liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 1 - 50 of 841
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aasmundtveit, K.E.
    et al.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskapelige U., N-7491 Trondheim, Norway.
    Samuelsen, E.J.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskapelige U., N-7491 Trondheim, Norway.
    Guldstein, M.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskapelige U., N-7491 Trondheim, Norway.
    Steinsland, C.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskapelige U., N-7491 Trondheim, Norway.
    Flornes, O.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskapelige U., N-7491 Trondheim, Norway.
    Fagermo, C.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskapelige U., N-7491 Trondheim, Norway.
    Seeberg, T.M.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskapelige U., N-7491 Trondheim, Norway.
    Pettersson, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Feidenhans'l, R.
    Forskningscenter Risø, DK-4000 Roskilde, Denmark.
    Ferrer, S.
    Europ. Synchrt. Radiation Facility, BP 220, F-38043 Grenoble Cedex, France.
    Structural anisotropy of poly(alkylthiophene) films2000In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 33, no 8, p. 3120-3127Article in journal (Refereed)
    Abstract [en]

    The structural anisotropy of various poly(alkylthiophene) films have been studied by X-ray diffraction, using both conventional methods and synchrotron radiation at grazing incidence. Solution-cast films orient with the side chains preferably normal to the film surface, whereas spin-cast films of nonstereoregular material orient with both the main and the side chains in the film plane. For thick (10-50 µm) solution-cast films, the degree of orientation depends strongly on the solvent used for casting, and on the stereoregularity of the polymer, films of stereoregular materials being more oriented than those of nonregular materials. The most oriented nonregular films are those cast from mixtures of chloroform and tetrahydrofuran. Thin (50-500 nm) solution-cast films are more oriented than the thicker ones, and the effects of different stereoregularity or different casting solvents are small. For spin-cast films, the degree of orientation is independent of substrate and solvent. Spin-cast films of stereoregular material have two different phases: One with the side chains normal to the substrate, and another where they are parallel to the substrate. The diffraction peaks of spin-cast poly(octylthiophene) narrow considerably upon heating.

  • 2.
    Aasmundtveit, K.E.
    et al.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskapelige U., Trondheim, Norway.
    Samuelsen, E.J.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskapelige U., Trondheim, Norway.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Pettersson, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Johansson, Tomas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Ferrer, S.
    Europ. Synchrt. Radiat. Facil. (E., F-38043, Grenoble, France.
    Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene)2000In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 113, no 1, p. 93-97Article in journal (Refereed)
    Abstract [en]

    Electrochemical dedoping and redoping of p-toluene sulfonate doped poly(3,4-ethylenedioxythiophene) (PEDOT) has been studied with in situ grazing incidence diffraction with water used as an electrolyte. The diffraction peak positions and integrated intensities do not change significantly during doping and dedoping, while the peak widths increase upon dedoping and decrease upon doping. This implies that the lattice parameters and the relative positions of the polymer chains and the p-toluene sulfonate ions remain unchanged, the redox processes being carried out by the motion of smaller ions between the polymer and the electrolyte, and that the structural order decreases upon dedoping and increases upon doping in a reversible manner.

  • 3.
    Aasmundtveit, K.E.
    et al.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskaplige U., N-7491 Trondheim, Norway.
    Samuelsen, E.J.
    Institutt for Fysikk, Norges Tekn.-Naturvitenskaplige U., N-7491 Trondheim, Norway.
    Mammo, W.
    Institutionen för Organisk Kemi, Chalmers Tekniska Hôgskola, S-412 96 Göteborg, Sweden.
    Svensson, M.
    Institutionen för Organisk Kemi, Chalmers Tekniska Hôgskola, S-412 96 Göteborg, Sweden.
    Andersson, M.R.
    Institutionen för Polymerteknik, Chalmers Tekniska Hôgskola, S-412 96 Göteborg, Sweden.
    Pettersson, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Structural ordering in phenyl-substituted polythiophenes2000In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 33, no 15, p. 5481-5489Article in journal (Refereed)
    Abstract [en]

    Various substituted poly(phenylthiophene)s have been studied by X-ray diffraction. They are semicrystalline, with very different degrees of crystallinity. Those with para-substituted phenyl groups have a low degree of crystallinity, whereas those with ortho-substituted phenyl groups are more crystalline. The most crystalline materials in this study have two equally long substituents on the phenyl ring, one at the ortho position and the other at the ortho or meta position on the opposite side of the phenyl ring. Poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) was most thoroughly studied, and a structural model is proposed. The structure of PDOPT is quite different from previously studied substituted polythiophenes in that the octyl side chains are directed normal to the thiophene planes. In this way, the conjugated polymer chains are kept separated from each other. Solution-cast and spin-cast PDOPT films are anisotropic, with the octyl side chains oriented normal to the film surface in both cases. This is contrary to the situation for poly(3-alkylthiophene)s, where solution-cast and spin-cast films orient in different ways.

  • 4.
    Abramavicius, V.
    et al.
    Vilnius University, Lithuania; Centre Phys Science and Technology, Lithuania.
    Pranculis, V.
    Centre Phys Science and Technology, Lithuania.
    Melianas, Armantas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gulbinas, V.
    Centre Phys Science and Technology, Lithuania.
    Abramavicius, D.
    Vilnius University, Lithuania.
    Role of coherence and delocalization in photo-induced electron transfer at organic interfaces2016In: Scientific Reports, E-ISSN 2045-2322, Vol. 6, no 32914Article in journal (Refereed)
    Abstract [en]

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrodinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.

    Download full text (pdf)
    fulltext
  • 5.
    Admassie, S.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Electrochromism in diffractive conducting polymer gratings2004In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 151, no 6Article in journal (Refereed)
    Abstract [en]

    The electrochromic polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) spin-coated on ITO/glass was patterned with a soft lithographic method in order to diffract the incident light and thereby modify absorption of light by the film to improve the electrochromic efficiency of the polymer. The absorbance peak at around 610 nm was found to be much higher in the patterned PEDOT-PSS film than the one observed in the unpatterned film. Values of coloration efficiencies varying from 107 to 174 cm2/C were obtained for three different unpatterned PEDOT-PSS films, whereas for three different patterned PEDOT-PSS films higher values ranging from 211 to 371 cm2/C were found. These increased values of the electrochromic efficiencies are attributed to diffraction. © 2004 The Electrochemical Society. All rights reserved.

  • 6.
    Admassie, Shimelis
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. University of Addis Ababa, Ethiopia.
    Ajjan, Fátima
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Elfwing, Anders
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Biopolymer hybrid electrodes for scalable electricity storage2016In: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 3, no 3, p. 174-185Article, review/survey (Refereed)
    Abstract [en]

    Powering the future, while maintaining a cleaner environment and a strong socioeconomic growth, is going to be one of the biggest challenges faced by mankind in the 21st century. The first step in overcoming the challenge for a sustainable future is to use energy more efficiently so that the demand for fossil fuels can be reduced drastically. The second step is a transition from the use of fossil fuels to renewable energy sources. In this sense, organic electrode materials are becoming increasingly attractive compared to inorganic electrode materials which have reached a plateau regarding performance and have severe drawbacks in terms of cost, safety and environmental friendliness. Using organic composites based on conducting polymers, such as polypyrrole, and abundant, cheap and naturally occurring biopolymers rich in quinones, such as lignin, has recently emerged as an interesting alternative. These materials, which exhibit electronic and ionic conductivity, provide challenging opportunities in the development of new charge storage materials. This review presents an overview of recent developments in organic biopolymer composite electrodes as renewable electroactive materials towards sustainable, cheap and scalable energy storage devices.

    Download full text (pdf)
    fulltext
  • 7.
    Admassie, Shimelis
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Elfwing, Anders
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Bao, Qinye
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage2014In: JOURNAL OF MATERIALS CHEMISTRY A, ISSN 2050-7488, Vol. 2, no 6, p. 1974-1979Article in journal (Refereed)
    Abstract [en]

    A ternary composite supercapacitor electrode consisting of phosphomolybdic acid (HMA), a renewable biopolymer, lignin, and polypyrrole was synthesized by a simple one-step simultaneous electrochemical deposition and characterized by electrochemical methods. It was found that the addition of HMA increased the specific capacitance of the polypyrrole-lignin composite from 477 to 682 F g(-1) ( at a discharge current of 1 A g(-1)) and also significantly improved the charge storage capacity from 6(to 128 mA h g(-1).

  • 8.
    Admassie, Shimelis
    et al.
    Addis Ababa University.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Mammo, Wendimagegn
    Chalmers university of Technology.
    Perzon, Erik
    Chalmers university of Technology.
    Andersson, Mats R
    Chalmers university of Technology.
    Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers2006In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 156, no 7-8, p. 614-623Article in journal (Refereed)
    Abstract [en]

    The electrochemical and optical properties of a series of alternating polyfluorene copolymers with low band gaps were determined. These polymers incorporated fluorene units alternating with groups including electron-withdrawing (A) and electron-donating (D) groups in donor-acceptor-donor (DAD) sequence to achieve the lowering of band gaps. The polymers were solvent-casted on platinum disk electrode and the band gaps were estimated from cyclic voltammetry (CV). These values were compared with values obtained from optical absorption measurements. Although the electrochemically determined band gaps were found to be slightly higher than the optical band gap in most cases, values are well correlated. The values of the band gaps determined range from 2.1 to 1.3 eV. © 2006 Elsevier B.V. All rights reserved.

  • 9. Admassie, Shimelis
    et al.
    Yacob, Zekarias
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Mammo, Wendimagegn
    Yohannes, Teketel
    Solomon, Theodros
    Synthesis, optical and electrochemical characterization of anthrancene and benzothiadiazole-containing polyfluorene copolymers2006In: Bulletin of the Chemical Society of Ethiopia, ISSN 1011-3924, E-ISSN 1726-801X, Vol. 20, no 2, p. 309-317Article in journal (Refereed)
    Abstract [en]

    New solution-processable, anthrancene- and benzothiadiazole-containing polyfluorene copolymers (P1-P3) have been synthesized and characterized. The preparation and characterization of the corresponding blue light-emitting devices are also reported. Polymers P2 and P3 show high photoluminescence efficiency while polymer P2 does not show any significant light emission up to 8.0 V. The results show the need for balance of electron and hole transport in polymer light emitting diodes.

  • 10.
    Admassie, Shimelis
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Yang Nilsson, Ting
    University of Addis Ababa, Ethiopia.
    Inganas, Olle
    University of Addis Ababa, Ethiopia.
    Charge storage properties of biopolymer electrodes with (sub)tropical lignins2014In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 16, no 45, p. 24681-24684Article in journal (Refereed)
    Abstract [en]

    The electrochemical and charge storage properties of different lignins inside biopolymer electrodes were studied and correlated with the chemical variations of the lignins as indicated from the nuclear magnetic resonance (NMR) spectroscopic data. The varying fractions of monolignols were found to correlate with charge storage properties. It was found that as the sinapyl to guaiacyl (S/G) ratio increased both the specific capacitance and charge capacity increased considerably. This indicates that quinones generated on S-units can contribute more to charge storage in the biopolymer electrodes.

  • 11.
    Admassie, Shimelis
    et al.
    IFM Linköpings universitet.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Manoj, A.G.
    IFM Linköpings universitet.
    Svensson, Mattias
    Chalmers university of Technology.
    Andersson, Mats R
    Chalmers university of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    A polymer photodiode using vapour-phase polymerized PEDOT as an anode2005In: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 90, p. 133-141Article in journal (Refereed)
    Abstract [en]

      

  • 12.
    Ajjan, Fátima
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ambrogi, Martina
    Max Planck Institute Colloids and Interfaces, Germany.
    Ayalneh Tiruye, Girum
    IMDEA Energy Institute, Spain.
    Cordella, Daniela
    University of Liege ULg, Belgium.
    Fernandes, Ana M.
    POLYMAT University of Basque Country UPV EHU, Spain.
    Grygiel, Konrad
    Max Planck Institute Colloids and Interfaces, Germany.
    Isik, Mehmet
    POLYMAT University of Basque Country UPV EHU, Spain.
    Patil, Nagaraj
    University of Liege ULg, Belgium.
    Porcarelli, Luca
    POLYMAT University of Basque Country UPV EHU, Spain.
    Rocasalbas, Gillem
    KIOMedPharma, Belgium.
    Vendramientto, Giordano
    University of Bordeaux, France.
    Zeglio, Erica
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Antonietti, Markus
    Max Planck Institute Colloids and Interfaces, Germany.
    Detrembleur, Cristophe
    University of Liege ULg, Belgium.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jerome, Christine
    University of Liege ULg, Belgium.
    Marcilla, Rebeca
    IMDEA Energy Institute, Spain.
    Mecerreyes, David
    POLYMAT University of Basque Country UPV EHU, Spain; Basque Fdn Science, Spain.
    Moreno, Monica
    POLYMAT University of Basque Country UPV EHU, Spain.
    Taton, Daniel
    University of Bordeaux, France.
    Solin, Niclas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yuan, Jiayin
    Max Planck Institute Colloids and Interfaces, Germany.
    Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment2017In: Polymer international, ISSN 0959-8103, E-ISSN 1097-0126, Vol. 66, no 8, p. 1119-1128Article, review/survey (Refereed)
    Abstract [en]

    This paper presents the work carried out within the European project RENAISSANCE-ITN, which was dedicated to the development of innovative polyelectrolytes for energy and environmental applications. Within the project different types of innovative polyelectrolytes were synthesized such as poly(ionic liquid)s coming from renewable or natural ions, thiazolium cations, catechol functionalities or from a new generation of cheap deep eutectic monomers. Further, macromolecular architectures such as new poly(ionic liquid) block copolymers and new (semi)conducting polymer/polyelectrolyte complexes were also developed. As the final goal, the application of these innovative polymers in energy and the environment was investigated. Important advances in energy storage technologies included the development of new carbonaceous materials, new lignin/conducting polymer biopolymer electrodes, new iongels and single-ion conducting polymer electrolytes for supercapacitors and batteries and new poly(ionic liquid) binders for batteries. On the other hand, the use of innovative polyelectrolytes in sustainable environmental technologies led to the development of new liquid and dry water, new materials for water cleaning technologies such as flocculants, oil absorbers, new recyclable organocatalyst platforms and new multifunctional polymer coatings with antifouling and antimicrobial properties. All in all this paper demonstrates the potential of poly(ionic liquid)s for high-value applications in energy and enviromental areas. (c) 2017 Society of Chemical Industry

  • 13.
    Ajjan, Fátima
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Casado, N.
    University of Basque Country, Spain.
    Rebis, Tomasz
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Elfwing, Anders
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Solin, Niclas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Mecerreyes, D.
    University of Basque Country, Spain; Ikerbasque, Spain.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors2016In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 5, p. 1838-1847Article in journal (Refereed)
    Abstract [en]

    Developing sustainable organic electrode materials for energy storage applications is an urgent task. We present a promising candidate based on the use of lignin, the second most abundant biopolymer in nature. This polymer is combined with a conducting polymer, where lignin as a polyanion can behave both as a dopant and surfactant. The synthesis of PEDOT/Lig biocomposites by both oxidative chemical and electrochemical polymerization of EDOT in the presence of lignin sulfonate is presented. The characterization of PEDOT/Lig was performed by UV-Vis-NIR spectroscopy, FTIR infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, cyclic voltammetry and galvanostatic charge-discharge. PEDOT doped with lignin doubles the specific capacitance (170.4 F g(-1)) compared to reference PEDOT electrodes (80.4 F g(-1)). The enhanced energy storage performance is a consequence of the additional pseudocapacitance generated by the quinone moieties in lignin, which give rise to faradaic reactions. Furthermore PEDOT/Lig is a highly stable biocomposite, retaining about 83% of its electroactivity after 1000 charge/discharge cycles. These results illustrate that the redox doping strategy is a facile and straightforward approach to improve the electroactive performance of PEDOT.

  • 14.
    Ajjan, Fátima
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Javad Jafari, Mohammad
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Rebis, T.
    Poznan University of Tech, Poland.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material2015In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, no 24, p. 12927-12937Article in journal (Refereed)
    Abstract [en]

    We report spectroelectrochemical studies to investigate the charge storage mechanism of composite polypyrrole/lignin electrodes. Renewable bioorganic electrode materials were produced by electropolymerization of pyrrole in the presence of a water-soluble lignin derivative acting as a dopant. The resulting composite exhibited enhanced charge storage abilities due to a lignin-based faradaic process, which was expressed after repeated electrochemical redox of the material. The in situ FTIR spectroelectrochemistry results show the formation of quinone groups, and reversible oxidation-reduction of these groups during charge-discharge experiments in the electrode materials. The most significant IR bands include carbonyl absorption near 1705 cm(-1), which is attributed to the creation of quinone moieties during oxidation, and absorption at 1045 cm(-1) which is due to hydroquinone moieties.

  • 15.
    Ajjan, Fátima
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Khan, Ziyauddin
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Riera-Galindo, Sergi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Lienemann, Samuel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Petsagkourakis, Ioannis
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Roger
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Braun, Slawomir
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Doped Conjugated Polymer Enclosing a Redox Polymer: Wiring Polyquinones with Poly(3,4‐Ethylenedioxythiophene)2020In: Advanced Energy and Sustainability Research, E-ISSN 2699-9412, Vol. 1, no 2, article id 2000027Article in journal (Refereed)
    Abstract [en]

    The mass implementation of renewable energies is limited by the absence of efficient and affordable technology to store electrical energy. Thus, the development of new materials is needed to improve the performance of actual devices such as batteries or supercapacitors. Herein, the facile consecutive chemically oxidative polymerization of poly(1-amino-5-chloroanthraquinone) (PACA) and poly(3,4-ethylenedioxythiophene (PEDOT) resulting in a water dispersible material PACA-PEDOT is shown. The water-based slurry made of PACA-PEDOT nanoparticles can be processed as film coated in ambient atmosphere, a critical feature for scaling up the electrode manufacturing. The novel redox polymer electrode is a nanocomposite that withstands rapid charging (16 A g−1) and delivers high power (5000 W kg−1). At lower current density its storage capacity is high (198 mAh g−1) and displays improved cycling stability (60% after 5000 cycles). Its great electrochemical performance results from the combination of the redox reversibility of the quinone groups in PACA that allows a high amount of charge storage via Faradaic reactions and the high electronic conductivity of PEDOT to access to the redox-active sites. These promising results demonstrate the potential of PACA-PEDOT to make easily organic electrodes from a water-coating process, without toxic metals, and operating in non-flammable aqueous electrolyte for large scale pseudocapacitors. 

    Download full text (pdf)
    fulltext
  • 16.
    Ajjan, Fátima
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Mecerreyes, David
    Univ Basque Country UPV EHU, Spain.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Enhancing Energy Storage Devices with Biomacromolecules in Hybrid Electrodes2019In: Biotechnology Journal, ISSN 1860-6768, E-ISSN 1860-7314, Vol. 14, no 12, article id 1900062Article, review/survey (Refereed)
    Abstract [en]

    The development of energy storage devices with higher energy and power outputs, and long cycling stability is urgently required in the pursuit of the expanding challenges of electrical energy storage. The utilization of biologically renewable redox compounds holds a great potential in designing sustainable energy storage systems and contributes in reducing the dependence on fossil fuels for energy materials. Quinones are the principal redox centers in natural organic materials and play a key role as charge storage electrode materials because of their abundance, multiple forms and integration into the materials flow through the biosphere. Electrical energy storage devices and systems can be significantly improved by the combination of scalable quinone-based biomaterials with good electronic conductors. This review uses recent examples to show how biopolymers are providing new directions in the development of renewable biohybrid electrodes for energy storage devices.

  • 17.
    Ajjan, Fátima
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Rebis, Tomasz
    Poznan Univ Tech, Poland.
    Ever Aguirre, Luis
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ouyang, Liangqi
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Scalable Asymmetric Supercapacitors Based on Hybrid Organic/Biopolymer Electrodes2017In: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486, Vol. 1, no 8, article id 1700054Article in journal (Refereed)
    Abstract [en]

    A trihybrid bioelectrode composed of lignin, poly(3,4-ethylenedioxythiophene) (PEDOT), and poly(aminoanthraquinone) (PAAQ) is prepared by a two-step galvanostatic electropolymerization, and characterized for supercapacitor applications. Using PEDOT/Lignin as a base layer, followed by the consecutive deposition of PAAQ, the hybrid electrode PEDOT/Lignin/PAAQ shows a high specific capacitance of 418 F g(-1) with small self-discharge. This trihybrid electrode material can be assembled into symmetric and asymmetric super-capacitors. The asymmetric supercapacitor uses PEDOT + Lignin/PAAQ as positive electrode and PEDOT/PAAQ as negative electrode, and exhibits superior electrochemical performance due to the synergistic effect of the two electrodes, which leads to a specific capacitance of 74 F g(-1). It can be reversibly cycled in the voltage range of 0-0.7 V. More than 80% capacitance is retained after 10 000 cycles. These remarkable features reveal the exciting potential of a full organic energy storage device with long cycle life.

  • 18.
    Ajjan Godoy, Fátima Nadia
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Biohybrid Polymer Electrodes for Renewable Energy Storage2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Daily and seasonally fluctuating energy supply and demand requires adequate energy storage solutions. In recent years electrochemical supercapacitors have attracted considerable attention due to their ability to both store and deliver electrical energy efficiently. Our efforts are focused on developing and optimizing sustainable organic electrode materials for supercapacitors based on renewable bioorganic materials, offering a cheap, environmentally friendly and scalable alternative to store energy. In particular, we are using the second most abundant biopolymer in nature, lignin (Lig), which is an insulating material. However, when used in combination with electroactive and conducting polymers such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), the biohybrid electrodes PPy/Lig and PEDOT/Lig display significantly enhanced energy storage performance as compared to the pristine conducting polymers without the lignin. Redox cyclic voltammetry and galvanostatic charge/discharge measurements indicate that the enhanced performance is due to the additional pseudocapacitance generated by the quinone moieties in lignin. Moreover, a conjugated redoxpolymer poly(aminoanthraquinone) PAAQ, with intrinsic quinone functions and excellentstability, has been combined with lignin and PEDOT resulting in a trihybrid bioelectrode. PEDOT compensates the low conductivity of PAAQ and provides electrical pathways to the quinone groups. The electrochemically generated quinones undergo a two electron, two protonredox process within the biohybrid electrodes as revealed by FTIR spectroelectrochemistry.These remarkable features reveal the exciting potential of a full organic energy storage device with long cycle life. Therefore, supercapacitor devices were designed in symmetric or asymmetric two electrode configuration. The best electrochemical performance was achieved by the asymmetric supercapacitor based on PEDOT+Lignin/PAAQ as the positive electrode and PEDOT/PAAQ as the negative electrode. This device exhibits superior electrochemical performance and outstanding stability after 10000 charge/discharge cycles due to the synergistic effect of the two electrodes. Finally, we have characterized the response of this supercapacitor device when charged with the intermittent power supply from an organic photovoltaic module. We have designed charging/discharging conditions such that reserve power was available in the storage device at all times. This work has resulted in an inexpensive fully organic system witht he dual function of energy conversion and storage.

    List of papers
    1. Biopolymer hybrid electrodes for scalable electricity storage
    Open this publication in new window or tab >>Biopolymer hybrid electrodes for scalable electricity storage
    2016 (English)In: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 3, no 3, p. 174-185Article, review/survey (Refereed) Published
    Abstract [en]

    Powering the future, while maintaining a cleaner environment and a strong socioeconomic growth, is going to be one of the biggest challenges faced by mankind in the 21st century. The first step in overcoming the challenge for a sustainable future is to use energy more efficiently so that the demand for fossil fuels can be reduced drastically. The second step is a transition from the use of fossil fuels to renewable energy sources. In this sense, organic electrode materials are becoming increasingly attractive compared to inorganic electrode materials which have reached a plateau regarding performance and have severe drawbacks in terms of cost, safety and environmental friendliness. Using organic composites based on conducting polymers, such as polypyrrole, and abundant, cheap and naturally occurring biopolymers rich in quinones, such as lignin, has recently emerged as an interesting alternative. These materials, which exhibit electronic and ionic conductivity, provide challenging opportunities in the development of new charge storage materials. This review presents an overview of recent developments in organic biopolymer composite electrodes as renewable electroactive materials towards sustainable, cheap and scalable energy storage devices.

    Place, publisher, year, edition, pages
    ROYAL SOC CHEMISTRY, 2016
    National Category
    Other Environmental Engineering
    Identifiers
    urn:nbn:se:liu:diva-128741 (URN)10.1039/c5mh00261c (DOI)000375296600002 ()
    Note

    Funding Agencies|Knut and Alice Wallenberg Foundation; Wallenberg Scholar grant

    Available from: 2016-05-31 Created: 2016-05-30 Last updated: 2017-11-30
    2. Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material
    Open this publication in new window or tab >>Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material
    Show others...
    2015 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, no 24, p. 12927-12937Article in journal (Refereed) Published
    Abstract [en]

    We report spectroelectrochemical studies to investigate the charge storage mechanism of composite polypyrrole/lignin electrodes. Renewable bioorganic electrode materials were produced by electropolymerization of pyrrole in the presence of a water-soluble lignin derivative acting as a dopant. The resulting composite exhibited enhanced charge storage abilities due to a lignin-based faradaic process, which was expressed after repeated electrochemical redox of the material. The in situ FTIR spectroelectrochemistry results show the formation of quinone groups, and reversible oxidation-reduction of these groups during charge-discharge experiments in the electrode materials. The most significant IR bands include carbonyl absorption near 1705 cm(-1), which is attributed to the creation of quinone moieties during oxidation, and absorption at 1045 cm(-1) which is due to hydroquinone moieties.

    Place, publisher, year, edition, pages
    ROYAL SOC CHEMISTRY, 2015
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:liu:diva-120069 (URN)10.1039/c5ta00788g (DOI)000356022800044 ()
    Note

    Funding Agencies|Knut and Alice Wallenberg foundation; Marie Curie network Renaissance; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]

    Available from: 2015-07-06 Created: 2015-07-06 Last updated: 2017-12-04
    3. High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors
    Open this publication in new window or tab >>High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors
    Show others...
    2016 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 5, p. 1838-1847Article in journal (Refereed) Published
    Abstract [en]

    Developing sustainable organic electrode materials for energy storage applications is an urgent task. We present a promising candidate based on the use of lignin, the second most abundant biopolymer in nature. This polymer is combined with a conducting polymer, where lignin as a polyanion can behave both as a dopant and surfactant. The synthesis of PEDOT/Lig biocomposites by both oxidative chemical and electrochemical polymerization of EDOT in the presence of lignin sulfonate is presented. The characterization of PEDOT/Lig was performed by UV-Vis-NIR spectroscopy, FTIR infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, cyclic voltammetry and galvanostatic charge-discharge. PEDOT doped with lignin doubles the specific capacitance (170.4 F g(-1)) compared to reference PEDOT electrodes (80.4 F g(-1)). The enhanced energy storage performance is a consequence of the additional pseudocapacitance generated by the quinone moieties in lignin, which give rise to faradaic reactions. Furthermore PEDOT/Lig is a highly stable biocomposite, retaining about 83% of its electroactivity after 1000 charge/discharge cycles. These results illustrate that the redox doping strategy is a facile and straightforward approach to improve the electroactive performance of PEDOT.

    Place, publisher, year, edition, pages
    ROYAL SOC CHEMISTRY, 2016
    National Category
    Biological Sciences
    Identifiers
    urn:nbn:se:liu:diva-125323 (URN)10.1039/c5ta10096h (DOI)000368839200035 ()
    Note

    Funding Agencies|Power Papers project from the Knut and Alice Wallenberg foundation; Wallenberg Scholar grant from the Knut and Alice Wallenberg foundation; Marie Curie network Renaissance (NA); European Research Council by Starting Grant Innovative Polymers for Energy Storage (iPes) [306250]; Basque Government

    Available from: 2016-02-23 Created: 2016-02-19 Last updated: 2017-11-30
    Download (pdf)
    omslag
    Download (jpg)
    presentationsbild
  • 19.
    Almquist, Ben
    et al.
    Imperial Coll London, England.
    Chen, Chun Chao
    Shanghai Jiao Tong Univ, Peoples R China.
    Croissant, Jonas
    Univ New Mexico, NM 87131 USA.
    Handoko, Albertus
    Agcy Sci Technol and Res, Singapore.
    Kieslich, Gregor
    Tech Univ Munich, Germany.
    Liu, Xiaoke
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Shanmugam, Maheswaran
    Indian Inst Technol, India.
    Shi, Linqi
    Nankai Univ, Peoples R China.
    Tao, Wei
    Harvard Med Sch, MA 02115 USA.
    Yu, Kai
    Univ Colorado Denver Anschutz Med Campus, CO USA.
    Outstanding Reviewers for Materials Horizons in 20192020In: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 7, no 5, p. 1207-1207Article in journal (Other academic)
    Abstract [en]

    We would like to take this opportunity to highlight the Outstanding Reviewers for Materials Horizons in 2019, as selected by the editorial team for their significant contribution to the journal.

  • 20.
    Amarasinghe Vithanage, Dimali
    et al.
    Lund University, Sweden .
    Wang, Ergang
    Chalmers University of Technology, Göteborg, Sweden.
    Wang, Zhongqiang
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Ma, Fei
    Lund University, Sweden .
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Andersson, Mats R.
    Chalmers University of Technology, Göteborg, Sweden.
    Yartsev, Arkady
    Lund University, Sweden .
    Sundström, Villy
    Lund University, Sweden .
    Pascher, Torbjörn
    Lund University, Sweden .
    Charge Carrier Dynamics of Polymer: Fullerene Blends: From Geminate to Non-Geminate Recombination2014In: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 4, no 8, article id 1301706Article in journal (Refereed)
    Abstract [en]

    The charge carrier dynamics of a new polymer-fullerene blend are examined on the femtosecond to the millisecond time scale. The full time range is globally fitted using a chemical reaction rate model that includes all key processes, charge generation, energy transfer, charge separation, and recombination, over the full 12 orders of magnitude in time and a factor of 33 in light intensity. Particular attention is paid to the charge recombination processes and it is found that they are highly material specific. Comparison of the dynamics to those of a previously studied polymer: fullerene blend reveals that while for one blend the recombination dynamics are mainly controlled by geminate recombination, the charge recombination in the presently studied polymer: fullerene blend are entirely controlled by non-geminate electron-hole recombination. Carrier density dependence of the non-geminate recombination rate is analyzed and a correlated disorder model of site energies is proposed to explain the observed dependency.

  • 21.
    Andersson, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Björk, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Tvingstedt, Kristofer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Biomolecules and conjugated polyelectrolytes in patterning2006In: NaPa spring meeting 06 Köpenhamn,2006, 2006Conference paper (Other academic)
  • 22.
    Andersson, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Björk, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Biomolecules and conjugated polyelectrolytes in patterning2006In: NaPa fall meeting 06 Glasgow,2006, 2006Conference paper (Other academic)
    Abstract [en]

      

  • 23.
    Andersson, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Åsberg, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Fransson, Sophia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    von Post, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated polyelectrolytes as reporter molecules; biochip constructed by Soft litography methods2006In: ICSM summer 06 Dublin,2006, 2006Conference paper (Other academic)
    Abstract [en]

       

  • 24.
    Andersson, L Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Charge transport and energetic disorder in polymer: fullerene blends2011In: ORGANIC ELECTRONICS, ISSN 1566-1199, Vol. 12, no 2, p. 300-305Article in journal (Refereed)
    Abstract [en]

    Mobility versus temperature measurements on two different polymer: fullerene blends intended for solar cell applications have been evaluated in terms of the energetic disorder and how this varies with stoichiometry. The charge transport is shown to be confined to the intended phases in both cases, but with fundamentally different interaction properties. In one case the energetic disorder is a function of stoichiometry for the hole transport, while it is constant and equal to that of the pure fullerene for electrons, and in the other case it is the hole transport that has a stoichiometry independent energetic disorder. Transport site dilution is argued to be present in the fixed energetic disorder system and this is offered as a partial explanation to molecular weight dependent currents in solar cells. Determination of the glass transition temperature through the use of field effect transistors is also demonstrated.

  • 25. Order onlineBuy this publication >>
    Andersson, Lars Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Electronic Transport in Polymeric Solar Cells and Transistors2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The main topic of this dissertation is electronic charge transport in polymeric and molecular organic materials and material blends intended for solar cell applications. Charge transport in polymers is a strange beast and carrier mobility is rarely a well-defined number. Measurements on different sample geometries and under different conditions tend to give different results and when everything is to be related to solar cell performance it is imperative that there is a way to correlate the results from different measurements. Polymer solar cells utilize composite materials for their function. This puts an additional twist on charge transport studies, as there will also be interaction between the different phases to take into account.

    Several measurement techniques have been used and their interrelationships as well as information on their relevance for solar cells have been investigated. Field effect transistors (FET) with an organic active layer have proved to be one of the more versatile measurement geometries and are also an interesting topic in itself. FETs are discussed both as a route for material characterization and as components. A main result correlates bias stress in organic field effect transistors with the electronic structure of the material.

    Power conversion efficiency in solar cells is discussed with respect to electrical properties. The interaction of different blend materials and the impact of stoichiometry on transport properties in the active layer have been investigated. Results indicate that charge transport properties frequently are a key determining factor for which material combinations and ratios that works best.

    Some work on the conductive properties of nano-fibers coated with semiconducting polymers has also been done and is briefly discussed. The conductive properties of nano-fibers have been studied through potential imaging.

    List of papers
    1. Non-equilibrium effects on electronic transport in organic field effect transistors
    Open this publication in new window or tab >>Non-equilibrium effects on electronic transport in organic field effect transistors
    2007 (English)In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 8, no 4, p. 423-430Article in journal (Refereed) Published
    Abstract [en]

    Non-ideal behavior in organic field effect transistors, in particular threshold voltage drift and light sensitivity, is argued to be due to intrinsic carrier dynamics. The discussion is based on the theory for hopping transport within a Gaussian density of states. Carrier concentration is shown to be of fundamental importance, and the time required to reach equilibrium at different bias is responsible for device behavior, with implications for mobility evaluation. Experimental results from various conjugated polymers in a field effect transistor illustrate the theory.

    Keywords
    Organic field-effect transistors (OFETs), Conjugated polymer, Hysteresis, Charge transport, Gaussian disorder model, Bias stress
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-12822 (URN)10.1016/j.orgel.2007.02.001 (DOI)
    Available from: 2007-12-05 Created: 2007-12-05 Last updated: 2017-12-14
    2. Bipolar transport observed through extraction currents on organic photovoltaic blend materials
    Open this publication in new window or tab >>Bipolar transport observed through extraction currents on organic photovoltaic blend materials
    2006 (English)In: Applied Physics Letters, ISSN 0003-6951, Vol. 89, p. 142111-Article in journal (Refereed) Published
    Abstract [en]

    Both electron and hole mobilities have been simultaneously measured through charge extraction by linearly increasing voltage on polymer heterojunction solar cells with varying stoichiometry of polymer and acceptor. The polymer is a low band gap copolymer of fluorene, thiophene, and electron accepting groups named APFO-Green 5, and the acceptor is [6,6]-phenyl-C61-butyric acid methylester. Results are correlated to field effect transistor measurements on the same material system. A monotonous increase in mobility for both carrier types is observed with increased acceptor loading.

    Keywords
    polymer blends, organic semiconductors, fullerene compounds, solar cells, electron mobility, hole mobility, stoichiometry, carrier density
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-12823 (URN)10.1063/1.2360199 (DOI)
    Available from: 2007-12-05 Created: 2007-12-05
    3. Stoichiometry, mobility, and performance in bulk heterojunction solar cells
    Open this publication in new window or tab >>Stoichiometry, mobility, and performance in bulk heterojunction solar cells
    2007 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 91, no 7, p. 071108-Article in journal (Refereed) Published
    Abstract [en]

    Bipolar transport in blends of a copolymer of fluorene, thiophene and electron accepting groups, and the substituted fullerene [6,6]-phenyl-C61-butyric acid methylester have been studied through charge extraction by linearly increasing voltage on solar cells and with field effect transistors. Between 10% and 90% polymer has been used and the results show a clear correlation to solar cell performance. Optimal solar cells comprise 20% polymer and have a power conversion efficiency of 3.5%. The electron mobility is increasing strongly with fullerene content, but is always lower than the hole mobility, thus explaining the low amount of polymer in optimized devices.

    Keywords
    electron mobility, field effect transistors, fullerenes, hole mobility, polymer blends, solar cells, stoichiometry
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-12824 (URN)10.1063/1.2771524 (DOI)
    Available from: 2007-12-05 Created: 2007-12-05 Last updated: 2017-12-14
    4. Acceptor influence on hole mobility in fullerene blends with alternating copolymers of fluorene
    Open this publication in new window or tab >>Acceptor influence on hole mobility in fullerene blends with alternating copolymers of fluorene
    2006 (English)In: Applied Physics Letters, ISSN 0003-6951, Vol. 88, p. 082103-Article in journal (Refereed) Published
    Abstract [en]

    Hole mobility in polyfluorene/fullerene blends has been studied with field effect transistors. Two different C60 derivatives and one C70 derivative have been investigated together with two different polyfluorenes. Mobility is presented as a function of acceptor loading at ratios suitable for photovoltaics and varies between 10–3 and 10–5  cm2  V–1  s–1 depending on the polymer/acceptor combination. The hole mobility is increased in blends with the commonly used acceptor [6-6]-phenyl-C61-butyric acid methylester (PCBM). With related C60 and C70 derivatives the hole mobility is decreased under the same circumstances.

    Keywords
    fullerenes, polymer blends, hole mobility, impurities, field effect transistors
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-12825 (URN)10.1063/1.2177663 (DOI)
    Available from: 2007-12-05 Created: 2007-12-05
    5. Intrinsic and extrinsic influences on the temperature dependence of mobility in conjugated polymers
    Open this publication in new window or tab >>Intrinsic and extrinsic influences on the temperature dependence of mobility in conjugated polymers
    Show others...
    2008 (English)In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 9, no 5, p. 569-574Article in journal (Refereed) Published
    Abstract [en]

    The temperature dependence of charge carrier mobility in conjugated polymers and their blends with fullerenes is investigated with different electrical methods, through field effect transistor (FET), space charge limited current (SCLC) and charge extraction (CELIV) measurements. Simple models, such as the Gaussian disorder model (GDM), are shown to accurately predict the temperature behavior, and a good correlation between the different measurement methods is obtained. Inconsistent charge carrier concentrations in the modeling are explained through intrinsic non-equilibrium effects, and are responsible for the limited applicability of existing numerical models. A severe extrinsic influence from water in FETs with a hydrophilic insulator interface is also demonstrated. The presence of water leads to a significant overestimate of the disorder in the materials from measurements close to room temperature and erratic behavior in the 150-350 K range. To circumvent this problem it is shown to be necessary to measure under ultra high vacuum (UHV) conditions. © 2008 Elsevier B.V. All rights reserved.

    Place, publisher, year, edition, pages
    Elsevier, 2008
    Keywords
    Electrical transport, Field effect transistor, Fullerene, Mobility, Polymer, Temperature dependence
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-50043 (URN)10.1016/j.orgel.2008.03.002 (DOI)
    Note

    The previous status of this article was Manuscript.

    Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-12Bibliographically approved
    Download full text (pdf)
    FULLTEXT01
    Download (pdf)
    COVER01
  • 26.
    Andersson, Lars Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Acceptor influence on hole mobility in fullerene blends with alternating copolymers of fluorene2006In: Applied Physics Letters, ISSN 0003-6951, Vol. 88, p. 082103-Article in journal (Refereed)
    Abstract [en]

    Hole mobility in polyfluorene/fullerene blends has been studied with field effect transistors. Two different C60 derivatives and one C70 derivative have been investigated together with two different polyfluorenes. Mobility is presented as a function of acceptor loading at ratios suitable for photovoltaics and varies between 10–3 and 10–5  cm2  V–1  s–1 depending on the polymer/acceptor combination. The hole mobility is increased in blends with the commonly used acceptor [6-6]-phenyl-C61-butyric acid methylester (PCBM). With related C60 and C70 derivatives the hole mobility is decreased under the same circumstances.

  • 27.
    Andersson, Lars Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Non-equilibrium effects on electronic transport in organic field effect transistors2007In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 8, no 4, p. 423-430Article in journal (Refereed)
    Abstract [en]

    Non-ideal behavior in organic field effect transistors, in particular threshold voltage drift and light sensitivity, is argued to be due to intrinsic carrier dynamics. The discussion is based on the theory for hopping transport within a Gaussian density of states. Carrier concentration is shown to be of fundamental importance, and the time required to reach equilibrium at different bias is responsible for device behavior, with implications for mobility evaluation. Experimental results from various conjugated polymers in a field effect transistor illustrate the theory.

  • 28.
    Andersson, Lars Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Bipolar transport observed through extraction currents on organic photovoltaic blend materials2006In: Applied Physics Letters, ISSN 0003-6951, Vol. 89, p. 142111-Article in journal (Refereed)
    Abstract [en]

    Both electron and hole mobilities have been simultaneously measured through charge extraction by linearly increasing voltage on polymer heterojunction solar cells with varying stoichiometry of polymer and acceptor. The polymer is a low band gap copolymer of fluorene, thiophene, and electron accepting groups named APFO-Green 5, and the acceptor is [6,6]-phenyl-C61-butyric acid methylester. Results are correlated to field effect transistor measurements on the same material system. A monotonous increase in mobility for both carrier types is observed with increased acceptor loading.

  • 29.
    Andersson, Lars Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Stoichiometry, mobility, and performance in bulk heterojunction solar cells2007In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 91, no 7, p. 071108-Article in journal (Refereed)
    Abstract [en]

    Bipolar transport in blends of a copolymer of fluorene, thiophene and electron accepting groups, and the substituted fullerene [6,6]-phenyl-C61-butyric acid methylester have been studied through charge extraction by linearly increasing voltage on solar cells and with field effect transistors. Between 10% and 90% polymer has been used and the results show a clear correlation to solar cell performance. Optimal solar cells comprise 20% polymer and have a power conversion efficiency of 3.5%. The electron mobility is increasing strongly with fullerene content, but is always lower than the hole mobility, thus explaining the low amount of polymer in optimized devices.

  • 30.
    Andersson, Mats R.
    et al.
    Chalmers.
    Lindgren, Lars
    Chalmers.
    Perzon, Erik
    Chalmers.
    Mammo, Wendimagegn
    Chalmers.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    PMSE 413-Solar cells of low band gap conjugated polymers in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, vol 236, issue , pp 413-PMSE -2008In: ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC , 2008, Vol. 236, p. 413-Conference paper (Refereed)
    Abstract [en]

    n/a

  • 31.
    Andersson, Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Hedstrom, Svante
    Lund University, Sweden .
    Persson, Petter
    Lund University, Sweden .
    Conformation sensitive charge transport in conjugated polymers2013In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 103, no 21, p. 213303-Article in journal (Refereed)
    Abstract [en]

    Temperature dependent charge carrier mobility measurements using field effect transistors and density functional theory calculations are combined to show how the conformation dependent frontier orbital delocalization influences the hole-and electron mobilities in a donor-acceptor based polymer. A conformationally sensitive lowest unoccupied molecular orbital results in an electron mobility that decreases with increasing temperature above room temperature, while a conformationally stable highest occupied molecular orbital is consistent with a conventional hole mobility behavior and also proposed to be one of the reasons for why the material works well as a hole transporter in amorphous bulk heterojunction solar cells.

    Download full text (pdf)
    fulltext
  • 32.
    Andersson, Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Hsu, Yu-Te
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Health Sciences.
    Vandewal, Koen
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Sieval, Alexander B
    Solenne BV, Groningen, The Netherlands.
    Andersson, Mats R.
    Chalmers University of Technology, Göteborg, Sweden.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Mixed C60/C70 based fullerene acceptors in polymer bulk-heterojunction solar cells2012In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 13, no 12, p. 2856-2864Article in journal (Refereed)
    Abstract [en]

    Different mixtures of identically substituted C60 and C70 based fullerens have been used as acceptors in three polymer: fullerene systems that strongly express various performance limiting aspects of bulk heterojunction solar cells. Results are correlated with, and discussed in terms of e.g. morphology, charge separation, and charge transport. In these systems, there appears to be no relevant differences in either mobility or energy level positions between the identically substituted C60 and C70 based fullerenes tested. Examples of how fullerene mixtures influence the nano-morphology of the active layer are given. An upper limit to the open circuit voltage that can be obtained with fullerenes is also suggested.

  • 33.
    Andersson, Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs , Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    From short to long - Optical and electrical transients in photovoltaic bulk heterojunctions of polyfluorene/fullerenes2009In: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 357, no 1-3, p. 120-123Article in journal (Refereed)
    Abstract [en]

    We combine results from transient optical absorption in a bulk heterojunction polymer donor/fullerene acceptor material, obtained in the optical range as well as in the THz range, with results from electrical transients after a short light pulse, to present a unified interpretation of the transport of charge after the very first act of photoinduced charge transfer. We find that the mobility of charges is initially very high, but dramatically reduced with time, to arrive at values three orders of magnitude lower. We show that this can be understood as a consequence of the transport of hot charges by hopping through the density of states, from higher to lower energies.

  • 34.
    Andersson, Mattias L
    et al.
    Lund University, Sweden .
    Melianas, Armantas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Infahasaeng, Yingyot
    Lund University, Sweden .
    Tang, Zheng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Yartsev, Arkady
    Lund University, Sweden .
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Sundstrom, Villy
    Lund University, Sweden .
    Unified Study of Recombination in Polymer:Fullerene Solar Cells Using Transient Absorption and Charge-Extraction Measurements2013In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 4, no 12, p. 2069-2072Article in journal (Refereed)
    Abstract [en]

    Recombination in the well-performing bulk heterojunction solar cell blend between the conjugated polymer TQ-1 and the substituted fullerene PCBM has been investigated with pump-probe transient absorption and charge extraction of photo-generated carriers (photo-CELIV). Both methods are shown to generate identical and overlapping data under appropriate experimental conditions. The dominant type of recombination is bimolecular with a rate constant of 7 x 10(-12) cm(-3) s(-1). This recombination rate is shown to be fully consistent with solar cell performance. Deviations from an ideal bimolecular recombination process, in this material system only observable at high pump fluences, are explained with a time-dependent charge-carrier mobility, and the implications of such a behavior for device development are discussed.

  • 35.
    Andersson, Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Mueller, Christian
    Esfera UAB.
    Badada, Bekele H
    University of Cincinnati.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Wuerful, Uli
    Fraunhofer Institute Solar Energy Syst ISE.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Mobility and fill factor correlation in geminate recombination limited solar cells2011In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 110, no 2, p. 024509-Article in journal (Refereed)
    Abstract [en]

    Empirical data for the fill factor as a function of charge carrier mobility for two different polymer: fullerene systems is presented and analyzed. The results indicate that charge extraction depth limitations and space charge effects are inconsistent with the observed behavior, and the decrease in the fill factor is, instead, attributed to the field-dependent charge separation and geminate recombination. A solar cell photocurrent limited by the Onsager-Braun charge transfer exciton dissociation is shown to be able to accommodate the experimental observations. Charge dissociation limited solar cells always benefit from increased mobilities, and the negative contribution from the reduced charge separation is shown to be much more important for the fill factor in these material systems than any adverse effects from charge carrier extraction depth limitations or space charge effects due to unbalanced mobilities. The logarithmic dependence of the fill factor on the mobility for such a process is also shown to imply that simply increasing the mobilities is an impractical way to reach very high fill factors under these conditions since unrealistically high mobilities are required. A more controlled morphology is, instead, argued to be necessary for high performance.

    Download full text (pdf)
    fulltext
  • 36.
    Andersson, Mattias
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Osikowicz, Wojciech
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    Jakobsson, Fredrik L.E.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Lindgren, L.
    Polymer Chemistry, Department of Materials and Surface Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Andersson, M.R.
    Polymer Chemistry, Department of Materials and Surface Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Intrinsic and extrinsic influences on the temperature dependence of mobility in conjugated polymers2008In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 9, no 5, p. 569-574Article in journal (Refereed)
    Abstract [en]

    The temperature dependence of charge carrier mobility in conjugated polymers and their blends with fullerenes is investigated with different electrical methods, through field effect transistor (FET), space charge limited current (SCLC) and charge extraction (CELIV) measurements. Simple models, such as the Gaussian disorder model (GDM), are shown to accurately predict the temperature behavior, and a good correlation between the different measurement methods is obtained. Inconsistent charge carrier concentrations in the modeling are explained through intrinsic non-equilibrium effects, and are responsible for the limited applicability of existing numerical models. A severe extrinsic influence from water in FETs with a hydrophilic insulator interface is also demonstrated. The presence of water leads to a significant overestimate of the disorder in the materials from measurements close to room temperature and erratic behavior in the 150-350 K range. To circumvent this problem it is shown to be necessary to measure under ultra high vacuum (UHV) conditions. © 2008 Elsevier B.V. All rights reserved.

  • 37.
    Andersson, M.R.
    et al.
    Department of Polymer Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Johansson, D.M.
    Department of Organic Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Theander, M.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    The effect of the polymerisation temperature on molecular weight and photoluminescence quantum yield for a phenylsubstituted PPV2001In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 119, no 1-3, p. 63-64Article in journal (Refereed)
    Abstract [en]

    We present the synthesis and characterisation of poly(2-(2',5'-bis(2?-ethylhexyloxy)phenyl)-1, 4-phenylenevinylene) (BEHP-PPV) polymerised under different conditions. The photoluminescence efficiencies (?PL) in the solid state of BEHP-PPV obtained at 144°C and 0°C are 28% and 60%, respectively. Polymerisation temperatures below 0°C decreases the molecular weight without changing the photoluminescence efficiency to any large extent.

  • 38.
    Andersson, Olof
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Maas, Joris
    Holst Ctr TNO, Netherlands.
    Gelinck, Gerwin
    Holst Ctr TNO, Netherlands; Eindhoven Univ Technol, Netherlands.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Scalable Electronic Ratchet with Over 10% Rectification Efficiency2020In: Advanced Science, E-ISSN 2198-3844, Vol. 7, no 3, article id 1902428Article in journal (Refereed)
    Abstract [en]

    Electronic ratchets use a periodic potential with broken inversion symmetry to rectify undirected (electromagnetic, EM) forces and can in principle be a complement to conventional diode-based designs. Unfortunately, ratchet devices reported to date have low or undetermined power conversion efficiencies, hampering applicability. Combining experiments and numerical modeling, field-effect transistor-based ratchets are investigated in which the driving signal is coupled into the accumulation layer via interdigitated finger electrodes that are capacitively coupled to the field effect transistor channel region. The output current-voltage curves of these ratchets can have a fill factor amp;gt;amp;gt; 0.25 which is highly favorable for the power output. Experimentally, a maximum power conversion efficiency well over 10% at 5 MHz, which is the highest reported value for an electronic ratchet, is determined. Device simulations indicate this number can be increased further by increasing the device asymmetry. A scaling analysis shows that the frequency range of optimal performance can be scaled to the THz regime, and possibly beyond, while adhering to technologically realistic parameters. Concomitantly, the power output density increases from approximate to 4 W m(-2) to approximate to 1 MW m(-2). Hence, this type of ratchet device can rectify high-frequency EM fields at reasonable efficiencies, potentially paving the way for actual use as energy harvester.

  • 39. Order onlineBuy this publication >>
    Andersson, Viktor
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Electron tomography and optical modelling for organic solar cells2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Organic solar cells using carbon based materials have the potential to deliver cheap solar electricity. The aim is to be able to produce solar cells with common printing techniques on flexible substrates, and as organic materials can be made soluble in various solvents, they are well adapted to such techniques. There is a large variation of organic materials produced for solar cells, both small molecules and polymers. Alterations of the molecular structure induce changes of the electrical and optical properties, such as band gap, mobility and light absorption. During the development of organic solar cells, the step of mixing of an electron donor and an electron acceptor caused a leap in power conversion efficiency improvement, due to an enhanced exciton dissociation rate. Top performing organic solar cells now exhibit a power conversion efficiency of over 10%. Currently, a mix of a conjugated polymer, or smaller molecule, and a fullerene derivative are commonly used as electron donor and acceptor. Here, the blend morphology plays an important role. Excitons formed in either of the donor or acceptor phase need to diffuse to the vicinity of the donor-acceptor interface to efficiently dissociate. Exciton diffusion lengths in organic materials are usually in the order of 5-10 nm, so the phases should not be much larger than this, for good exciton quenching. These charges must also be extracted, which implies that a network connected to the electrodes is needed. Consequently, a balance of these demands is important for the production of efficient organic solar cells.

    Morphology has been found to have a significant impact on the solar cell behaviour and has thus been widely studied. The aim of this work has been to visualize the morphology of active layers of organic solar cells in three dimensions by the use of electron tomography. The technique has been applied to materials consisting of conjugated polymers blended with fullerene derivatives. Though the contrast in these blends is poor, three-dimensional reconstructions have been produced, showing the phase formation in three dimensions at the scale of a few nanometres. Several material systems have been investigated and preparation techniques compared.

    Even if excitons are readily dissociated and paths for charge extraction exist, the low charge mobilities of many materials put a limit on film thickness. Although more light could be absorbed by increased film thickness, performance is hampered due to increased charge recombination. A large amount of light is thus reflected and not used for energy conversion. Much work has been put into increasing the light absorption without hampering the solar cell performance. Aside from improved material properties, various light trapping techniques have been studied. The aim is here to increase the optical path length in the active layer, and in this way improve the absorption without enhanced extinction coefficient.

    At much larger dimensions, light trapping in solar cells with folded configuration has been studied by the use of optical modelling. An advantage of these V-cells is that two materials with complementing optical properties may be used together to form a tandem solar cell, which may be connected in either serial or parallel configuration, with maintained light trapping feature. In this work optical absorption in V-cells has been modelled and compared to that of planar ones.

    List of papers
    1. Imaging of the 3D Nanostructure of a Polymer Solar Cell by Electron Tomography
    Open this publication in new window or tab >>Imaging of the 3D Nanostructure of a Polymer Solar Cell by Electron Tomography
    2009 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 9, no 2, p. 853-855Article in journal (Refereed) Published
    Abstract [en]

    Electron tomography has been used for analyzing the active layer in a polymer solar cell, a bulk heterojunction of an alternating copolymer of fluorene and a derivative of fullerene. The method supplies a three-dimensional representation of the morphology of the film, where domains with different scattering properties may be distinguished. The reconstruction shows good contrast between the two phases included in the film and demonstrates that electron tomography is an adequate tool for investigations of the three-dimensional nanostructure of the amorphous materials used in polymer solar cells.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-16961 (URN)10.1021/nl803676e (DOI)
    Available from: 2009-02-28 Created: 2009-02-27 Last updated: 2017-12-13
    2. Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance
    Open this publication in new window or tab >>Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance
    Show others...
    2009 (English)In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 42, no 13, p. 4646-4650Article in journal (Refereed) Published
    Abstract [en]

    Control of the nanoscale morphology of the donor-acceptor material blends inorganic solar Cells is critical for optimizing the photovoltaic performances. The influence of intrinsic (acceptor materials) and extrinsic (donor:acceptor weight ratio, substrate, solvent) parameters was investigated, by atomic force microscopy (AFM) and electron tomography (ET), on the nanoscale phase separation of blends of a low-band-gap alternating polyfluorene copolymers (APFO-Green9) with [6,6]-phenyl-C-71-butyric acid methyl ester ([70]PCBM). The photovoltaic performances display an optimal efficiency for the device elaborated with a 1:3 APFO-Green polymer:[70][PCBM weight ratio and spin-coated from chloroform solution. The associated active layer morphology presents small phase-separated domains which is a good balance between as a large interfacial donor-acceptor area and Continuous paths of the donor and acceptor phases to the electrodes.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-20133 (URN)10.1021/ma802457v (DOI)
    Available from: 2009-08-31 Created: 2009-08-31 Last updated: 2017-12-13Bibliographically approved
    3. The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices
    Open this publication in new window or tab >>The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices
    Show others...
    2011 (English)In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 12, no 9, p. 1544-1551Article in journal (Refereed) Published
    Abstract [en]

    How 1,8-diiodooctane (DIO) enhances performance of polymer solar cells based on polymer HXS-1 and fullerene [6,6]-phenyl C(71)-butyric acid methyl ester (PC(71)BM) from 3.6% to 5.4% is scrutinized with several techniques by comparing devices or blend films spin-coated from dichlorobenzene (DCB) to those from DCB/DIO (97.5:2.5 v/v). Morphology of blend films is examined with atomic force microscopy (AFM), transmission electron microscopy (TEM) and electron tomography (3-D TEM), respectively. Charge generation and recombination is studied with photoluminescence, and charge transport with field effect transistors. The morphology with domain size in 10-20 nm and vertical elongated clusters formed in DIO system is supposed to facilitate charge transport and minimize charge carrier recombination, which are the main reasons for enhancing power conversion efficiency (PCE) from 3.6% (without DIO) to 5.4% (with DIO). Furthermore, a two year inspection shows no significant impact of DIO on the shelf-stability of the solar cells. No visible degradation in the second year indicates that the morphology of the active layers in the devices is relatively stable after initial relaxation in the first year.

    Place, publisher, year, edition, pages
    Elsevier Science B.V., Amsterdam., 2011
    Keywords
    Polymer solar cell; Additive; Morphology; Shelf-stability; Phase separation
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-69770 (URN)10.1016/j.orgel.2011.05.028 (DOI)000292685700013 ()
    Note

    Original Publication: Weiwei Li, Yi Zhou, Viktor Andersson, Mattias Andersson, Yi Thomann, Clemens Veit, Kristofer Tvingstedt, Ruiping Qin, Zhishan Bo, Olle Inganäs, Uli Wuerfel and Fengling Zhang, The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices, 2011, Organic electronics, (12), 9, 1544-1551. http://dx.doi.org/10.1016/j.orgel.2011.05.028 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/

    Available from: 2011-08-10 Created: 2011-08-08 Last updated: 2017-12-08Bibliographically approved
    4. Lateral Phase Separation Gradients in Spin-Coated Thin Films of High-Performance Polymer: Fullerene Photovoltaic Blends
    Open this publication in new window or tab >>Lateral Phase Separation Gradients in Spin-Coated Thin Films of High-Performance Polymer: Fullerene Photovoltaic Blends
    Show others...
    2011 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 21, no 16, p. 3169-3175Article in journal (Refereed) Published
    Abstract [en]

    In this study, it is demonstrated that a finer nanostructure produced under a rapid rate of solvent removal significantly improves charge separation in a high-performance polymer: fullerene bulk-heterojunction blend. During spin-coating, variations in solvent evaporation rate give rise to lateral phase separation gradients with the degree of coarseness decreasing away from the center of rotation. As a result, across spin-coated thin films the photocurrent at the first interference maximum varies as much as 25%, which is much larger than any optical effect. This is investigated by combining information on the surface morphology of the active layer imaged by atomic force microscopy, the 3D nanostructure imaged by electron tomography, film formation during the spin coating process imaged by optical interference and photocurrent generation distribution in devices imaged by a scanning light pulse technique. The observation that the nanostructure of organic photovoltaic blends can strongly vary across spin-coated thin films will aid the design of solvent mixtures suitable for high molecular-weight polymers and of coating techniques amenable to large area processing.

    Place, publisher, year, edition, pages
    Wiley-VCH Verlag Berlin, 2011
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-70526 (URN)10.1002/adfm.201100566 (DOI)000294166200019 ()
    Note

    Funding Agencies|Swedish Energy Agency||Spanish Ministerio de Ciencia e Innovacion||

    Available from: 2011-09-12 Created: 2011-09-12 Last updated: 2017-12-08Bibliographically approved
    5. Morphology of organic electronic materials imaged via electron tomography
    Open this publication in new window or tab >>Morphology of organic electronic materials imaged via electron tomography
    2012 (English)In: Journal of Microscopy, ISSN 0022-2720, E-ISSN 1365-2818, Vol. 247, no 3, p. 277-287Article in journal (Refereed) Published
    Abstract [en]

    Several organic materials and blends have been studied with the use of electron tomography. Tomography reconstructions of active layers of organic solar cells, where various preparation techniques have been used, have been analysed and compared to device behaviour. In addition, materials with predefined structures, including contrast enhancing features, have been studied and double tilt data collection has been employed to improve reconstructions. Small changes in preparation procedures may lead to large differences in morphology and device performance, and the results also indicate a complex relation between these.

    Place, publisher, year, edition, pages
    Wiley, 2012
    Keywords
    Electron tomography, morphology, organic electronics, organic solar cell
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-72907 (URN)10.1111/j.1365-2818.2012.03643.x (DOI)000307968600008 ()
    Note

    On the day of the defence date the status of this article was Manuscript.

    Available from: 2011-12-09 Created: 2011-12-09 Last updated: 2017-12-08Bibliographically approved
    6. Optical modeling of a folded organic solar cell
    Open this publication in new window or tab >>Optical modeling of a folded organic solar cell
    2008 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 103, no 9, p. 094520-Article in journal (Refereed) Published
    Abstract [en]

    The optical behavior of a reflective tandem solar cell (V cell) is modeled by means of finite element method (FEM) simulations. The absorption of solar light in the active material as well as in both electrode layers is calculated. The FEM solves the electromagnetic wave equation on the entire defined geometry, resulting in the consideration of interference effects, as well as effects of refraction and reflection. Both single cells and tandem cells are modeled and confirmed to be in accordance with reflectance measurements. Energy dissipation in the active layers is studied as a function of layer thickness and folding angle, and the simulations clearly display the advantage of the light trapping feature of folded cells. This is especially prominent in cells with thinner active layers, where folding induces absorption in the active layer equivalent to that of much thicker cells.

    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-17205 (URN)10.1063/1.2917062 (DOI)
    Available from: 2009-03-10 Created: 2009-03-10 Last updated: 2017-12-13Bibliographically approved
    7. Comparative study of organic thin film tandem solar cells in alternative geometries
    Open this publication in new window or tab >>Comparative study of organic thin film tandem solar cells in alternative geometries
    2008 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 104, no 12, p. 124508-Article in journal (Refereed) Published
    Abstract [en]

    Optical modeling of one folded tandem solar cell and four types of stacked tandem solar cells has been performed using the finite element method and the transfer matrix method for the folded cell and the stacked cells, respectively. The results are analyzed by comparing upper limits for short circuit currents and power conversion efficiencies. In the case of serial connected tandems all of the five cell types may be compared, and we find that the folded cells are comparable to stacked tandem cells in terms of currents and power conversion efficiencies.

    Keywords
    finite element analysis, power conversion, solar cells, thin film devices
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-16513 (URN)10.1063/1.3050346 (DOI)
    Available from: 2009-01-30 Created: 2009-01-30 Last updated: 2017-12-14Bibliographically approved
    8. Full day modelling of V-shaped organic solar cell
    Open this publication in new window or tab >>Full day modelling of V-shaped organic solar cell
    2011 (English)In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 85, no 6, p. 1257-1263Article in journal (Refereed) Published
    Abstract [en]

    Folded and planar solar cells are examined with optical simulations, with the finite element method. The maximum photocurrent densities during the full day are compared between cells of different geometries and tilting angles. The change of incident angle and spectrum over time are handled in this analysis. The results show that the light trapping effect of the folded cell makes these cells show higher maximum photocurrent densities than the planar cells during all hours of the day. This is the case for both single and tandem cells. The results also indicate that balancing the currents in the tandem cells by adjusting the active layer thickness may be more cumbersome with the folded tandem cells than the stacked planar cells.

    Place, publisher, year, edition, pages
    Elsevier Science B.V., Amsterdam., 2011
    Keywords
    Organic solar cell; Tandem cell; Light trapping
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-69881 (URN)10.1016/j.solener.2010.10.017 (DOI)000291832600012 ()
    Available from: 2011-08-09 Created: 2011-08-08 Last updated: 2017-12-08
    9. An optical spacer is no panacea for light collection in organic solar cells
    Open this publication in new window or tab >>An optical spacer is no panacea for light collection in organic solar cells
    2009 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 94, no 4, p. 043302-Article in journal (Refereed) Published
    Abstract [en]

    The role of an optical spacer layer has been examined by optical simulations of organic solar cells with various bandgaps. The simulations have been performed with the transfer matrix method and the finite element method. The results show that no beneficial effect can be expected by adding an optical spacer to a solar cell with an already optimized active layer thickness.

    Keywords
    energy gap, finite element analysis, organic semiconductors, solar cells
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-16885 (URN)10.1063/1.3073710 (DOI)
    Available from: 2009-02-22 Created: 2009-02-20 Last updated: 2017-12-13Bibliographically approved
    Download full text (pdf)
    Electron tomography and optical modelling for organic solar cells
    Download (pdf)
    omslag
  • 40.
    Andersson, Viktor
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Optical Optimization of V Tandem Cell2008In: SPIE Photonics,2008, 2008Conference paper (Other academic)
    Abstract [en]

      

  • 41.
    Andersson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Herland, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Masich, Sergej
    Karolinska Institutet.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Imaging of the 3D Nanostructure of a Polymer Solar Cell by Electron Tomography2009In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 9, no 2, p. 853-855Article in journal (Refereed)
    Abstract [en]

    Electron tomography has been used for analyzing the active layer in a polymer solar cell, a bulk heterojunction of an alternating copolymer of fluorene and a derivative of fullerene. The method supplies a three-dimensional representation of the morphology of the film, where domains with different scattering properties may be distinguished. The reconstruction shows good contrast between the two phases included in the film and demonstrates that electron tomography is an adequate tool for investigations of the three-dimensional nanostructure of the amorphous materials used in polymer solar cells.

  • 42.
    Andersson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Huang, David M
    Chemical Engineering and Materials Science, University of California, Davis, Davis, California 95616, USA.
    Moule, Adam J
    Chemical Engineering and Materials Science, University of California, Davis, Davis, California 95616, USA.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    An optical spacer is no panacea for light collection in organic solar cells2009In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 94, no 4, p. 043302-Article in journal (Refereed)
    Abstract [en]

    The role of an optical spacer layer has been examined by optical simulations of organic solar cells with various bandgaps. The simulations have been performed with the transfer matrix method and the finite element method. The results show that no beneficial effect can be expected by adding an optical spacer to a solar cell with an already optimized active layer thickness.

  • 43.
    Andersson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Masich, Sergej
    Department of cell and molecular biology, Karolinska institutet, Stockholm.
    Solin, Niclas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Morphology of organic electronic materials imaged via electron tomography2012In: Journal of Microscopy, ISSN 0022-2720, E-ISSN 1365-2818, Vol. 247, no 3, p. 277-287Article in journal (Refereed)
    Abstract [en]

    Several organic materials and blends have been studied with the use of electron tomography. Tomography reconstructions of active layers of organic solar cells, where various preparation techniques have been used, have been analysed and compared to device behaviour. In addition, materials with predefined structures, including contrast enhancing features, have been studied and double tilt data collection has been employed to improve reconstructions. Small changes in preparation procedures may lead to large differences in morphology and device performance, and the results also indicate a complex relation between these.

  • 44.
    Andersson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Persson, Nils-Krister
    School of Engineering, Swedish School of Textiles, University College of Borås, SE-501 90 Borås, Sweden.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Comparative study of organic thin film tandem solar cells in alternative geometries2008In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 104, no 12, p. 124508-Article in journal (Refereed)
    Abstract [en]

    Optical modeling of one folded tandem solar cell and four types of stacked tandem solar cells has been performed using the finite element method and the transfer matrix method for the folded cell and the stacked cells, respectively. The results are analyzed by comparing upper limits for short circuit currents and power conversion efficiencies. In the case of serial connected tandems all of the five cell types may be compared, and we find that the folded cells are comparable to stacked tandem cells in terms of currents and power conversion efficiencies.

  • 45.
    Andersson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Skoglund, Caroline
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Solin, Niclas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Preparation of amyloidlike fibrils containing magnetic iron oxide nanoparticles: Effect of protein aggregation on proton relaxivity2012In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 419, no 4, p. 682-686Article in journal (Refereed)
    Abstract [en]

    A method to prepare amyloid-like fibrils functionalized with magnetic nanoparticles has been developed. The amyloid-like fibrils are prepared in a two step procedure, where insulin and magnetic nanoparticles are mixed simply by grinding in the solid state, resulting in a water soluble hybrid material. When the hybrid material is heated in aqueous acid, the insulin/nanoparticle hybrid material self assembles to form amyloid-like fibrils incorporating the magnetic nanoparticles. This results in magnetically labeled amyloid-like fibrils which has been characterized by Transmission Electron Microscopy (TEM) and electron tomography. The influence of the aggregation process on proton relaxivity is investigated. The prepared materials have potential uses in a range of bio-imaging applications.

  • 46.
    Andersson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Tvingstedt, Kristofer
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Optical modeling of a folded organic solar cell2008In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 103, no 9, p. 094520-Article in journal (Refereed)
    Abstract [en]

    The optical behavior of a reflective tandem solar cell (V cell) is modeled by means of finite element method (FEM) simulations. The absorption of solar light in the active material as well as in both electrode layers is calculated. The FEM solves the electromagnetic wave equation on the entire defined geometry, resulting in the consideration of interference effects, as well as effects of refraction and reflection. Both single cells and tandem cells are modeled and confirmed to be in accordance with reflectance measurements. Energy dissipation in the active layers is studied as a function of layer thickness and folding angle, and the simulations clearly display the advantage of the light trapping feature of folded cells. This is especially prominent in cells with thinner active layers, where folding induces absorption in the active layer equivalent to that of much thicker cells.

  • 47.
    Andersson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wuerfel, Uli
    Fraunhofer Institute Solar Energy Syst.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Full day modelling of V-shaped organic solar cell2011In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 85, no 6, p. 1257-1263Article in journal (Refereed)
    Abstract [en]

    Folded and planar solar cells are examined with optical simulations, with the finite element method. The maximum photocurrent densities during the full day are compared between cells of different geometries and tilting angles. The change of incident angle and spectrum over time are handled in this analysis. The results show that the light trapping effect of the folded cell makes these cells show higher maximum photocurrent densities than the planar cells during all hours of the day. This is the case for both single and tandem cells. The results also indicate that balancing the currents in the tandem cells by adjusting the active layer thickness may be more cumbersome with the folded tandem cells than the stacked planar cells.

  • 48. Asberg, D.P.
    et al.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    PEDOT/PSS hydrogel networks as 3-D enzyme electrodes2003Conference paper (Refereed)
    Abstract [en]

    A mesoscopic network in the form of a hydrogel of the highly conductive polymer PEDOT/PSS hydrogel was used in an enzyme electrode setup. Osmium was used both as a crosslink point in the hydrogel network and as a mediator between the prosthetic group of the enzyme and the conductive polymer matrix. Both biostability and high conductivity is important aspects when building nerve- or cell- electrodes. Diffusion of analytes surrounding the cells into the matrix electrode is feasible due to the open hydrogel structure. The high water content in these structures is important when buffering them to a pH of choice.

  • 49.
    Asplund, M
    et al.
    Royal Institute Technology.
    Thaning, E
    Royal Institute Technology.
    Lundberg, J
    Karolinska University Hospital.
    Sandberg-Nordqvist, A C
    Karolinska University Hospital.
    Kostyszyn, B
    Karolinska University Hospital.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    von Holst, H
    Royal Institute Technology.
    Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes2009In: BIOMEDICAL MATERIALS, ISSN 1748-6041, Vol. 4, no 4, p. 045009-Article in journal (Refereed)
    Abstract [en]

    Electrodes coated with the conducting polymer poly(3,4-ethylene dioxythiophene) (PEDOT) possess attractive electrochemical properties for stimulation or recording in the nervous system. Biomolecules, added as counter ions in electropolymerization, could further improve the biomaterial properties, eliminating the need for surfactant counter ions in the process. Such PEDOT/biomolecular composites, using heparin or hyaluronic acid, have previously been investigated electrochemically. In the present study, their biocompatibility is evaluated. An agarose overlay assay using L929 fibroblasts, and elution and direct contact tests on human neuroblastoma SH-SY5Y cells are applied to investigate cytotoxicity in vitro. PEDOT: heparin was further evaluated in vivo through polymer-coated implants in rodent cortex. No cytotoxic response was seen to any of the PEDOT materials tested. The examination of cortical tissue exposed to polymer-coated implants showed extensive glial scarring irrespective of implant material (Pt:polymer or Pt). However, quantification of immunological response, through distance measurements from implant site to closest neuron and counting of ED1+ cell density around implant, was comparable to those of platinum controls. These results indicate that PEDOT: heparin surfaces were non-cytotoxic and show no marked difference in immunological response in cortical tissue compared to pure platinum controls.

  • 50.
    Asplund, Maria
    et al.
    Neuronic Engineering, School of Technology and Health, Royal Institute of Technology, Alfred Nobels Allé 10, 146 57 Huddinge, Stockholm, Sweden.
    Hamedi, Mahiar
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Image Coding. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Holst, Hans von
    Neuronic Engineering, School of Technology and Health, Royal Institute of Technology, Alfred Nobels Allé 10, 146 57 Huddinge, Stockholm, Sweden/Division of Clinical Neuroscience, Section Neurosurgery, Karolinska Institutet, Stockholm, Sweden.
    Construction of wire electrodesand 3D woven logicas a potential technology forneuroprosthetic implants2008In: IEEE Transactions on Biomedical Engineering, ISSN 0018-9294, E-ISSN 1558-2531Article in journal (Other academic)
    Abstract [en]

    New strategies to improve neuron coupling to neuroelectronic implants are needed. In particular, tomaintain functional coupling between implant and neurons, foreign body response like encapsulation must meminimized. Apart from modifying materials to mitigate encapsulation it has been shown that with extremely thinstructures, encapsulation will be less pronounced. We here utilize wire electrochemical transistors (WECTs) usingconducting polymer coated fibers. Monofilaments down to 10 μm can be successfully coated and weaved intocomplex networks with built in logic functions, so called textile logic. Such systems can control signal patterns at alarge number of electrode terminals from a few addressing fibres. Not only is fibre size in the range where lessencapsulation is expected but textiles are known to make successful implants because of their soft and flexiblemechanical properties. Further, textile fabrication provides versatility and even three dimensional networks arepossible. Three possible architectures for neuroelectronic systems are discussed. WECTs are sensitive to dehydrationand materials for better durability or improved encapsulation is needed for stable performance in biologicalenvironments.

1234567 1 - 50 of 841
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf