liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 1 - 50 of 1281
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Aalto, Anne
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Jaworski, M
    Gustavsson, M
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Östergötlands Läns Landsting, Sinnescentrum, Department of Neurosurgery UHL. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Effects of Betainterferon treatment in Multiple Sclerosis Studied by Quantitative 1H MRS2009Conference paper (Other academic)
  • 2.
    Aalto, Anne
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Sjoewall, Johanna
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Infectious Diseases in Östergötland.
    Davidsson, Leif
    Linköping University, Department of Medicine and Care, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Forsberg, Pia
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Infectious Diseases. Östergötlands Läns Landsting, Centre for Medicine, Department of Infectious Diseases in Östergötland.
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Brain magnetic resonance imaging does not contribute to the diagnosis of chronic neuroborreliosis2007In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 48, no 7, 755-762 p.Article in journal (Refereed)
    Abstract [en]

    Background: Borrelia infections, especially chronic neuroborreliosis ( NB), may cause considerable diagnostic problems. This diagnosis is based on symptoms and findings in the cerebrospinal fluid but is not always conclusive. Purpose: To evaluate brain magnetic resonance imaging ( MRI) in chronic NB, to compare the findings with healthy controls, and to correlate MRI findings with disease duration. Material and Methods: Sixteen well- characterized patients with chronic NB and 16 matched controls were examined in a 1.5T scanner with a standard head coil. T1- ( with and without gadolinium), T2-, and diffusion- weighted imaging plus fluid- attenuated inversion recovery ( FLAIR) imaging were used. Results: White matter lesions and lesions in the basal ganglia were seen in 12 patients and 10 controls ( no significant difference). Subependymal lesions were detected in patients down to the age of 25 and in the controls down to the age of 43. The number of lesions was correlated to age both in patients ( rho=0.83, P < 0.01) and in controls ( rho=0.61, P < 0.05), but not to the duration of disease. Most lesions were detected with FLAIR, but many also with T2- weighted imaging. Conclusion: A number of MRI findings were detected in patients with chronic NB, although the findings were unspecific when compared with matched controls and did not correlate with disease duration. However, subependymal lesions may constitute a potential finding in chronic NB.

  • 3.
    Abrahamsson, Annelie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Rzepecka, Anna
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Romu, Thobias
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Borga, Magnus
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dahlqvist Leinhard, Olof
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Dabrosin, Charlotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment in vivo2016In: Oncoimmunology, ISSN 2162-4011, E-ISSN 2162-402X, Vol. 5, no 10, e1229723Article in journal (Refereed)
    Abstract [en]

    Inflammation is one of the hallmarks of carcinogenesis. High mammographic density has been associated with increased risk of breast cancer but the mechanisms behind are poorly understood. We evaluated whether breasts with different mammographic densities exhibited differences in the inflammatory microenvironment.Postmenopausal women attending the mammography-screening program were assessed having extreme dense, n = 20, or entirely fatty breasts (nondense), n = 19, on their regular mammograms. Thereafter, the women were invited for magnetic resonance imaging (MRI), microdialysis for the collection of extracellular molecules in situ and a core tissue biopsy for research purposes. On the MRI, lean tissue fraction (LTF) was calculated for a continuous measurement of breast density. LTF confirmed the selection from the mammograms and gave a continuous measurement of breast density. Microdialysis revealed significantly increased extracellular in vivo levels of IL-6, IL-8, vascular endothelial growth factor, and CCL5 in dense breast tissue as compared with nondense breasts. Moreover, the ratio IL-1Ra/IL-1 was decreased in dense breasts. No differences were found in levels of IL-1, IL-1Ra, CCL2, leptin, adiponectin, or leptin:adiponectin ratio between the two breast tissue types. Significant positive correlations between LTF and the pro-inflammatory cytokines as well as between the cytokines were detected. Stainings of the core biopsies exhibited increased levels of immune cells in dense breast tissue.Our data show that dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment and, if confirmed in a larger cohort, suggests novel targets for prevention therapies for women with dense breast tissue.

  • 4.
    Adolfsson, Emelie
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Carlsson Tedgren, Åsa
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Gustafsson, Håkan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Biomedical Engineering.
    Lund, Eva
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Optimisation of an EPR dosimetry system for robust and high precision dosimetry2014In: Radiation Measurements, ISSN 1350-4487, Vol. 70, 21-28 p.Article in journal (Refereed)
    Abstract [en]

    Clinical applications of electron paramagnetic resonance (EPR) dosimetry systems demand high accuracy causing time consuming analysis. The need for high spatial resolution dose measurements in regions with steep dose gradients demands small sized dosimeters. An optimization of the analysis was therefore needed to limit the time consumption. The aim of this work was to introduce a new smaller lithium formate dosimeter model (diameter reduced from standard diameter 4.5 mm to 3 mm and height from 4.8 mm to 3 mm). To compensate for reduced homogeneity in a batch of the smaller dosimeters, a method for individual sensitivity correction suitable for EPR dosimetry was tested. Sensitivity and repeatability was also tested for a standard EPR resonator and a super high Q (SHQE) one. The aim was also to optimize the performance of the dosimetry system for better efficiency regarding measurement time and precision. A systematic investigation of the relationship between measurement uncertainty and number of readouts per dosimeter was performed. The conclusions drawn from this work were that it is possible to decrease the dosimeter size with maintained measurement precision by using the SHQE resonator and introducing individual calibration factors for dosimeter batches. It was also shown that it is possible reduce the number of readouts per dosimeter without significantly decreasing the accuracy in measurements.

  • 5.
    Adolfsson, Emelie
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Gustafsson, Håkan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Biomedical Engineering.
    Lund, Eva
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Olsson, Sara
    Medical Physics and Technology, Växjö Central Hospital, Växjö, Sweden.
    Carlsson Tedgren, Åsa
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    A system for remote dosimetry audit of 3D-CRT, IMRT and VMAT based on lithium formate dosimetry2014In: Radiotherapy and Oncology, ISSN 0167-8140, E-ISSN 1879-0887, Vol. 113, no 2, 279-282 p.Article in journal (Refereed)
    Abstract [en]

    The aim of this work was to develop and test a remote end-to-end audit system using lithium formate EPR dosimeters. Four clinics were included in a pilot study, absorbed doses determined in the PTV agreed with TPS calculated doses within ±5% for 3D-CRT and ±7% (k=1) for IMRT/VMAT dose plans.

  • 6.
    Adolfsson, Emelie
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    White, Shane
    Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.
    Landry, Guillaume
    Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.
    Lund, Eva
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Gustafsson, Håkan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Biomedical Engineering.
    Verhaegen, Frank
    Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.
    Reniers, Brigitte
    Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.
    Carlsson Tedgren, Åsa
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Measurement of absorbed dose to water around an electronic brachytherapy source: Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film2015In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 60, no 9, 3869-3882 p.Article in journal (Refereed)
    Abstract [en]

    Interest in high dose rate (HDR) electronic brachytherapy operating at 50 kV is increasing. For quality assurance it is important to identify dosimetry systems that can measure the absorbed doses in absolute terms which is difficult in this energy region. In this work a comparison is made between two dosimetry systems, EPR lithium formate dosimeters and radiochromic EBT2 film.

    Both types of dosimeters were irradiated simultaneously in a PMMA phantom using the Axxent EBS. Absorbed dose to water was determined at distances of 10 mm, 30 mm and 50 mm from the EBS. Results were traceable to different primary standards as regards to absorbed dose to water (EPR) and air kerma (EBT2). Monte Carlo simulations were used in absolute terms as a third estimate of absorbed dose to water.

    Agreement within the estimated expanded (k = 2) uncertainties (5% (EPR), 7% (EBT2)) was found between the results at 30 mm and 50 mm from the x-ray source. The same result was obtained in 4 repetitions of irradiation, indicating high precision in the measurements with both systems. At all distances, agreement between EPR and Monte Carlo simulations was shown as was also the case for the film measurements at 30mm and 50mm. At 10mm the geometry for the film measurements caused too large uncertainty in measured values depending on the exact position (within sub-mm distances) of the EBS and the 10 mm film results were exculded from comparison.

    This work has demonstrated good performance of the lithium formate EPR dosimetry system in accordance with earlier experiments at higher photon energies (192Ir HDR brachytherapy). It was also highlighted that there might be issues regarding the energy dependence and intrinsic efficiency of the EBT2 film that need to be considered for measurements using low energy sources.

  • 7.
    Agebratt, Christian
    et al.
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Ström, Edvin
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Romu, Thobias
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Borga, Magnus
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Leandersson, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Occupational and Environmental Medicine Center.
    Nyström, Fredrik H.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Endocrinology.
    A Randomized Study of the Effects of Additional Fruit and Nuts Consumption on Hepatic Fat Content, Cardiovascular Risk Factors and Basal Metabolic Rate2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 1, e0147149- p.Article in journal (Refereed)
    Abstract [en]

    Background

    Fruit has since long been advocated as a healthy source of many nutrients, however, the high content of sugars in fruit might be a concern.

    Objectives

    To study effects of an increased fruit intake compared with similar amount of extra calories from nuts in humans.

    Methods

    Thirty healthy non-obese participants were randomized to either supplement the diet with fruits or nuts, each at +7 kcal/kg bodyweight/day for two months. Major endpoints were change of hepatic fat content (HFC, by magnetic resonance imaging, MRI), basal metabolic rate (BMR, with indirect calorimetry) and cardiovascular risk markers.

    Results

    Weight gain was numerically similar in both groups although only statistically significant in the group randomized to nuts (fruit: from 22.15±1.61 kg/m2 to 22.30±1.7 kg/m2, p = 0.24 nuts: from 22.54±2.26 kg/m2 to 22.73±2.28 kg/m2, p = 0.045). On the other hand BMR increased in the nut group only (p = 0.028). Only the nut group reported a net increase of calories (from 2519±721 kcal/day to 2763±595 kcal/day, p = 0.035) according to 3-day food registrations. Despite an almost three-fold reported increased fructose-intake in the fruit group (from 9.1±6.0 gram/day to 25.6±9.6 gram/day, p<0.0001, nuts: from 12.4±5.7 gram/day to 6.5±5.3 gram/day, p = 0.007) there was no change of HFC. The numerical increase in fasting insulin was statistical significant only in the fruit group (from 7.73±3.1 pmol/l to 8.81±2.9 pmol/l, p = 0.018, nuts: from 7.29±2.9 pmol/l to 8.62±3.0 pmol/l, p = 0.14). Levels of vitamin C increased in both groups while α-tocopherol/cholesterol-ratio increased only in the fruit group.

    Conclusions

    Although BMR increased in the nut-group only this was not linked with differences in weight gain between groups which potentially could be explained by the lack of reported net caloric increase in the fruit group. In healthy non-obese individuals an increased fruit intake seems safe from cardiovascular risk perspective, including measurement of HFC by MRI.

  • 8.
    Ahlander, Britt-Marie
    et al.
    Department of Radiology, Ryhov County Hospital, Jönköping.
    Maret, Eva
    Department of Radiology, Ryhov County Hospital, Jönköping / Department of Clinical Physiology, Karolinska University Hospital, Stockholm.
    Brudin, Lars
    Department of Clinical Physiology, Kalmar County Hospital, Kalmar.
    Starck, Sven-Åke
    Department of Natural Science and Biomedicine, School of Health Sciences, Jönköping University / Department of Oncology, Hospital Physics, Ryhov County Hospital, Jönköping.
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    An echo-planar imaging sequence is superior to a steady-state free precession sequence for visual as well as quantitative assessment of cardiac magnetic resonance stress perfusion2017In: Clinical Physiology and Functional Imaging, ISSN 1475-0961, E-ISSN 1475-097X, Vol. 37, no 1, 52-61 p.Article in journal (Refereed)
    Abstract [en]

    Background To assess myocardial perfusion, steady-state free precession cardiac magnetic resonance (SSFP, CMR) was compared with gradient-echo–echo-planar imaging (GRE-EPI) using myocardial perfusion scintigraphy (MPS) as reference. Methods Cardiac magnetic resonance perfusion was recorded in 30 patients with SSFP and in another 30 patients with GRE-EPI. Timing and extent of inflow delay to the myocardium was visually assessed. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated. Myocardial scar was visualized with a phase-sensitive inversion recovery sequence (PSIR). All scar positive segments were considered pathologic. In MPS, stress and rest images were used as in clinical reporting. The CMR contrast wash-in slope was calculated and compared with the stress score from the MPS examination. CMR scar, CMR perfusion and MPS were assessed separately by one expert for each method who was blinded to other aspects of the study. Results Visual assessment of CMR had a sensitivity for the detection of an abnormal MPS at 78% (SSFP) versus 91% (GRE-EPI) and a specificity of 58% (SSFP) versus 84% (GRE-EPI). Kappa statistics for SSFP and MPS was 0·29, for GRE-EPI and MPS 0·72. The ANOVA of CMR perfusion slopes for all segments versus MPS score (four levels based on MPS) had correlation r = 0·64 (SSFP) and r = 0·96 (GRE-EPI). SNR was for normal segments 35·63 ± 11·80 (SSFP) and 17·98 ± 8·31 (GRE-EPI), while CNR was 28·79 ± 10·43 (SSFP) and 13·06 ± 7·61 (GRE-EPI). Conclusion GRE-EPI displayed higher agreement with the MPS results than SSFP despite significantly lower signal intensity, SNR and CNR.

  • 9.
    Ahlander, Britt-Marie
    et al.
    Ryhov County Hospital, Sweden.
    Årestedt, Kristofer
    Linköping University, Department of Medical and Health Sciences, Division of Nursing Science. Linköping University, Faculty of Medicine and Health Sciences. Linnaeus University, Sweden.
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Maret, Eva
    Karolinska University Hospital, Sweden; Karolinska Institute, Sweden.
    Ericsson, Elisabeth
    University of Örebro, Sweden.
    Development and validation of a questionnaire evaluating patient anxiety during Magnetic Resonance Imaging: the Magnetic Resonance Imaging-Anxiety Questionnaire (MRI-AQ)2016In: Journal of Advanced Nursing, ISSN 0309-2402, E-ISSN 1365-2648, Vol. 72, no 6, 1368-1380 p.Article in journal (Refereed)
    Abstract [en]

    Aim. To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging-Anxiety Questionnaire. Background. Questionnaires measuring patients anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Design. Psychometric cross-sectional study with test-retest design. Methods. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbachs alpha. Criterion-related validity, known-group validity and test-retest was calculated. Results. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbachs alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Conclusion. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations.

  • 10.
    Ahlman, Gustav
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Magnusson, Maria
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Increased temporal resolution in radial-Cartesian sampling of k-space by implementation of parallel imaging2011Conference paper (Refereed)
  • 11.
    Ahn, Henrik
    et al.
    Linköping University, Department of Medical and Health Sciences, Thoracic Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Thoracic and Vascular Surgery in Östergötland.
    Baranowski, Jacek
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Dahlin, Lars-Göran
    Linköping University, Department of Medical and Health Sciences, Thoracic Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Thoracic and Vascular Surgery in Östergötland.
    Nielsen, Niels-Erik
    Linköping University, Department of Medical and Health Sciences, Cardiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Cardiology UHL.
    Nylander, Eva
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Wallby, Lars
    Linköping University, Department of Medical and Health Sciences, Cardiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    TAVI without concomitant balloon dilatation2012Conference paper (Other academic)
  • 12.
    Ahrén, Maria
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Olsson, Petter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Klasson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Petoral, Rodrigo Jr
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Uvdal, Kajsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Rare earth nanoparticles as contrast agent in MRI: Nanomaterial design and biofunctionalization2007In: IVC-17/ICSS-13 ICNT,2007, 2007Conference paper (Other academic)
  • 13.
    Ahrén, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Klasson, Anna
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Abrikossova, Natalia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Skoglund, Caroline
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Bengtsson, Torbjörn
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, The Institute of Technology.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 8, 5753-5762 p.Article in journal (Refereed)
    Abstract [en]

    Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3−5 nm) gadolinium oxide (DEG-Gd2O3) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd2O3 nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd2O3 nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r1 and r2 values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd2O3. Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.

  • 14.
    Alehagen, Urban
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Cardiology in Linköping.
    Slind Olsen, Renate
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. County Hospital Ryhov, Sweden.
    Länne, Toste
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Thoracic and Vascular Surgery. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Matussek, Andreas
    County Hospital Ryhov, Sweden.
    Wågsäter, Dick
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    PDGF-D gene polymorphism is associated with increased cardiovascular mortality in elderly men2016In: BMC Medical Genetics, ISSN 1471-2350, E-ISSN 1471-2350, Vol. 17, no 62Article in journal (Refereed)
    Abstract [en]

    Background: Platelet-derived growth factor (PDGF) D has been reported to be active in fibroblasts, and in areas of myocardial infarction. In this longitudinal study we evaluated the association between PDGF-D polymorphism and cardiovascular mortality, and attempted to discover whether specific genotype differences regarding risk could be observed, and if gender differences could be seen. Methods: Four hundred seventy-six elderly community participants were included in this study. All participants underwent a clinical examination, echocardiography, and blood sampling including PDGF-D single nucleotide polymorphism (SNP) analyses of the rs974819 A/A, G/A and G/G SNP. The follow-up time was 6.7 years. Results: No specific genotype of rs974819 demonstrated increased cardiovascular mortality in the total population, however, the male group with genotypes A/A and G/A demonstrated an increased risk that persisted in a multivariate evaluation where adjustments were made for well-known cardiovascular risk factors (2.7 fold compared with the G/G genotype). No corresponding finding was observed in the female group. Conclusion: We report here for the first time that the genotypes G/A or A/A of the SNP rs974819 near PDGF-D exhibited a 2.7 fold increased cardiovascular mortality risk in males. Corresponding increased risk could not be observed in either the total population and thus not in the female group. However, the sample size is was small and the results should be regarded as hypothesis-generating, and thus more research in the field is recommended.

  • 15.
    Almeida, Nuno
    et al.
    Katholieke University of Leuven, Belgium; GE Vingmed Ultrasound AS, Norway.
    Papachristidis, Alexandros
    Kings Coll Hospital London, England.
    Pearson, Peter
    Kings Coll Hospital London, England.
    Imre Sarvari, Sebastian
    University of Oslo, Norway.
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Edvardsen, Thor
    University of Oslo, Norway.
    Monaghan, Mark
    Kings Coll Hospital London, England.
    Gerard, Olivier
    GE Vingmed Ultrasound AS, Norway.
    Samset, Eigil
    GE Vingmed Ultrasound AS, Norway; University of Oslo, Norway.
    Dhooge, Jan
    Katholieke University of Leuven, Belgium.
    Left atrial volumetric assessment using a novel automated framework for 3D echocardiography: a multi-centre analysis2017In: European Heart Journal Cardiovascular Imaging, ISSN 2047-2404, E-ISSN 2047-2412, Vol. 18, no 9, 1008-1015 p.Article in journal (Refereed)
    Abstract [en]

    Aims This study aims at validating a software tool for automated segmentation and quantification of the left atrium (LA) from 3D echocardiography. Methods and results The LA segmentation tool uses a dual-chamber model of the left side of the heart to automatically detect and track the atrio-ventricular plane and the LA endocardium in transthoracic 3D echocardiography. The tool was tested in a dataset of 121 ultrasound images from patients with several cardiovascular pathologies (in a multi-centre setting), and the resulting volumes were compared with those assessed manually by experts in a blinded analysis using conventional contouring. Bland-Altman analysis showed good agreement between the automated method and the manual references, with differences (mean +/- 1.96 SD) of 0.5 +/- 5.7 mL for LA minimum volume and -1.6 +/- 9.7 mL for LA maximum volume (comparable to the inter-observer variability of manual tracings). The automated tool required no user interaction in 93% of the recordings, while 4% required a single click and only 2% required contour adjustments, reducing considerably the amount of time and effort required for LA volumetric analysis. Conclusion The automated tool was validated in a multi-centre setting, providing quantification of the LA volume over the cardiac cycle with minimal user interaction. The results of the automated analysis were in agreement with those estimated manually by experts. This study shows that such approach has clinical utility for the assessment of the LA morphology and function, automating and facilitating the time-consuming task of analysing 3D echocardiographic recordings.

  • 16.
    Alonso, Fabiola
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Latorre, Malcolm
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Göransson, Nathanael
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Zsigmond, Peter
    Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Wårdell, karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study2016In: Brain Sciences, ISSN 2076-3425, E-ISSN 2076-3425, Vol. 6, no 3, 1-16 p.Article in journal (Refereed)
    Abstract [en]

    New deep brain stimulation (DBS) electrode designs offer operation in voltage and current mode and capability to steer the electric field (EF). The aim of the study was to compare the EF distributions of four DBS leads at equivalent amplitudes (3 V and 3.4 mA). Finite element method (FEM) simulations (n = 38) around cylindrical contacts (leads 3389, 6148) or equivalent contact configurations (leads 6180, SureStim1) were performed using homogeneous and patient-specific (heterogeneous) brain tissue models. Steering effects of 6180 and SureStim1 were compared with symmetric stimulation fields. To make relative comparisons between simulations, an EF isolevel of 0.2 V/mm was chosen based on neuron model simulations (n = 832) applied before EF visualization and comparisons. The simulations show that the EF distribution is largely influenced by the heterogeneity of the tissue, and the operating mode. Equivalent contact configurations result in similar EF distributions. In steering configurations, larger EF volumes were achieved in current mode using equivalent amplitudes. The methodology was demonstrated in a patient-specific simulation around the zona incerta and a “virtual” ventral intermediate nucleus target. In conclusion, lead design differences are enhanced when using patient-specific tissue models and current stimulation mode.

  • 17.
    Ambarki, K.
    et al.
    Umeå University, Sweden .
    Lindqvist, T.
    Umeå University, Sweden .
    Wahlin, A.
    Umeå University, Sweden .
    Petterson, E.
    SyntheticMR ABE, Linköping, Sweden .
    Warntjes, Marcel Jan Bertus
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Birgander, R.
    Umeå University, Sweden .
    Malm, J.
    Umeå University, Sweden .
    Eklund, A.
    Umeå University, Sweden Umeå University, Sweden .
    Evaluation of Automatic Measurement of the Intracranial Volume Based on Quantitative MR Imaging2012In: American Journal of Neuroradiology, ISSN 0195-6108, E-ISSN 1936-959X, Vol. 33, no 10, 1951-1956 p.Article in journal (Refereed)
    Abstract [en]

    BACKGROUND AND PURPOSE: Brain size is commonly described in relation to ICV, whereby accurate assessment of this quantity is fundamental. Recently, an optimized MR sequence (QRAPMASTER) was developed for simultaneous quantification of T1, T2, and proton density. ICV can be measured automatically within minutes from QRAPMASTER outputs and a dedicated software, SyMRI. Automatic estimations of ICV were evaluated against the manual segmentation. MATERIALS AND METHODS: In 19 healthy subjects, manual segmentation of ICV was performed by 2 neuroradiologists (Obs1, Obs2) by using QBrain software and conventional T2-weighted images. The automatic segmentation from the QRAPMASTER output was performed by using SyMRI. Manual corrections of the automatic segmentation were performed (corrected-automatic) by Obs1 and Obs2, who were blinded from each other. Finally, the repeatability of the automatic method was evaluated in 6 additional healthy subjects, each having 6 repeated QRAPMASTER scans. The time required to measure ICV was recorded. RESULTS: No significant difference was found between reference and automatic (and corrected-automatic) ICV (P greater than .25). The mean difference between the reference and automatic measurement was -4.84 +/- 19.57 mL (or 0.31 +/- 1.35%). Mean differences between the reference and the corrected-automatic measurements were -0.47 +/- 17.95 mL (-0.01 +/- 1.24%) and -1.26 +/- 17.68 mL (-0.06 +/- 1.22%) for Obs1 and Obs2, respectively. The repeatability errors of the automatic and the corrected-automatic method were less than1%. The automatic method required 1 minute 11 seconds (SD = 12 seconds) of processing. Adding manual corrections required another 1 minute 32 seconds (SD = 38 seconds). CONCLUSIONS: Automatic and corrected-automatic quantification of ICV showed good agreement with the reference method. SyMRI software provided a fast and reproducible measure of ICV.

  • 18. Andersson, A
    et al.
    Carlsson, J
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Hansson, T
    Söderfeldt, B
    Comparison of sign language production and meaningless hand movements by fMRI1998Conference paper (Other academic)
  • 19.
    Andersson, Charlotta
    et al.
    Region Östergötland, Center for Diagnostics, Department of Clinical Physiology in Norrköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lindström, Lena
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Phase-contrast MRI volume flow - a comparison of breath held and navigator based acquisitions2016In: BMC Medical Imaging, ISSN 1471-2342, E-ISSN 1471-2342, Vol. 16, no 26Article in journal (Refereed)
    Abstract [en]

    Background: Magnetic Resonance Imaging (MRI) 2D phase-contrast flow measurement has been regarded as the gold standard in blood flow measurements and can be performed with free breathing or breath held techniques. We hypothesized that the accuracy of flow measurements obtained with segmented phase-contrast during breath holding, and in particular higher number of k-space segments, would be non-inferior compared to navigator phase-contrast. Volumes obtained from anatomic segmentation of cine MRI and Doppler echocardiography were used for additional reference. Methods: Forty patients, five women and 35 men, mean age 65 years (range 53-80), were randomly selected and consented to the study. All underwent EKG-gated cardiac MRI including breath hold cine, navigator based free-breathing phase-contrast MRI and breath hold phase-contrast MRI using k-space segmentation factors 3 and 5, as well as transthoracic echocardiography within 2 days. Results: In navigator based free-breathing phase-contrast flow, mean stroke volume and cardiac output were 79.7 +/- 17.1 ml and 5071 +/- 1192 ml/min, respectively. The duration of the acquisition was 50 +/- 6 s. With k-space segmentation factor 3, the corresponding values were 77.7 ml +/- 17.5 ml and 4979 +/- 1211 ml/min (p = 0.15 vs navigator). The duration of the breath hold was 17 +/- 2 s. K-space segmentation factor 5 gave mean stroke volume 77.9 +/- 16.4 ml, cardiac output 5142 +/- 1197 ml/min (p = 0.33 vs navigator), and breath hold time 11 +/- 1 s. Anatomical segmentation of cine gave mean stroke volume and cardiac output 91.2 +/- 20.8 ml and 5963 +/- 1452 ml/min, respectively. Echocardiography was reliable in 20 of the 40 patients. The mean diameter of the left ventricular outflow tract was 20.7 +/- 1.5 mm, stroke volume 78.3 ml +/- 15.2 ml and cardiac output 5164 +/- 1249 ml/min. Conclusions: In forty consecutive patients with coronary heart disease, breath holding and segmented k-space sampling techniques for phase-contrast flow produced stroke volumes and cardiac outputs similar to those obtained with free-breathing navigator based phase-contrast MRI, using less time. The values obtained agreed fairly well with Doppler echocardiography while there was a larger difference when compared with anatomical volume determinations using SSFP (steady state free precession) cine MRI.

  • 20.
    Andersson, Kenneth
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics.
    Andersson, Mats
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Johansson, Peter
    ISY LiTH.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering.
    Knutsson, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Motion compensation using backward prediction and prediction refinement2003In: Signal Processing: Image Communication, ISSN 0923-5965, Vol. 18, no 5, 381-400 p.Article in journal (Refereed)
    Abstract [en]

    This paper presents new methods for use of dense motion fields for motion compensation of interlaced video. The motion estimation is based on previously decoded field-images. The motion is then temporally predicted and used for motion compensated prediction of the field-image to be coded. The motion estimation algorithm is phase-based and uses two or three field-images to achieve motion estimates with sub-pixel accuracy. To handle non-constant motion and the specific characteristics of the field-image to be coded, the initially predicted image is refined using forward motion compensation, based on block-matching. Tests show that this approach achieves higher PSNR than forward block-based motion estimation, when coding the residual with the same coder. The subjective performance is also better.

  • 21.
    Andersson, Kenneth
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Johansson, Peter
    Linköping University, Department of Electrical Engineering, Image Coding. Linköping University, The Institute of Technology.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Image Coding. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Backward-forward motion compensated prediction2002In: Proceedings of ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, September 9-11, 2002, 2002, 260-267 p.Conference paper (Refereed)
    Abstract [en]

    This paper presents new methods for use of dense motion fields for motion compensation of interlaced video. The motion is estimated using previously decoded field-images. An initial motion compensated prediction is produced using the assumption that the motion is predictable in time. The motion estimation algorithm is phase-based and uses two or three field-images to achieve motion estimates with sub-pixel accuracy. To handle non-constant motion and the specific characteristics of the field-image to be coded, the initially predicted image is refined using forward motion compensation, based on block-matching. Tests show that this approach achieves higher PSNR than forward block-based motion estimation, when coding the residual with the same coder. The subjective performance is also better.

  • 22.
    Andersson, Kenneth
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Continuous normalized convolution2002In: Multimedia and Expo, 2002. ICME '02. Proceedings. 2002 IEEE International Conference on  (Volume:1), IEEE , 2002, 725-728 p.Conference paper (Refereed)
    Abstract [en]

    The problem of signal estimation for sparsely and irregularly sampled signals is dealt with using continuous normalized convolution. Image values on real-valued positions are estimated using integration of signals and certainties over a neighbourhood employing a local model of both the signal and the used discrete filters. The result of the approach is that an output sample close to signals with high certainty is interpolated using a small neighbourhood. An output sample close to signals with low certainty is spatially predicted from signals in a large neighbourhood.

  • 23.
    Andersson, Kenneth
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Multiple hierarchical motion estimation2002In: Signal Processing, Pattern Recognition, and Applications - 2002 / [ed] M.H. Hamza, ACTA Press, 2002, 80- p.Conference paper (Refereed)
    Abstract [en]

    This paper introduce multiple hierarchical motion estimation to achieve motion estimates with high spatial resolution. The approach is based on phase-based motion estimation. Results show that the algorithm deal with the smooth motion field of hierarchical motion estimation while keeping the advantages of such an approach.

  • 24.
    Andersson, Kenneth
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Westin, Carl-Fredrik
    Laboratory of Mathematics in Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, USA.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Prediction from off-grid samples using continuous normalized convolution2007In: Signal Processing, ISSN 0165-1684, E-ISSN 1872-7557, Vol. 87, no 3, 353-365 p.Article in journal (Refereed)
    Abstract [en]

    This paper presents a novel method for performing fast estimation of data samples on a desired output grid from samples on an irregularly sampled grid. The output signal is estimated using integration of signals over a neighbourhood employing a local model of the signal using discrete filters. The strength of the method is demonstrated in motion compensation examples by comparing to traditional techniques.

  • 25.
    Andersson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Swedish E Science Research Centre SeRC, Sweden.
    Lantz, Jonas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Swedish E Science Research Centre SeRC, Sweden.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). Swedish E Science Research Centre SeRC, Sweden.
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Swedish E Science Research Centre SeRC, Sweden.
    Correction: Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation: Impact of Virtual Interventions (vol 6, pg 281, 2015)2015In: Cardiovascular Engineering and Technology, ISSN 1869-408X, E-ISSN 1869-4098, Vol. 6, no 4, 577-589 p.Article in journal (Refereed)
    Abstract [en]

    Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation (LES) including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where the pre-stenotic hypoplastic segment may limit the possible improvement by treating the CoA alone. Spatiotem-poral maps of TKE and flow eccentricity could be linked to the characteristics of the post-stenotic jet, showing a versatile response between the CoA dilatations. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre-and immediate post treatment, as well as during follow-up studies.

  • 26.
    Andersson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.
    Lantz, Jonas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Multidirectional WSS disturbances in stenotic turbulent flows: A pre- and post-intervention study in an aortic coarctation2017In: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 51Article in journal (Refereed)
    Abstract [en]

    Wall shear stress (WSS) disturbances are commonly expressed at sites of abnormal flow obstructions and may play an essential role in the pathogenesis of various vascular diseases. In laminar flows these disturbances have recently been assessed by the transverse wall shear stress (transWSS), which accounts for the WSS multidirectionality. Site-specific estimations of WSS disturbances in pulsatile transitional and turbulent type of flows are more challenging due to continuous and unpredictable changes in WSS behavior. In these complex flow settings, the transWSS may serve as a more comprehensive descriptor for assessing WSS disturbances of general nature compared to commonly used parameters. In this study large eddy simulations (LES) were used to investigate the transWSS properties in flows subjected to different pathological turbulent flow conditions, governed by a patient-specific model of an aortic coarctation pre and post balloon angioplasty. Results showed that regions of strong near-wall turbulence were collocated with regions of elevated transWSS and turbulent WSS, while in more transitional-like near-wall flow regions a closer resemblance was found between transWSS and low, and oscillatory WSS. Within the frame of this study, the transWSS parameter demonstrated a more multi-featured picture of WSS disturbances when exposed to different types of flow regimes, characteristics which were not depicted by the other parameters alone. (C) 2016 Published by Elsevier Ltd.

  • 27.
    Andersson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Lantz, Jonas
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation - Impact of Virtual Interventions2015In: Cardiovascular Engineering and Technology, ISSN 1869-408X, E-ISSN 1869-4098, Vol. 6, no 6, 281-293 p.Article in journal (Refereed)
    Abstract [en]

    Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation (LES) including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies.

  • 28.
    Andersson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Lantz, Jonas
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    NON-INVASIVE INTERVENTION PLANNING OF STENOTIC FLOWS USING SCALE-RESOLVED IMAGE-BASED COMPUTATIONAL FLUID DYNAMICS2013Conference paper (Refereed)
  • 29.
    Andersson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology.
    Lantz, Jonas
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Karlsson, Matts
    Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Turbulence Quantification of Stenotic Blood Flow Using Image-Based CFD: Effect of Different Interventions2014In: WCB 2014, 2014Conference paper (Other academic)
    Abstract [en]

    Turbulent blood flow is often associated with some sort of cardiovascular disease, e.g. sharp bends and/or sudden constrictions/expansions of the vessel wall. The energy losses associated with the turbulent flow may increase the heart workload in order to maintain cardiac output (CO). In the present study, the amount of turbulent kinetic energy (TKE) developed in the vicinity of an aortic coarctation was estimated pre-intervention and in a variety of post-intervention configurations, using scale-resolved image-based computational fluid dynamics (CFD). TKE can be measured using magnet resonance imaging (MRI) and have also been validated with CFD simulations [1], i.e. a parameter that not only can be quantified using simulations but can also be measured by MRI.

    Patient-specific geometry and inlet flow conditions were obtained using contrast-enhanced MR angiography and 2D cine phase-contrast MRI, respectively. The intervention procedure was mimicked using an inflation simulation, where six different geometries were obtained. A scale-resolving turbulence model, large eddy simulation (LES), was utilized to resolve the largest turbulent scales and also to capture the laminar-to-turbulent transition. All cases were simulated using baseline CO and with a 20% CO increase to simulate a possible flow adaption after intervention.

    For this patient, results shows a non-linear decay of the total amount of TKE integrated over the cardiac phase as the stenotic cross-sectional area is increased by the intervention.  Figure 1 shows the original segmented geometry and two dilated coarctation with corresponding volume rendering of the TKE at peak systole. Due to turbulent transition at a kink upstream the stenosis further dilation of the coarctation tends to restrict the TKE to a plateau, and continued vessel expansion may therefore only induce unnecessary stresses onto the arterial wall. 

    This patient-specific non-invasive framework has shown the geometrical impact on the TKE estimates. New insight in turbulence development indicates that the studied coarctation can only be improved to a certain extent, where focus should be on the upstream region, if further TKE reduction is motivated. The possibility of including MRI in a combined framework could have great potential for future intervention planning and follow-up studies.  

    [1] J. Lantz, T. Ebbers, J. Engvall and M. Karlsson, Numerical and Experimental Assessment of Turbulent Kinetic Energy in an Aortic Coarctation, Journal of Biomechnics, 2013. 46(11): p. 1851-1858.

  • 30.
    Andersson, Malin
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences.
    Jagervall, Karl
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Not Found:Linkoping Univ, Ctr Med Image Sci and Visualizat CMIV, Linkoping, Sweden; Linkoping Univ, Dept Radiol, Linkoping, Sweden; Linkoping Univ, Dept Med and Hlth Sci, Linkoping, Sweden.
    Eriksson, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Region Östergötland, Heart and Medicine Center, Department of Rheumatology. Linköping University, Faculty of Medicine and Health Sciences.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Granerus, Göran
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Wang, Chunliang
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). KTH Royal Institute Technology, Sweden.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). KTH Royal Institute Technology, Sweden.
    How to measure renal artery stenosis - a retrospective comparison of morphological measurement approaches in relation to hemodynamic significance2015In: BMC Medical Imaging, ISSN 1471-2342, E-ISSN 1471-2342, Vol. 15, no 42Article in journal (Refereed)
    Abstract [en]

    Background: Although it is well known that renal artery stenosis may cause renovascular hypertension, it is unclear how the degree of stenosis should best be measured in morphological images. The aim of this study was to determine which morphological measures from Computed Tomography Angiography (CTA) and Magnetic Resonance Angiography (MRA) are best in predicting whether a renal artery stenosis is hemodynamically significant or not. Methods: Forty-seven patients with hypertension and a clinical suspicion of renovascular hypertension were examined with CTA, MRA, captopril-enhanced renography (CER) and captopril test (Ctest). CTA and MRA images of the renal arteries were analyzed by two readers using interactive vessel segmentation software. The measures included minimum diameter, minimum area, diameter reduction and area reduction. In addition, two radiologists visually judged the diameter reduction without automated segmentation. The results were then compared using limits of agreement and intra-class correlation, and correlated with the results from CER combined with Ctest (which were used as standard of reference) using receiver operating characteristics (ROC) analysis. Results: A total of 68 kidneys had all three investigations (CTA, MRA and CER + Ctest), where 11 kidneys (16.2 %) got a positive result on the CER + Ctest. The greatest area under ROC curve (AUROC) was found for the area reduction on MRA, with a value of 0.91 (95 % confidence interval 0.82-0.99), excluding accessory renal arteries. As comparison, the AUROC for the radiologists visual assessments on CTA and MRA were 0.90 (0.82-0.98) and 0.91 (0.83-0.99) respectively. None of the differences were statistically significant. Conclusions: No significant differences were found between the morphological measures in their ability to predict hemodynamically significant stenosis, but a tendency of MRA having higher AUROC than CTA. There was no significant difference between measurements made by the radiologists and measurements made with fuzzy connectedness segmentation. Further studies are required to definitely identify the optimal measurement approach.

  • 31.
    Andersson, Mats
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Burdakov, Oleg
    Linköping University, Department of Mathematics, Optimization . Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Zikrin, Spartak
    Linköping University, Department of Mathematics, Optimization . Linköping University, The Institute of Technology.
    Sparsity Optimization in Design of Multidimensional Filter Networks2015In: Optimization and Engineering, ISSN 1389-4420, E-ISSN 1573-2924, Vol. 16, no 2, 259-277 p.Article in journal (Refereed)
    Abstract [en]

    Filter networks are used as a powerful tool used for reducing the image processing time and maintaining high image quality.They are composed of sparse sub-filters whose high sparsity ensures fast image processing.The filter network design is related to solvinga sparse optimization problem where a cardinality constraint bounds above the sparsity level.In the case of sequentially connected sub-filters, which is the simplest network structure of those considered in this paper, a cardinality-constrained multilinear least-squares (MLLS) problem is to be solved. Even when disregarding the cardinality constraint, the MLLS is typically a large-scale problem characterized by a large number of local minimizers, each of which is singular and non-isolated.The cardinality constraint makes the problem even more difficult to solve.

    An approach for approximately solving the cardinality-constrained MLLS problem is presented.It is then applied to solving a bi-criteria optimization problem in which both thetime and quality of image processing are optimized. The developed approach is extended to designing filter networks of a more general structure. Its efficiency is demonstrated by designing certain 2D and 3D filter networks. It is also compared with the existing approaches.

  • 32.
    Andersson, Mats
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Adaptive Spatio-temporal Filtering of 4D CT-Heart2013In: Image Analyses: Image Processing, Computer Vision, Pattern Recognition, and Graphics / [ed] Joni-Kristian Kämäräinen, Markus Koskela, Berlin Heidelberg: Springer, 2013, 246-255 p.Conference paper (Refereed)
    Abstract [en]

    The aim of this project is to keep the x-ray exposure of the patient as low as reasonably achievable while improving the diagnostic image quality for the radiologist. The means to achieve these goals is to develop and evaluate an efficient adaptive filtering (denoising/image enhancement) method that fully explores true 4D image acquisition modes.

    The proposed prototype system uses a novel filter set having directional filter responses being monomials. The monomial filter concept is used both for estimation of local structure and for the anisotropic adaptive filtering. Initial tests on clinical 4D CT-heart data with ECG-gated exposure has resulted in a significant reduction of the noise level and an increased detail compared to 2D and 3D methods. Another promising feature is that the reconstruction induced streak artifacts which generally occur in low dose CT are remarkably reduced in 4D.

  • 33.
    Andersson, Mats
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Transformation of local spatio-temporal structure tensor fields2003In: Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on  (Volume:3 ), IEEE , 2003, 285-288 p.Conference paper (Refereed)
    Abstract [en]

    Tensors and tensor fields are commonly used in multidimensional signal processing to represent the local structure of the signal. This paper focuses on the case where the sampling on the original signal is anisotropic, e.g when the resolution of the multidimensional image varies depending on the direction which is common e.g. in medical imaging devices. To obtain a geometrically correct description of the local structure there are mainly two possibilities. To resample the image prior to the computation of the local structure tensor field or to compute the tensor field on the original grid and transform the result to obtain a correct geometry of the local structure. This paper deals with the latter alternative and contains an in depth theoretical analysis establishing the appropriate rules for tensor transformations induced by changes in space-time geometry with emphasis on velocity and motion estimation.

  • 34.
    Andersson, Mats
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Farnebäck, Gunnar
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Hans, Knutsson
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Adaptiv filtering of 4D-heart CT for image denoising and patient safety2010Conference paper (Other academic)
    Abstract [en]

    The aim of this medical image science project is to increase patient safety in terms of improved image quality and reduced exposure to ionizing radiation in CT. The means to achieve these goals is to develop and evaluate an efficient adaptive filtering (denoising/image enhancement) method that fully explores true 4D image acquisition modes. Four-dimensional (4D) medical image data are captured as a time sequence of image volumes. During 4D image acquisition, a 3D image of the patient is recorded at regular time intervals. The resulting data will consequently have three spatial dimensions and one temporal dimension. Increasing the dimensionality of the data impose a major increase the computational demands. The initial linear filtering which is the cornerstone in all adaptive image enhancement algorithms increase exponentially with the dimensionality. On the other hand the potential gain in Signal to Noise Ratio (SNR) also increase exponentially with the dimensionality. This means that the same gain in noise reduction that can be attained by performing the adaptive filtering in 3D as opposed to 2D can be expected to occur once more by moving from 3D to 4D. The initial tests on on both synthetic and clinical 4D images has resulted in a significant reduction of the noise level and an increased detail compared to 2D and 3D methods. When tuning the parameters for adaptive filtering is extremely important to attain maximal diagnostic value which not necessarily coincide with an an eye pleasing image for a layman. Although this application focus on CT the resulting adaptive filtering methods will be beneficial for a wide range of 3D/4D medical imaging modalities e.g. shorter acquisition time in MRI and improved elimination of noise in 3D or 4D ultrasound datasets.

  • 35.
    Andersson, Thord
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Läthén, Gunnar
    Linköping University, Department of Science and Technology, Digital Media. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lenz, Reiner
    Linköping University, Department of Science and Technology, Digital Media. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Borga, Magnus
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    A Fast Optimization Method for Level Set Segmentation2009In: Image Analysis: 16th Scandinavian Conference, SCIA 2009, Oslo, Norway, June 15-18, 2009. Proceedings / [ed] A.-B. Salberg, J.Y. Hardeberg, and R. Jenssen, Springer Berlin/Heidelberg, 2009, 400-409 p.Conference paper (Refereed)
    Abstract [en]

    Level set methods are a popular way to solve the image segmentation problem in computer image analysis. A contour is implicitly represented by the zero level of a signed distance function, and evolved according to a motion equation in order to minimize a cost function. This function defines the objective of the segmentation problem and also includes regularization constraints. Gradient descent search is the de facto method used to solve this optimization problem. Basic gradient descent methods, however, are sensitive for local optima and often display slow convergence. Traditionally, the cost functions have been modified to avoid these problems. In this work, we instead propose using a modified gradient descent search based on resilient propagation (Rprop), a method commonly used in the machine learning community. Our results show faster convergence and less sensitivity to local optima, compared to traditional gradient descent.

  • 36.
    Andersson, Thord
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Läthén, Gunnar
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Lenz, Reiner
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Borga, Magnus
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Modified Gradient Search for Level Set Based Image Segmentation2013In: IEEE Transactions on Image Processing, ISSN 1057-7149, E-ISSN 1941-0042, Vol. 22, no 2, 621-630 p.Article in journal (Refereed)
    Abstract [en]

    Level set methods are a popular way to solve the image segmentation problem. The solution contour is found by solving an optimization problem where a cost functional is minimized. Gradient descent methods are often used to solve this optimization problem since they are very easy to implement and applicable to general nonconvex functionals. They are, however, sensitive to local minima and often display slow convergence. Traditionally, cost functionals have been modified to avoid these problems. In this paper, we instead propose using two modified gradient descent methods, one using a momentum term and one based on resilient propagation. These methods are commonly used in the machine learning community. In a series of 2-D/3-D-experiments using real and synthetic data with ground truth, the modifications are shown to reduce the sensitivity for local optima and to increase the convergence rate. The parameter sensitivity is also investigated. The proposed methods are very simple modifications of the basic method, and are directly compatible with any type of level set implementation. Downloadable reference code with examples is available online.

  • 37.
    Andersson, Thord
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Romu, Thobias
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Karlsson, Anette
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Norén, Bengt
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Forsgren, Mikael
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Kechagias, Stergios
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Almer, Sven
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Borga, Magnus
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dahlqvist Leinhard, Olof
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Consistent intensity inhomogeneity correction in water–fat MRI2015In: Journal of Magnetic Resonance Imaging, ISSN 1053-1807, E-ISSN 1522-2586, Vol. 42, no 2, 468-476 p.Article in journal (Refereed)
    Abstract [en]

    PURPOSE:

    To quantitatively and qualitatively evaluate the water-signal performance of the consistent intensity inhomogeneity correction (CIIC) method to correct for intensity inhomogeneities METHODS: Water-fat volumes were acquired using 1.5 Tesla (T) and 3.0T symmetrically sampled 2-point Dixon three-dimensional MRI. Two datasets: (i) 10 muscle tissue regions of interest (ROIs) from 10 subjects acquired with both 1.5T and 3.0T whole-body MRI. (ii) Seven liver tissue ROIs from 36 patients imaged using 1.5T MRI at six time points after Gd-EOB-DTPA injection. The performance of CIIC was evaluated quantitatively by analyzing its impact on the dispersion and bias of the water image ROI intensities, and qualitatively using side-by-side image comparisons.

    RESULTS:

    CIIC significantly ( P1.5T≤2.3×10-4,P3.0T≤1.0×10-6) decreased the nonphysiological intensity variance while preserving the average intensity levels. The side-by-side comparisons showed improved intensity consistency ( Pint⁡≤10-6) while not introducing artifacts ( Part=0.024) nor changed appearances ( Papp≤10-6).

    CONCLUSION:

    CIIC improves the spatiotemporal intensity consistency in regions of a homogenous tissue type. J. Magn. Reson. Imaging 2014.

  • 38.
    Andersson, Thord
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Romu, Thobias
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Norén, Bengt
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Forsgren, Mikael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Almer, Sven
    Linköping University, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Endocrinology.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Borga, Magnus
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Self-calibrated DCE MRI using Multi Scale Adaptive Normalized Averaging (MANA)2012In: Proceedings of the annual meeting of the International Society for Magnetic Resonance in Medicine (ISMRM 2012), 2012, 2012Conference paper (Other academic)
  • 39.
    Andersson-Engels, Stefan
    et al.
    Inst för fysik Lunds Tekniska Högskola.
    Pålsson, S
    Backlund, Erik Olof
    IMT LiU.
    Sturnegk, Patrik
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Östergötlands Läns Landsting, Reconstruction Centre, Department of Neurosurgery UHL.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Svanberg, K
    Eriksson, Ola
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Wårdell, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    ALA-PpIX Fluorescence and spectroscopy in connection with stereotactic biopsy of human glioblastomas2005In: European Conference on Biomedical Optics,2005, 2005Conference paper (Refereed)
  • 40.
    Aneq Åström, Meriam
    et al.
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Nylander, Eva
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Ebbers, Tino
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Physiology. Linköping University, Faculty of Health Sciences. Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics.
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Determination of right ventricular volume and function using multiple axially rotated MRI slices2011In: Clinical Physiology and Functional Imaging, ISSN 1475-0961, E-ISSN 1475-097X, Vol. 31, no 3, 233-239 p.Article in journal (Refereed)
    Abstract [en]

    Pandgt;Background: The conventional magnetic resonance imaging (MRI) method for right ventricular (RV) volume and motion, using short-axis (SA) orientation, is limited by RV anatomy and shape. We suggest an orientation based on six slices rotated around the long axis of the RV, rotated long axis (RLA). Materials and methods: Three phantoms were investigated in SA and RLA using cine balanced steady-state free precession MRI. Volumes were calculated based on segmentation and checked against true volumes. In 23 healthy male volunteers, we used six long-axis planes from the middle of the tricuspid valve to the RV apex, rotated in 30 degrees increments. For comparison, short-axis slices were acquired. Imaging parameters were identical in both acquisitions. Results: Right ventricular end-diastolic (EDV), end-systolic (ESV) and stroke volumes (SV) determined in the RLA 179 center dot 1 +/- 29 center dot 3; 80 center dot 1 +/- 17 center dot 1; 99 center dot 3 +/- 16 center dot 9 ml and in the SA were 174 center dot 0 +/- 21 center dot 1; 78 center dot 8 +/- 13 center dot 6; 95 center dot 3 +/- 14 center dot 5 ml with P-values for the difference from 0 center dot 17 to 0 center dot 64 (ns). Interobserver variability ranged between 3 center dot 2% and 6 center dot 6% and intraobserver variability between 2 center dot 8% and 6 center dot 8%. In SA views, consensus for the definition of the basal slice was necessary in 39% of the volunteers for whom the average volume change was 20% in ESV and 10% in EDV. Conclusions: The RLA method results in better visualization and definition of the RV inflow, outflow and apex. Accurate measurement of RV volumes for diagnosis and follow-up of cardiac diseases are enhanced by the RLA orientation, even though additional acquisition time is required.

  • 41.
    Arzani, Amirhossein
    et al.
    IIT.
    Dyverfeldt, Petter
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Shadden, Shawn C
    IIT.
    In Vivo Validation of Numerical Prediction for Turbulence Intensity in an Aortic Coarctation2012In: Annals of Biomedical Engineering, ISSN 0090-6964, E-ISSN 1573-9686, Vol. 40, no 4, 860-870 p.Article in journal (Refereed)
    Abstract [en]

    This paper compares numerical predictions of turbulence intensity with in vivo measurement. Magnetic resonance imaging (MRI) was carried out on a 60-year-old female with a restenosed aortic coarctation. Time-resolved three-directional phase-contrast (PC) MRI data was acquired to enable turbulence intensity estimation. A contrast-enhanced MR angiography (MRA) and a time-resolved 2D PCMRI measurement were also performed to acquire data needed to perform subsequent image-based computational fluid dynamics (CFD) modeling. A 3D model of the aortic coarctation and surrounding vasculature was constructed from the MRA data, and physiologic boundary conditions were modeled to match 2D PCMRI and pressure pulse measurements. Blood flow velocity data was subsequently obtained by numerical simulation. Turbulent kinetic energy (TKE) was computed from the resulting CFD data. Results indicate relative agreement (error a parts per thousand 10%) between the in vivo measurements and the CFD predictions of TKE. The discrepancies in modeled vs. measured TKE values were within expectations due to modeling and measurement errors.

  • 42.
    Axelsson, Emil
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Costa, Jonathas
    NYU, NY 10003 USA.
    Silva, Claudio
    NYU, NY 10003 USA.
    Emmart, Carter
    Amer Museum Nat Hist, NY 10024 USA.
    Bock, Alexander
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dynamic Scene Graph: Enabling Scaling, Positioning, and Navigation in the Universe2017In: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 36, no 3, 459-468 p.Article in journal (Refereed)
    Abstract [en]

    In this work, we address the challenge of seamlessly visualizing astronomical data exhibiting huge scale differences in distance, size, and resolution. One of the difficulties is accurate, fast, and dynamic positioning and navigation to enable scaling over orders of magnitude, far beyond the precision of floating point arithmetic. To this end we propose a method that utilizes a dynamically assigned frame of reference to provide the highest possible numerical precision for all salient objects in a scene graph. This makes it possible to smoothly navigate and interactively render, for example, surface structures on Mars and the Milky Way simultaneously. Our work is based on an analysis of tracking and quantification of the propagation of precision errors through the computer graphics pipeline using interval arithmetic. Furthermore, we identify sources of precision degradation, leading to incorrect object positions in screen-space and z-fighting. Our proposed method operates without near and far planes while maintaining high depth precision through the use of floating point depth buffers. By providing interoperability with order-independent transparency algorithms, direct volume rendering, and stereoscopy, our approach is well suited for scientific visualization. We provide the mathematical background, a thorough description of the method, and a reference implementation.

    The full text will be freely available from 2018-07-01 14:42
  • 43.
    Baeza Ortega, José Antonio
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Combined Visualization of Intracardiac Blood Flow and Wall Motion Assessed by MRI2011Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    MRI is a well known and widely spread technique to characterize cardiac pathologies due to its high spatial resolution, its accessibility and its adjustable contrast among soft tissues.

    In attempt to close the gap between blood flow, myocardial movement and the cardiac fucntion, researching in the MRI field addresses the quantification of some of the most relevant blood and myocardial parameters.

    During this proyect a new tool that allows reading, postprocessing, quantifying and visualizing 2D motion sense MR data has been developed. In order to analyze intracardiac blood flow and wall motion, the new tool quantifies velocity, turbulent kinetic energy, pressure and strain.

    In the results section the final tool is presented, describing the visualization modes, which represent the quantified parameters both individually and combined; and detailing auxiliary tool features as masking, thresholding, zooming, and cursors.

    Finally, thecnical aspects as the convenience of two dimensional examinations to create compact tools, and the challenges of masking as part of the relative pressure calculation, among others, are discussed; ending up with the proposal of some future developments.

  • 44. Bagh, K
    et al.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Vogel, HJ
    Characterization of the cell-wall associated acid phosphatases of catharanthus roseus1990Conference paper (Other academic)
  • 45.
    Baranowski, Jacek
    et al.
    Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Dahlin, Lars-Göran
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Nielsen, Niels-Erik
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Cardiology in Linköping.
    Nylander, Eva
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Wallby, Lars
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Ahn, Henrik
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Transcatheter aortic valve implantation without prior balloon dilatation - a non-randomized single centre experience2013Conference paper (Other academic)
  • 46. Baranowski, Jacek
    et al.
    Wallby, Lars
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Ahn, Henrik
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Dahlin, Lars-Göran
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Nylander, Eva
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lindgren, B
    Freter, W
    Johansson, M
    Nielsen, Niels-Erik
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Cardiology in Linköping.
    TAVI without balloon predilation. A ramdomized single centre study.2014Conference paper (Refereed)
  • 47. Baranowski, Jacek
    et al.
    Wallby, Lars
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Nylander, Eva
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Boano, Gabriella
    Vanky, Farkas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Löfstöm, Lars
    Johansson, Mats
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Thoracic and Vascular Surgery.
    Nielsen, Niels-Erik
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Cardiology in Linköping.
    MitraClip after myocardial infarction with papillary muscle rupture and as treatment of systolic anterior motion of the mitral valve.2014Conference paper (Refereed)
  • 48.
    Baravdish, George
    et al.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Svensson, Olof
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Åström, Freddie
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    On Backward p(x)-Parabolic Equations for Image Enhancement2015In: Numerical Functional Analysis and Optimization, ISSN 0163-0563, E-ISSN 1532-2467, Vol. 36, no 2, 147-168 p.Article in journal (Refereed)
    Abstract [en]

    In this study, we investigate the backward p(x)-parabolic equation as a new methodology to enhance images. We propose a novel iterative regularization procedure for the backward p(x)-parabolic equation based on the nonlinear Landweber method for inverse problems. The proposed scheme can also be extended to the family of iterative regularization methods involving the nonlinear Landweber method. We also investigate the connection between the variable exponent p(x) in the proposed energy functional and the diffusivity function in the corresponding Euler-Lagrange equation. It is well known that the forward problems converges to a constant solution destroying the image. The purpose of the approach of the backward problems is twofold. First, solving the backward problem by a sequence of forward problems we obtain a smooth image which is denoised. Second, by choosing the initial data properly we try to reduce the blurriness of the image. The numerical results for denoising appear to give improvement over standard methods as shown by preliminary results.

  • 49.
    Bednarska, Olga
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Tapper, Sofie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lowén, Mats
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Walter, Susanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Neurotransmittor Concentration in Pregenual ACC in Stool Consistency Patient Subgroups With IBS2014Conference paper (Refereed)
    Abstract [en]

    Introduction

    The Anterior Cingulate Cortex (ACC) is a key region of the central autonomic brain network. Irritable Bowel Syndrome (IBS) is characterized abdominal pain and bowel habit disturbances. Autonomic dysregulation has been reported in IBS as well as altered ACC activation in pregenual ACC during visceral stimulation 1 2. Glutamate is the major excitatory and Gamma-aminobutyric acid (GABA) the major inhibitory neurotransmitter in the brain.

    Aim & Methods

    We aimed to measure neurotransmitter concentration in the pregenual ACC, in stool consistency subgroups with IBS by using quantitative neurotransmitter Magnetic Resonance Spectroscopy (qMRS)Seven patients with IBS-mixed (6 women) and five patients with IBS -diarrhea (4 women) according to Rome 3 were included. Mean age was 34.2 years (SD 5.3) with no significant difference between subgroups.  Patients completed symptom severity score (IBS-SSS). Quantitative MRS was measured in a 3T MRI scanner. A water-suppressed MEGA-PRESS sequence (TR 2.0 s, TE 68 ms) was used with the editing pulses placed at 1.90 ppm (‘ON-dynamics’) and at 7.46 ppm (‘OFF-dynamics’) with a voxel (3x3x3 cm3) placed in the pACC. Each MEGA-PRESS measurement resulted in a sequence of 40 OFF- and ON-dynamics, where each was computed by 8 phase cycles. Directly after each water-suppressed MEGA-PRESS measurement, a shorter 2-dynamic unsuppressed water MEGA-PRESS measurement was performed within the same voxel, which was used to obtain the concentrations in physically well-defined units of [mM]. The GABA concentrations were computed by averaging the difference spectra obtained by subtracting each OFF-dynamic from subsequent ON-dynamic and using LCModel (Version 6.3) for the final quantification. The Glutamate concentrations were obtained by only averaging the OFF-dynamics, which were not affected by the editing pulses. Additionally, all dynamics were phase and frequency corrected prior to the averaging. For group comparison unpaired T-tests were used.

    Results

    Patients had moderate to severe symptoms with IBS-SSS of 367 (SD 79.7). There was no significant difference between IBS subgroups in terms of IBS-SSS. Mean pACC GABA concentration was 1.66 (SD 0.17) mM in IBS-M and 1.65 (SD 0.27) mM in IBS-D. There was no significant difference between groups (p=0.9). Mean pACC Glutamate concentration was 4.54 (0.35) mM in IBS-M and 5.13 (SD 0.64) mM in IBS-D. There was no significant difference between groups, although a trend with p=0.06 was observed.

    Conclusion

    Further qMRS data have to be collected in IBS patients as well as healthy controls to evaluate if IBS subgroups demonstrate alterations in pACC glutamate and GABA concentrations

  • 50.
    Bednarska, Olga
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Walter, Susanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Casado-Bedmar, Maite
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Ström, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Salvo-Romero, Eloisa
    University of Autonoma Barcelona, Spain.
    Vicario, Maria
    University of Autonoma Barcelona, Spain.
    Mayer, Emeran A.
    University of Calif Los Angeles, CA 90095 USA.
    Keita, Åsa
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Vasoactive Intestinal Polypeptide and Mast Cells Regulate Increased Passage of Colonic Bacteria in Patients With Irritable Bowel Syndrome2017In: Gastroenterology, ISSN 0016-5085, E-ISSN 1528-0012, Vol. 153, no 4, 948-+ p.Article in journal (Refereed)
    Abstract [en]

    BACKGROUND amp; AIMS: Irritable bowel syndrome (IBS) is associated with intestinal dysbiosis and symptoms of IBS develop following gastroenteritis. We aimed to study the passage of live bacteria through the colonic epithelium, and determine the role of mast cells (MCs) and vasoactive intestinal polypeptide (VIP) in barrier regulation in IBS and healthy individuals. METHODS: Colon biopsies from 32 women with IBS and 15 age-matched healthy women (controls) were mounted in Ussing chambers; we measured numbers of fluorescently labeled Escherichia coli HS and Salmonella typhimurium that passed through from the mucosal side to the serosal side of the tissue. Some biopsies were exposed to agents that block the VIP receptors (VPAC1 and VPAC2) or MCs. Levels of VIP and tryptase were measured in plasma and biopsy lysates. Number of MCs and MCs that express VIP or VIP receptors were quantified by immunofluorescence. Biopsies from an additional 5 patients with IBS and 4 controls were mounted in chambers and Salmonella were added; we studied passage routes through the epithelium by transmission electron microscopy and expression of tight junctions by confocal microscopy. RESULTS: In colon biopsies from patients with IBS, larger numbers of E coli HS and S typhimurium passed through the epithelium than in biopsies from controls (P amp;lt;.0005). In transmission electron microscopy analyses, bacteria were found to cross the epithelium via only the transcellular route. Bacterial passage was reduced in biopsies from patients with IBS and controls after addition of antibodies against VPACs or ketotifen, which inhibits MCs. Plasma samples from patients with IBS had higher levels of VIP than plasma samples from controls. Biopsies from patients with IBS had higher levels of tryptase, larger numbers of MCs, and a higher percentage of MCs that express VPAC1 than biopsies from controls. In biopsies from patients with IBS, addition of Salmonella significantly reduced levels of occludin; subsequent addition of ketotifen significantly reversed this effect. CONCLUSIONS: We found that colonic epithelium tissues from patients with IBS have increased translocation of commensal and pathogenic live bacteria compared with controls. The mechanisms of increased translocation include MCs and VIP.

1234567 1 - 50 of 1281
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf