, and finally the formation of sulfate species on the hydroxyl positions on the oxide. The results also indicate that the sulfate formation on silica depends both on the temperature and the SO2 concentration. Furthermore, hydrogen exposure was shown to be efficient for sulfur removal from the silica surface.

    National Category
    Physical Chemistry
    Identifiers
    urn:nbn:se:liu:diva-106213 (URN)
    Available from: 2014-04-29 Created: 2014-04-29 Last updated: 2015-03-09Bibliographically approved
    4. Detection mechanism studies of SO2 on Pt / SiO2 system
    Open this publication in new window or tab >>Detection mechanism studies of SO2 on Pt / SiO2 system
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Experiment was performed with Pt-gate SiC-FET sensors to study the detection mechanism of the sensors. The sensing measurement showed that oxygen influenced the response quite strongly. The sensor response became larger in the presence of oxygen. Experiment with mass spectroscopy indicated the formation of SO3 during the sensing measurement. Further experiment with DRIFT spectroscopy showed the formation of sulfate species on the oxide surface, accompanied by the disappearance of the silanol groups. An explanatory model was built based on quantum-chemical calculations. The results strengthened the experimental results by showing that it was more energetically favorable for SO2 to oxidize into SO3 before being adsorbed on the oxide surface. It was also observed that the overall adsorption reaction was exothermic, the activation energy for the SO2 oxidation was 48,75 kJ/mol, and the rate limiting step was the desorption of SO3 from the Pt surface.

    Keyword
    SO2 sensors, SiC-FET, Pt, detection mechanism, quantum chemical calculations
    National Category
    Physical Chemistry
    Identifiers
    urn:nbn:se:liu:diva-106214 (URN)
    Available from: 2014-04-29 Created: 2014-04-29 Last updated: 2015-03-09Bibliographically approved
    5. SiC based field effect transistor for H2S detection
    Open this publication in new window or tab >>SiC based field effect transistor for H2S detection
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Pt-gate and Ir-gate SiC-FETs were tested as H2S sensors. Both sensors showed good response towards H2S in dry conditions with oxygen present. Ir-gate sensors showed high sensitivity and low drift, which makes them a suitable candidate for leak detection applications. Further testing was performed with Ir-gate sensors for geothermal applications. This involved humid environments and low oxygen concentrations. The sensitivity of the sensors decreased significantly at these conditions. When propene was added to the gas mixture, crosssensitivity was observed in the sensor signal. Further investigation to reveal the surface chemistry using spectroscopic techniques and modelling is needed to improve the selectivity of Ir-gate sensors in humid conditions and oxygen deficient environments.

    Keyword
    H2S sensors, SiC-FET, Pt, Ir, geothermal application
    National Category
    Other Physics Topics
    Identifiers
    urn:nbn:se:liu:diva-106215 (URN)
    Available from: 2014-04-29 Created: 2014-04-29 Last updated: 2014-05-13Bibliographically approved
  • 28.
    Darmastuti, Zhafira
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lindqvist, Niclas
    Alstom Power AB, Växjö, Sweden.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    SiC based field effect transistor for H2S detectionManuscript (preprint) (Other academic)
    Abstract [en]

    Pt-gate and Ir-gate SiC-FETs were tested as H2S sensors. Both sensors showed good response towards H2S in dry conditions with oxygen present. Ir-gate sensors showed high sensitivity and low drift, which makes them a suitable candidate for leak detection applications. Further testing was performed with Ir-gate sensors for geothermal applications. This involved humid environments and low oxygen concentrations. The sensitivity of the sensors decreased significantly at these conditions. When propene was added to the gas mixture, crosssensitivity was observed in the sensor signal. Further investigation to reveal the surface chemistry using spectroscopic techniques and modelling is needed to improve the selectivity of Ir-gate sensors in humid conditions and oxygen deficient environments.

  • 29.
    Darmastuti, Zhafira
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Bhattacharyya, Partha
    Bengal Engineering and Science University, India.
    Basu, Sukumar
    Jadavpur University, India.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    SiC - FET Sensors for methanol leakage detection2012In: Proceeding of the 14th International Meeting on Chemical Sensors (IMCS 2012), 2012, p. 1579-1582Conference paper (Other academic)
    Abstract [en]

    Pt and Ir SiC based Field Effect Transistor sensors were tested to detect low concentration of methanol (<200 ppm) for both process control and leak detection applications. Pt sensors gave good and very fast response at 200°C, while Ir sensors gave larger but much slower response. The presence of oxygen improved the response of the sensor which was favorable for the leak detection application. The influence of hydrogen and propene to the sensor response was also studied. Beside the experimental work, the detection mechanism and different sensing behavior of Pt and Ir were studied by quantum chemical calculations.

  • 30.
    Darmastuti, Zhafira
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Bounechada, Djamela
    Competence Centre for Catalysis / Dept. of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
    Carlsson, P-A
    Competence Centre for Catalysis / Dept. of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
    Lindqvist, N.
    Alstom Power AB, Växjö, Sweden.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Skoglundh, Magnus
    Competence Centre for Catalysis / Dept. of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
    Carlsson, P-A
    Competence Centre for Catalysis /Dept. of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Ojamae, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Detection mechanism studies of SO2 on Pt / SiO2 systemManuscript (preprint) (Other academic)
    Abstract [en]

    Experiment was performed with Pt-gate SiC-FET sensors to study the detection mechanism of the sensors. The sensing measurement showed that oxygen influenced the response quite strongly. The sensor response became larger in the presence of oxygen. Experiment with mass spectroscopy indicated the formation of SO3 during the sensing measurement. Further experiment with DRIFT spectroscopy showed the formation of sulfate species on the oxide surface, accompanied by the disappearance of the silanol groups. An explanatory model was built based on quantum-chemical calculations. The results strengthened the experimental results by showing that it was more energetically favorable for SO2 to oxidize into SO3 before being adsorbed on the oxide surface. It was also observed that the overall adsorption reaction was exothermic, the activation energy for the SO2 oxidation was 48,75 kJ/mol, and the rate limiting step was the desorption of SO3 from the Pt surface.

  • 31.
    Darmastuti, Zhafira
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Bur, Christian
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology. Saarland University.
    Lindqvist, Niclas
    Alstom Power AB, Växjö, Sweden.
    Anderson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Schutza, Andreas
    Saarland University, Saarbrücken, Germany.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Hierarchical methods to improve the performance of the SiC - FET as SO2 sensors in flue gas desulphurization system2015In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 206, p. 609-616Article in journal (Refereed)
    Abstract [en]

    Experiments were performed both in the laboratory and a desulfurization pilot unit in order to improve the SiC-FET sensor performance using two-step data evaluation. In both cases, a porous Pt-gate enhancement type SiC-FET was utilized in a temperature cycled operation (TCO). Liner Discriminant Analysis (LDA) was chosen as the method for multivariate data analysis. Hierarchical methods with two-step LDA worked quite well in the laboratory tests with SO2 concentrations varied from 25-200 ppm. The same data evaluation was also applied to tests in the desulfurization pilot unit, with higher gas flow and a larger SO2 concentration range (up to 5000 ppm). The results from the SO2 quantification showed a significantly improved fit to corresponding reference instrument (FTIR) values.

  • 32.
    Darmastuti, Zhafira
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Bur, Christian
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Möller, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Rahlin, R.
    Alstom Power AB, Sweden .
    Lindqvist, Niclas
    Alstom Power AB, Sweden .
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Schuetze, A.
    University of Saarland, Germany .
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    SiC-FET based SO2 sensor for power plant emission applications2014In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 194, p. 511-520Article in journal (Refereed)
    Abstract [en]

    Thermal power plants produce SO2 during combustion of fuel containing sulfur. One way to decrease the SO2 emission from power plants is to introduce a sensor as part of the control system of the desulphurization unit. In this study, SiC-FET sensors were studied as one alternative sensor to replace the expensive FTIR (Fourier Transform Infrared) instrument or the inconvenient wet chemical methods. The gas response for the SiC-FET sensors comes from the interaction between the test gas and the catalytic gate metal, which changes the electrical characteristics of the devices. The performance of the sensors depends on the ability of the test gas to be adsorbed, decomposed, and desorbed at the sensor surface. The feature of SO2, that it is difficult to desorb from the catalyst surface, makes it known as catalyst poison. It is difficult to quantify the SO2 with static operation, even at the optimum operation temperature of the sensor due to low response levels and saturation already at low concentration of SO2. The challenge of SO2 desorption can be reduced by introducing dynamic operation in a designed temperature cycle operation (TCO). The intermittent exposure to high temperature can help to desorb SO2. Simultaneously, additional features extracted from the sensor data can be used to reduce the influence of sensor drift. The TCO operation, together with pattern recognition, may also reduce the baseline and response variation due to changing concentration of background gases (4-10% O-2 and 0-70% RH), and thus it may improve the overall sensor performance. In addition to the laboratory experiment, testing in the desulphurization pilot unit was performed. Desulphurization pilot unit has less controlled environment compared to the laboratory conditions. Therefore, the risk of influence from the changing concentration of background gas is higher. In this study, linear discriminant analysis (LDA) and partial least square (PLS) were employed as pattern recognition methods. It was demonstrated that using LDA quantification of SO2 into several groups of concentrations up to 2000 ppm was possible. Additionally, PLS analysis indicated a good agreement between the predicted value from the model and the SO2 concentration from the reference instrument of the pilot plant.

  • 33.
    Darmastuti, Zhafira
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    SiC-FET as SO2 Sensors - Detection Mechanism Studies2014In: Proc IMCS 2014, Buenos Aires, Argentine, March 17-19, MPS-T3-4, 2014Conference paper (Refereed)
  • 34.
    Datta, Timir
    et al.
    Maryland University, Baltimore, USA.
    Halonen, Niina
    University of Oulu, Finland.
    Hassinen, Antti
    University of Oulu, Finland.
    Möller, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Kellokumpu, Sakari
    University of Oulu, Finland.
    Abshire, Pamela
    University of Maryland, Baltimore, USA.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Smela, Elisabeth
    University of Maryland, Baltimore, USA.
    Integration of CMOS Chips into LOCs for Cell-Based Sensing2014In: Proceedings of Biosensors 2014, Australia, 2014Conference paper (Refereed)
    Abstract [en]

    Incorporating complementary metal oxide semiconductor (CMOS) chips that can perform signal processing, control, information readout, and direct sensing into microfluidic systems adds powerful capabilities to lab on a chip (LOC) devices. For example, on-chip sensors allow system miniaturization, amplifiers placed directly under the sensors provide high signal to noise ratios (SNRs), and signal processing circuitry reduces the amount of data that must be communicated off-chip. Packaging such chips to expose the sensors on the surface to a fluid environment while protecting the input/output region at the periphery has been challenging, however. We present a new packaging method based on forming an epoxy handle wafer around the chip, photolithographic patterning of metal and polymer films for interconnection and passivation, and bonding to PDMS microfluidics. Such packaged chips last for months in the incubator and can be sterilized and re-used. We will show two examples of cell-based sensing with these systems using chips produced in a commercially-available CMOS technology: monitoring the cytotoxicity of nanomaterials through capacitance changes and recording action potentials from electrogenic cells. Adherent cells normally spread out on surfaces, while stressed cells contract and apoptosis leads to detachment. A chip was produced consisting of an array of fully differential capacitance sensors and readout circuitry. Cells (kidney, Cercopithecus aethiops) were cultured on the chip surface to confluence and then exposed to cytotoxic TiO2 nanowires. Cell viability was evaluated with both the chip and a commercial cytotoxicity kit. Preliminary results indicate that viability can be monitored by capacitance measurements. In the second example, a cluster of cardiomyocytes was cultured on the surface of a different chip having an array of electrodes connected to on-chip amplifiers. Electrical recordings showed strong action potentials from the cluster, corresponding in time with the beating of the clump. The signal amplitude decreased with distance to the electrodes, as expected

  • 35.
    Erdtman, Edvin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Simulations of the thermodynamics and kinetics of NH3 at the RuO2 (110) surface2017In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 656, p. 9p. 77-85Article in journal (Refereed)
    Abstract [en]

    •The dehydrogenation of NHless thansubscriptgreater than3less than/subscriptgreater than via a bridging O on RuOless thansubscriptgreater than2less than/subscriptgreater than(110) is rate-determining.•We can confirm the experimental results that water vapour is formed in the sensor.•OH-species are formed on the RuOless thansubscriptgreater than2less than/subscriptgreater than surface which is required for the sensor response.•A multiscale scheme is devised which can be used in a variety of applications.

    The full text will be freely available from 2018-10-20 10:21
  • 36.
    Eriksson, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Fashandi, Hossein
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Gas sensing with epitaxial graphene on silicon carbide: performance tuning for air quality control2014In: Proc. E-MRS 2014, Lille, France, May 26-30, 2014Conference paper (Refereed)
  • 37.
    Eriksson, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Hsuan Kang, Yu
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Adjusting the electronic properties and gas reactivity of epitaxial graphene by thin surface metallization2014In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 439, p. 105-108Article in journal (Refereed)
    Abstract [en]

    Graphene-based chemical gas sensors normally show ultra-high sensitivity to certain gas molecules but at the same time suffer from poor selectivity and slow response and recovery Limes. Several approaches based on functionalization or modification of the graphene surface have been demonstrated as means to improve these issues, but most such measures result in poor reproducibility. In this study we investigate reproducible graphene surface modifications by sputter deposition of thin nanostructured Au or Pt layers. It is demonstrated that under the right metallization conditions the electronic properties of the surface remain those of graphene, while the surface chemistry is modified to improve sensitivity, selectivity and speed of response to nitrogen dioxide.

  • 38.
    Eriksson, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Strandqvist, Carl
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. Graphensic AB Linköping, Sweden.
    Gunnarsson, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Ekeroth, Sebastian
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Graphensic AB Linköping, Sweden.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Modified Epitaxial Graphene on SiC for Extremely Sensitive andSelective Gas Sensors2016In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 858, p. 1145-1148Article in journal (Refereed)
    Abstract [en]

    Two-dimensional materials offer a unique platform for sensing where extremely high sensitivity is a priority, since even minimal chemical interaction causes noticeable changes inelectrical conductivity, which can be used for the sensor readout. However, the sensitivity has to becomplemented with selectivity, and, for many applications, improved response- and recovery times are needed. This has been addressed, for example, by combining graphene (for sensitivity) with metal/oxides (for selectivity) nanoparticles (NP). On the other hand, functionalization or modification of the graphene often results in poor reproducibility. In this study, we investigate thegas sensing performance of epitaxial graphene on SiC (EG/SiC) decorated with nanostructured metallic layers as well as metal-oxide nanoparticles deposited using scalable thin-film depositiontechniques, like hollow-cathode pulsed plasma sputtering. Under the right modification conditions the electronic properties of the surface remain those of graphene, while the surface chemistry can betuned to improve sensitivity, selectivity and speed of response to several gases relevant for airquality monitoring and control, such as nitrogen dioxide, benzene, and formaldehyde.

  • 39.
    Eriksson, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Vasiliauskas, Remigijus
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Thickness uniformity and electron doping in epitaxial graphene on SiC2013In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 740-742, p. 153-156Article in journal (Refereed)
    Abstract [en]

    Large variations have been observed in the thickness uniformity and carrier concentration of epitaxial graphene grown on SiC by sublimation for samples grown under identical conditions and on nominally on-axis hexagonal SiC (0001) substrates. We have previously shown that these issues are both related to the morphology of the graphene-SiC surface after sublimation growth. Here we present a study on how the substrate polytype, substrate surface morphology and surface restructuring during sublimation growth affect the uniformity and carrier concentration in epitaxial graphene on SiC. These issues were investigated employing surface morphology mapping by atomic force microscopy coupled with local surface potential mapping using scanning Kelvin probe microscopy.

  • 40.
    Eriksson, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    SiC-2D-material-hybrids as a Platform for Extremely Sensitive and Selective Gas Sensors2016In: Proceedings EMRS 2016, 2016Conference paper (Refereed)
  • 41.
    Fashandi, Hossein
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Functional Nanostructures for Gas Sensors2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This research focuses on three main topics within the aims of FUNMAT, which are:

    1. Ohmic contacts to high-temperature chemical gas sensors.
    2. Studies of catalytic monolayers on active gate metal in SiC-based gas sensors.
    3. Investigating potential sensing properties of the nanoscale material MXene.

    Within the first research topic, we study the growth of Ohmic contacts to 4H-SiC for high temperature and corrosive environment applications, being a need in chemical gas sensors e.g. for automotive industry. For this purpose, common commercially-synthesized contacts are not suitable, due to either the presence of low-melting point elements or rapid oxidation. Improving the previously reported growth methods, designing durable oxygen-barrier capping layers, and synthesizing new contact-materials are our main focuses.

    For the second research topic, we investigate the improvement of the sensing performance of platinum-based sensing layers in silicon carbide field-effect gas sensors, which have many industrial applications. This project started with modification of field-effect-based metal oxide semiconductor CO sensors by the synthesis of one monolayer iron oxide on the platinum sensing layers of the sensors. Monolayer metal oxides have been reported to enhance the catalytic properties of platinum which is a promising result to be used in improving the performance of gas sensors.

    And finally, the third research topic covers studies of newly synthesized materials to be explored for any potential sensing property. Our focus is on metal carbide nano-sheets known as MXene phases and to study their  gas adsorption properties. Due to several uninvestigated features of newly synthesized materials, ab.initio. theoretical studies are of importance.

    List of papers
    1. Single-step synthesis process of Ti3SiC2 ohmic contacts on 4H-SiC by sputter-deposition of Ti
    Open this publication in new window or tab >>Single-step synthesis process of Ti3SiC2 ohmic contacts on 4H-SiC by sputter-deposition of Ti
    Show others...
    2015 (English)In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 99, p. 53-56Article in journal (Refereed) Published
    Abstract [en]

    We report a single-step procedure for growth of ohmic Ti3SiC2 on 4H-SiC by sputter-deposition of Ti at 960 °C, based on the Ti–SiC solid-state reaction during deposition. X-ray diffraction and electron microscopy show the growth of interfacial Ti3SiC2. The as-deposited contacts are ohmic, in contrast to multistep processes with deposition followed by rapid thermal annealing. This procedure also offers the possibility of direct synthesis of oxygen-barrier capping layers before exposure to air, potentially improving contact stability in high-temperature and high-power devices.

    Place, publisher, year, edition, pages
    Elsevier, 2015
    Keyword
    Silicon carbide, MAX phase, Physical vapor deposition, High temperature
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-113760 (URN)10.1016/j.scriptamat.2014.11.025 (DOI)000348881100014 ()
    Note

    We acknowledge the support from the VINN Excellence Center in research and innovation on Functional Nanoscale Materials (FunMat) by the Swedish Governmental Agency for Innovation Systems. P.E and J.L. also acknowledge support from the Swedish Foundation for Strategic Research through the Future Research Leaders 5 program and the Synergy Grant FUNCASE, Functional Carbides and Advanced Surface Engineering. In addition, we thank Dr. Hans Hogberg, Dr. Arni Sigurdur Ingason and Dr. Fredrik Eriksson for discussions and help with experiments.

    Available from: 2015-01-30 Created: 2015-01-30 Last updated: 2017-12-05Bibliographically approved
    2. Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides
    Open this publication in new window or tab >>Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides
    Show others...
    2015 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 15Article in journal (Refereed) Published
    Abstract [en]

    We investigated the structural and electrical properties of 2D MXene sheets by means of firstprinciples density functional theory (DFT) calculations. To describe the Kohn-Sham states, plane wave basis set and projector augmented wave method (PAW) were used as implemented in the Vienna ab initio Simulation Package (VASP). We applied PBE parameterization of the generalized gradient approximation of the exchange and correlation energy functional to account for many-body effects of the interacting electron system. Convergent sampling of the Brillouin-zone was achieved by a Γ-centered 15×15×1 grid. In order to model a single sheet of MXene we ensured at least 30 Å vacuum between the periodically repeated sheets. For the structural optimization 1×10−3 eV/Å force criteria was used. The relativistic spin-orbit coupling effects were also included in our simulations regarding band structure and density of states.

    Keyword
    Cone-point, MAX phase, MXene, Dirac fermion, Spin-orbit coupling
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-113761 (URN)10.1103/PhysRevB.92.155142 (DOI)000363512700002 ()
    Available from: 2015-05-01 Created: 2015-01-30 Last updated: 2017-12-05Bibliographically approved
    3. Monolayer iron oxide grown on porous platinum sensing layers of carbon monoxide sensors
    Open this publication in new window or tab >>Monolayer iron oxide grown on porous platinum sensing layers of carbon monoxide sensors
    Show others...
    2015 (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Mono-layer iron oxide has been deposited through e-beam evaporation on a silica supported poly-crystalline platinum (Pt) model catalyst and its CO oxidation characteristics obtained from mass spectrometry measurements under various CO and O2 concentrations (ranging from 100 to 900 ppm and 3 to 7 %, respectively) as well as at different temperatures (ranging from 130 to 220 °C) and compared to the CO oxidation on corresponding non-coated Pt samples. Fabricating the model system as a Metal Oxide Semiconductor (MOS) structure from 4H-SiC with a top layer of SiO2 (as the support material) and a thin, discontinuous polycrystalline Pt film as the metal (the active catalyst material) also provided the possibility to investigate whether changes in catalyst surface conditions could be electronically monitored through the changes in capacitance they induce across the MOS structure.

    A low-temperature shift in the activity to CO oxidation for the iron oxide modified compared to bare Pt catalysts similar to what has previously been reported on single-crystalline Pt was found also for the near-realistic MOS model catalyst. This low-temperature shift was furthermore reflected in the electrical measurements, strongly indicating a correlation between the MOS capacitance and the CO oxidation characteristics, both in the case of iron oxide coated and non-coated Pt samples. By monitoring the MOS capacitance during more than 200 hours of continuous operation and analyzing the iron oxide coated samples by photo electron spectroscopy it could also be concluded that the iron oxide coated model catalyst seemingly retains its CO oxidation characteristics and chemical/compositional integrity over time. These findings might not only point to the applicability of iron oxide modified Pt in practical applications but may also open up new possibilities regarding the utilization of MOS model systems in studying and understanding as well as tailor CO oxidation (and other) catalysts and/or gas sensors for specific applications.

    Keyword
    Silicon carbide, MAX phase, Physical vapor deposition, High temperature
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-113762 (URN)
    Available from: 2015-01-30 Created: 2015-01-30 Last updated: 2015-01-30Bibliographically approved
  • 42.
    Fashandi, Hossein
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Novel Layered and 2D Materials for Functionality Enhancement of Contacts and Gas Sensors2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Chemical gas sensors are widely-used electronic devices for detecting or measuring the density levels of desired gas species. In this study, materials with established or potential applications for gas sensors are treated. For the case of high-temperature applications (≈ 600 °C), semiconductor-based gas sensors suffer from rapid oxidation of the metallic ohmic contacts, the same cause-of-failure as for the general case of high-temperature semiconductor electronics. 4H-SiC is an ideal semiconductor for high-temperature applications. Ti3SiC2 is a known ohmic contact to 4H-SiC with the known two-step synthesis process of post-annealing of pre-deposited Ti/Al multilayers or sputter-deposition of Ti3SiC2 films at > 900 °C. Here, sputter-deposition of Ti on 4H-SiC at > 900 °C is presented as a novel single-step method for the synthesis of Ti3SiC2 ohmic contacts, based on a concurrent reaction between sputter-deposited Ti and 4HSiC. Ti3SiC2, similar to any other known ohmic contact, degrade rapidly in high-temperature oxidizing ambient. To try to overcome this obstacle, noble metal diffusion into Ti3SiC2 has been s studied with the goal to retain ohmic properties of Ti3SiC2 and harnessing oxidation resistivity of noble metals. A novel exchange intercalation between Ti3SiC2 and Au is discovered which results in the almost complete exchange of Si with Au giving rise to novel Ti3AuC2 and Ti3Au2C2. Ti3IrC2 is also synthesized through exchange intercalation of Ir into Ti3Au2C2. All the aforementioned phases showed ohmic properties to 4H-SiC. This technique is also studied based on Ti2AlC and Ti3AlC2 resulting in the synthesis of novel Ti2Au2C and Ti3Au2C2, respectively. Using Ti3AuC2 and an Au/IrOx capping layer, an ohmic contact was manufactured, which maintained ohmic properties and showed no structural defects after 1000 h of aging at 600 °C air.

    Ti3SiC2 is a member of a large family of materials known as Mn+1AXn phases. While exchange reactions of Si (or Al) planes in Ti3SiC2 (Ti2AlC and Ti3AlC2) is presented here, a world-wide research already exists on chemical removal of the same atomic planes from different Mn+1AXn phases and the synthesis of Mn+1Xn sheets known as MXenes. I performed a theoretical study regarding simulation of electronic and structural properties of more than120 different possible MXene phases. The results show that some MXene phases, when terminated by particular gas species, turn into Dirac materials. That is, they possess massless Dirac fermions with different properties compared to graphene such as higher number of Dirac points at the Fermi level, giant spin orbit splitting, and preserved 2D-type electronic properties by extending the dimensionality. The general substantial change of the electronic properties of MXenes under different gas adsorption configurations stands out and can thus be harnessed for sensing applications.

    Growth of monolayer iron oxide on porous Pt sensing layers is another novel approach used in this study for applying the unique properties of 2D materials for gas sensors. A low temperature shift in CO oxidation characteristics is presented. The approach is similar to that previously reported using bulk single crystal Pt substrate, the latter being an unrealistic model for sensors and catalysts. Monolayer-coated Pt sensing layers were fabricated as the metal component of a metal oxide semiconductor (MOS) capacitor device, whereby the electrical response of the MOS device could be used to map out the catalytic properties of the sensing layer. The monolayer-coated Pt surface showed to be stable with retained improved catalytic properties for > 200 h. The MOS device measurements are here utilized as a handy method for in-situ monitoring of the surface chemical properties of the monolayer-coated Pt and the approach is highly functional for use and characterization of monolayer coatings of widely used sensingor catalytic layers.

    List of papers
    1. Single-step synthesis process of Ti3SiC2 ohmic contacts on 4H-SiC by sputter-deposition of Ti
    Open this publication in new window or tab >>Single-step synthesis process of Ti3SiC2 ohmic contacts on 4H-SiC by sputter-deposition of Ti
    Show others...
    2015 (English)In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 99, p. 53-56Article in journal (Refereed) Published
    Abstract [en]

    We report a single-step procedure for growth of ohmic Ti3SiC2 on 4H-SiC by sputter-deposition of Ti at 960 °C, based on the Ti–SiC solid-state reaction during deposition. X-ray diffraction and electron microscopy show the growth of interfacial Ti3SiC2. The as-deposited contacts are ohmic, in contrast to multistep processes with deposition followed by rapid thermal annealing. This procedure also offers the possibility of direct synthesis of oxygen-barrier capping layers before exposure to air, potentially improving contact stability in high-temperature and high-power devices.

    Place, publisher, year, edition, pages
    Elsevier, 2015
    Keyword
    Silicon carbide, MAX phase, Physical vapor deposition, High temperature
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-113760 (URN)10.1016/j.scriptamat.2014.11.025 (DOI)000348881100014 ()
    Note

    We acknowledge the support from the VINN Excellence Center in research and innovation on Functional Nanoscale Materials (FunMat) by the Swedish Governmental Agency for Innovation Systems. P.E and J.L. also acknowledge support from the Swedish Foundation for Strategic Research through the Future Research Leaders 5 program and the Synergy Grant FUNCASE, Functional Carbides and Advanced Surface Engineering. In addition, we thank Dr. Hans Hogberg, Dr. Arni Sigurdur Ingason and Dr. Fredrik Eriksson for discussions and help with experiments.

    Available from: 2015-01-30 Created: 2015-01-30 Last updated: 2017-12-05Bibliographically approved
    2. Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides
    Open this publication in new window or tab >>Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides
    Show others...
    2015 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 15Article in journal (Refereed) Published
    Abstract [en]

    We investigated the structural and electrical properties of 2D MXene sheets by means of firstprinciples density functional theory (DFT) calculations. To describe the Kohn-Sham states, plane wave basis set and projector augmented wave method (PAW) were used as implemented in the Vienna ab initio Simulation Package (VASP). We applied PBE parameterization of the generalized gradient approximation of the exchange and correlation energy functional to account for many-body effects of the interacting electron system. Convergent sampling of the Brillouin-zone was achieved by a Γ-centered 15×15×1 grid. In order to model a single sheet of MXene we ensured at least 30 Å vacuum between the periodically repeated sheets. For the structural optimization 1×10−3 eV/Å force criteria was used. The relativistic spin-orbit coupling effects were also included in our simulations regarding band structure and density of states.

    Keyword
    Cone-point, MAX phase, MXene, Dirac fermion, Spin-orbit coupling
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-113761 (URN)10.1103/PhysRevB.92.155142 (DOI)000363512700002 ()
    Available from: 2015-05-01 Created: 2015-01-30 Last updated: 2017-12-05Bibliographically approved
  • 43.
    Fashandi, Hossein
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Smedfors, K.
    School of Information and Communication Technology, KTH, Stockholm, Sweden.
    Zetterling, C. -M
    School of Information and Communication Technology, KTH, Stockholm, Sweden.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Single-step synthesis process of Ti3SiC2 ohmic contacts on 4H-SiC by sputter-deposition of Ti2015In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 99, p. 53-56Article in journal (Refereed)
    Abstract [en]

    We report a single-step procedure for growth of ohmic Ti3SiC2 on 4H-SiC by sputter-deposition of Ti at 960 °C, based on the Ti–SiC solid-state reaction during deposition. X-ray diffraction and electron microscopy show the growth of interfacial Ti3SiC2. The as-deposited contacts are ohmic, in contrast to multistep processes with deposition followed by rapid thermal annealing. This procedure also offers the possibility of direct synthesis of oxygen-barrier capping layers before exposure to air, potentially improving contact stability in high-temperature and high-power devices.

  • 44.
    Fashandi, Hossein
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Simak, Sergey
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC2017In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 16, no 8, p. 814-818Article in journal (Refereed)
    Abstract [en]

    The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 degrees C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.

  • 45.
    Fashandi, Hossein
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Soldemo, Markus
    Royal Institute of Technology (KTH).
    Weissenrieder, Jonas
    Royal Institute of Technology (KTH), Stockholm.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    The effect to gas response of monolayer iron oxide film grown on platinum-based sensing layers2014In: Proc of IMCS 2014, Buenos Aires, Argentine, March 17-19, MPS-T1-21, 2014Conference paper (Refereed)
  • 46.
    Fashandi, Hossein
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Ivády, Viktor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology. Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Katsnelson, Mikhail I.
    Radboud University of Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands / Dept. of Theoretical Physics and Applied Mathematics, Ural Federal University, Russia.
    Abrikosov, Igor A.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology. School of Information and Communication Technology, KTH, Stockholm, Sweden.
    Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides2015In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 15Article in journal (Refereed)
    Abstract [en]

    We investigated the structural and electrical properties of 2D MXene sheets by means of firstprinciples density functional theory (DFT) calculations. To describe the Kohn-Sham states, plane wave basis set and projector augmented wave method (PAW) were used as implemented in the Vienna ab initio Simulation Package (VASP). We applied PBE parameterization of the generalized gradient approximation of the exchange and correlation energy functional to account for many-body effects of the interacting electron system. Convergent sampling of the Brillouin-zone was achieved by a Γ-centered 15×15×1 grid. In order to model a single sheet of MXene we ensured at least 30 Å vacuum between the periodically repeated sheets. For the structural optimization 1×10−3 eV/Å force criteria was used. The relativistic spin-orbit coupling effects were also included in our simulations regarding band structure and density of states.

  • 47.
    Fashandi, Hossein
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lai, Chung-Chuan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC22017In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 53, no 69, p. 9554-9557Article in journal (Refereed)
    Abstract [en]

    Incorporation of layers of noble metals in non-van der Waals layered materials may be used to form novel layered compounds. Recently, we demonstrated a high-temperature-induced exchange process of Au with Si in the layered phase Ti3SiC2, resulting in the formation of Ti3AuC2 and Ti3Au2C2. Here, we generalize this technique showing that Au/Ti2AlC and Au/Ti3AlC2 undergo an exchange reaction at 650 [degree]C to form Ti2Au2C and Ti3Au2C2 and determine their structures by electron microscopy, X-ray diffraction, and ab initio calculations. These results imply that noble-metal-containing layered phases should be possible to synthesize in many systems. The metal to be introduced should be inert to the transition-metal carbide layers, and exhibit negative heat of mixing with the initial A element in a liquid phase or two-phase liquid/solid region at the annealing temperature.

  • 48.
    Fashandi, Hossein
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Soldemo, M.
    KTH Royal Institute of Technology, Material Physics, Kista, Sweden.
    Weissenrieder, J.
    KTH Royal Institute of Technology, Material Physics, Kista, Sweden.
    Götelid, M.
    KTH Royal Institute of Technology, Material Physics, Kista, Sweden.
    Eriksson, Johan
    Linköping University, Department of Physics, Chemistry and Biology, Surface and Semiconductor Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Monolayer iron oxide grown on porous platinum sensing layers of carbon monoxide sensors2015Manuscript (preprint) (Other academic)
    Abstract [en]

    Mono-layer iron oxide has been deposited through e-beam evaporation on a silica supported poly-crystalline platinum (Pt) model catalyst and its CO oxidation characteristics obtained from mass spectrometry measurements under various CO and O2 concentrations (ranging from 100 to 900 ppm and 3 to 7 %, respectively) as well as at different temperatures (ranging from 130 to 220 °C) and compared to the CO oxidation on corresponding non-coated Pt samples. Fabricating the model system as a Metal Oxide Semiconductor (MOS) structure from 4H-SiC with a top layer of SiO2 (as the support material) and a thin, discontinuous polycrystalline Pt film as the metal (the active catalyst material) also provided the possibility to investigate whether changes in catalyst surface conditions could be electronically monitored through the changes in capacitance they induce across the MOS structure.

    A low-temperature shift in the activity to CO oxidation for the iron oxide modified compared to bare Pt catalysts similar to what has previously been reported on single-crystalline Pt was found also for the near-realistic MOS model catalyst. This low-temperature shift was furthermore reflected in the electrical measurements, strongly indicating a correlation between the MOS capacitance and the CO oxidation characteristics, both in the case of iron oxide coated and non-coated Pt samples. By monitoring the MOS capacitance during more than 200 hours of continuous operation and analyzing the iron oxide coated samples by photo electron spectroscopy it could also be concluded that the iron oxide coated model catalyst seemingly retains its CO oxidation characteristics and chemical/compositional integrity over time. These findings might not only point to the applicability of iron oxide modified Pt in practical applications but may also open up new possibilities regarding the utilization of MOS model systems in studying and understanding as well as tailor CO oxidation (and other) catalysts and/or gas sensors for specific applications.

  • 49.
    Fashandi, Hossein
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Soldemo, Markus
    KTH Royal Institute Technology, Sweden.
    Weissenrieder, Jonas
    KTH Royal Institute Technology, Sweden.
    Gothelid, Mats
    KTH Royal Institute Technology, Sweden.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Applicability of MOS structures in monitoring catalytic properties, as exemplified for monolayer-iron-oxide-coated porous platinum films2016In: Journal of Catalysis, ISSN 0021-9517, E-ISSN 1090-2694, Vol. 344, p. 583-590Article in journal (Refereed)
    Abstract [en]

    Metal Oxide Semiconductor (MOS) capacitor devices comprised of monolayer iron oxide-coated as well as non-coated polycrystalline Pt deposited on oxidized silicon carbide substrates have been fabricated and their usefulness as realistic model systems in catalyst studies development was evaluated. The CO oxidation characteristics of both iron oxide- and non-coated Pt catalysts were investigated using mass spectrometry, monitoring the carbon dioxide production rate for different combinations of carbon monoxide (CO) and oxygen concentrations at various temperatures. Additionally, the output capacitance of the MOS model catalysts was recorded for each individual CO oxidation activity. A low-temperature shift in CO oxidation characteristics for the monolayer-coated compared to the non-coated Pt catalysts was observed, similar to that previously reported for monolayer iron oxide grown on single-crystalline Pt substrates. A strong correlation between the output capacitance of the MOS structures and the CO oxidation characteristics was found for both monolayer- and non-coated model catalysts. Furthermore, the devices exhibit retained MOS electrical output and CO oxidation characteristics as well as an unaffected catalyst surface composition, as confirmed by photoelectron spectroscopy, even after 200 h of continuous model catalyst operation. In addition to the implications on practical applicability of monolayer iron oxide coating on widely used polycrystalline Pt films in real-world catalysts and sensors, the findings also point to new possibilities regarding the use of MOS model systems for in situ characterization, high throughput screening, and tailoring of e.g. catalyst- and fuel-cell-electrode materials for specific applications. (C) 2016 Elsevier Inc. All rights reserved.

    The full text will be freely available from 2018-11-19 10:56
  • 50.
    Halonen, Niina
    et al.
    University of Oulu, Finland.
    Datta-Chaudhuri, Timir
    University of Maryland, Baltimore, USA.
    Hassinen, Antti
    University of Oulu, Finland.
    Prakash, S. B.
    University of Maryland, Baltimore, USA.
    Möller, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Abshire, Pamela
    University of Maryland, Baltimore, USA.
    Smela, Elisabeth
    University of Maryland, Baltimore, USA.
    Kellokumpu, Sakari
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Cell clinic; CMOS chip measuring capacitance as indication of cell adhesion applied in evaluating the cytotoxicity of nanomaterials2014In: Proc. Eurosensors 2014, Brescia, Italy, September 7-10, 2014Conference paper (Refereed)
12 1 - 50 of 93
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf