liu.seSearch for publications in DiVA
Change search
Refine search result
12345 1 - 50 of 238
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Adolfsson, Emelie
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Grindborg, Jan-Erik
    Statens Strålskyddsinstitut, Stockholm.
    Gustafsson, Håkan
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lund, Eva
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Carlsson Tedgren, Åsa
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Response of Lithium Formate EPR Dosimeters at Photon Energies Relelvant to Brachytherapy2009In: IFMBE Proceedings, Heidelberg: Springer Berlin Heidelberg , 2009, p. 236-239Conference paper (Other academic)
    Abstract [en]

    After development of sensitive dosimeter materials Electron Paramagnetic Resonance EPR dosimetry has been successfully used also in radiation therapy. The intensity of the EPR-signal is a measure of the amount of free radicals created by ionizing radiation which is proportional to the absorbed dose in the dosimeter. Lithium formate monohydrate is a dosimeter material with 2-6 times higher sensitivity than alanine, a linear dose response over a wide dose range and mass-energy absorption properties similar to water. These properties make lithium formate promising for verification of absorbed doses around high dose rate brachytherapy sources where the dose gradient is steep and the photon energy distribution changing with distance from the source. Calibration of the dosimeters is performed in 60Co or MV photon beams where high dosimetric accuracy is feasible. The use in brachytherapy field relies on the assumption that the production of free radicals per mean absorbed dose in the dosimeter is similar at the lower photon energies present there. The aim of this work was to test that assumption. The response of the dosimeters as a function of photon energy was determined by irradiations with four x-ray qualities in the range 100-250 kV and 137Cs, relative to the response when irradiated with 60Co, all photon beams with well-known air kerma rates at the Swedish Secondary Standards Dosimetry Laboratory. Monte Carlo simulations were used to convert air kerma free in air to mean absorbed dose to the dosimeter. The measured response relative 60Co as a function of photon energy was below unity for all qualities. The maximum deviation from unity was 2.5% (100 kV, 135 kV) with a relative standard deviation of 1.5% (k = 1).

  • 2.
    Adolfsson, Emelie
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Grindborg, Jan-Erik
    Swedish Radiation Safety Authority, Stockholm, Sweden .
    Gustafsson, Håkan
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lund, Eva
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Carlsson Tedgren, Åsa
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Swedish Radiation Safety Authority, Stockholm, Sweden .
    Response of lithium formate EPR dosimeters at photon energies relevant to the dosimetry of brachytherapy2010In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 37, no 9, p. 4946-4959Article in journal (Refereed)
    Abstract [en]

    PURPOSE:

    To investigate experimentally the energy dependence of the detector response of lithium formate EPR dosimeters for photon energies below 1 MeV relative to that at 60Co energies. High energy photon beams are used in calibrating dosimeters for use in brachytherapy since the absorbed dose to water can be determined with high accuracy in such beams using calibrated ion chambers and standard dosimetry protocols. In addition to any differences in mass-energy absorption properties between water and detector, variations in radiation yield (detector response) with radiation quality, caused by differences in the density of ionization in the energy imparted (LET), may exist. Knowledge of an eventual deviation in detector response with photon energy is important for attaining high accuracy in measured brachytherapy dose distributions.

    METHODS:

    Lithium formate EPR dosimeters were irradiated to known levels of air kerma in 25-250 kV x-ray beams and in 137Cs and 60Co beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free in air into values of mean absorbed dose to the detectors were made using EGSnrc MC simulations and x-ray energy spectra measured or calculated for the actual beams. The signals from the detectors were measured using EPR spectrometry. Detector response (the EPR signal per mean absorbed dose to the detector) relative to that for 60Co was determined for each beam quality.

    RESULTS:

    Significant decreases in the relative response ranging from 5% to 6% were seen for x-ray beams at tube voltages < or = 180 kV. No significant reduction in the relative response was seen for 137Cs and 250 kV x rays.

    CONCLUSIONS:

    When calibrated in 60Co or MV photon beams, corrections for the photon energy dependence of detector response are needed to achieve the highest accuracy when using lithium formate EPR dosimeters for measuring absorbed doses around brachytherapy sources emitting photons in the energy range of 20-150 keV such as 169Yb and electronic sources.

  • 3.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Absorbed dose equations: The general solution of the absorbed dose equation and solutions under different kinds of radiation equilibrium1978Report (Other academic)
    Abstract [sv]

    This report is a logical continuation of two papers concerning basic concepts in dosimetry. The first paper (1) is u critical analysis of the concepts of ionizing radiation and energy imparted as defined by the ICRU (2). The second paper (3) gives a definition of the energy imparted, the fundamental quantity in radiation dosimetry, which is equivalent to that given by the ICRU but which has a different form. This alternative definition of the energy imparted is suitable in deriving a general expression, in terms of particle fluences and interaction cross sections, for the absorbed dose valid also in situations where no kind of radiation equilibrium is established. It is, however, today not possible to quantify this expression for the absorbed dose. All practical calculations of absorbed dose rely on the assumption of one or another type of radiation equilibrium. The aim of this work is to analyze different kinds of radiation equilibrium conditions and to find the corresponding exact expressions for the absorbed dose. The concept of radiation equilibrium is more carefully analyzed than has been done previously (4, 5, 6). Moreover, the definition of the mass energy absorption coefficient for indirectly (uncharged) ionizing particles is critically analyzed. A new definition is proposed relevant to calculations of the absorbed dose in cases when charged particle equilibrium exists within a homogeneous medium due to the uniform liberation of charged particles, by uncharged particles.

  • 4.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Bragg-Gray Dosimetry: Theory of Burch2001Report (Other academic)
    Abstract [en]

    The theoretical approach to Bragg-Gray dosimetry is: a Bragg-Gray cavity is a cavity (detector) so small that, when inserted into a medium, it does not disturb the fluence of charged particles existing in the medium.

    This means that the ideal Bragg-Gray cavity (detector) is one of infinitesimal dimensions, a "point" detector. In practice, such detectors do not exist but many real detectors may, in a first approximation, be treated as Bragg-Gray detectors to a high degree of accuracy. Corrections needed (so called perturbation corrections) to account for the deviation of the signal from a practical detector from that of an ideal one has been treated by, e.g., ICRU 1984, Alm Carlsson, 1985, Svensson and Brahme 1986, Alm Carlsson 1987.

    Derivation of "perturbation corrections" needs careful consideration and under-standing of the ideal case, i.e., that from which deviations are to be corrected for. The ideal case of a Bragg-Gray detector has been treated by Bragg 1912, Gray 1936, Laurence 1937, Spencer and Attix 1955 and Burch 1955.

    The formulation of Bragg-Gray theory by Spencer and Attix has found wide practical application and has been treated in detail elsewhere. The theory of Burch treats the same problem as did Spencer and Attix, viz., the significance of generation and slowing down of delta-particles in both medium and detector. Burch treated the problem in considerable detail but didn't find a solution for practical calculations. From a physical point of view, however, there is much to learn from Burch's approach. Also, his treatment of so called track ends, evaluated in some detail by Burch 1957, has been adapted in later versions of the Spencer-Attix formulation of Bragg-Gray theory.

  • 5.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Burlins kavitetsteori1979Report (Other academic)
    Abstract [sv]

    Burlins kavitetsteori är en generell teori i den meningen att inga krav finns på detektorns dimensioner jämfört med sekundärelektronernas räckvidder. Detektorn måste dock vara "tunn" för fotonerna dvs inte ge någon nämnvärd attenuering av de mot detektorn infallande fotonerna

     

  • 6.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Effective use of Monte Carlo methods for simulating photon transport with special reference to slab penetration problems in X-raydiagnostics1981Report (Other academic)
    Abstract [sv]

    The analys is of Monte Carlo methods here has been made in connection with a particular problem concerning the transport of low energy photons (30-140 keV) through layers of water with thicknesses between 5 and 20 cm.

    While not claiming to be a complete exposition of available Monte Carlo techniques, the methodological analyses are not restricted to this particular problem. The report describes in a general manner a number of methods which can be used in order to obtain results of greater precision in a fixed computing time.

    Monte Carlo methods have been used for many years in reactor technology, particularly for solving problems associated with neutron transport, but also for studying photon transport through radiation shields. In connection with these particular problems, mathematically and statistically advanced methods have been worked out. The book by Spanier and Gelbard (1969) is a good illustration of this.

    In the present case, a more physical approach to Monte Carlo methods for solving photon transport problems is made (along the lines employed by Fano, Spencer and Berger (1959)) with the aim of encouraging even radiation physicists to use more sophisticated Monte Carlo methods. Today, radiation physicists perform Monte Carlo calculations with considerable physical significance but often with unnecessarily straightforward methods.

    As Monte Carlo calculations can be predicted to be of increasing importance in tackling problems in radiation physics, e.g., in X-ray diagnostics, it is worthwhile to study the Monte Carlo approach for its own sake.

  • 7.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Fanos Teorem2002Report (Other academic)
    Abstract [sv]

    I ett oändligt medium erhålles en fullt uppbyggd fluens i alla punkter av mediet. I ett ändligt medium erhålles inte full uppbyggnad av fluensen på avstånd mindre än en maximal "partikelräckvidd" från begränsningsytorna. Fanos teorem har visats gälla för alla punkter i ett oändligt medium men kan endast gälla i det inre av ett ändligt medium där förhållandena är ekvivalenta med dem i det oändliga mediet.

  • 8.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Fotonspridningsprocessen vid röntgendiagnostiska strålkvaliteter1981Report (Other academic)
    Abstract [sv]

    Spridd strålning utgör ett allvarligt problem inom röntgendiagnostiken. Kunskap om den spridda strålningen, dess uppträdande i patient och detektor, är en förutsättning för att finna effektiva metoder att reducera den och begränsa dess negativa inverkan på bildkvaliten. Denna kunskap kan vinnas genom transportberäkningar, t ex Monte Carlo simulering (ALM CARLSSON). Detaljerad kännedom om tvärsnitten för inkoherent och koherent spridning är därvid av stor betydelse. Vid utnyttjandet av datortomografi för bestämning av elektrontäthet eller benmineralhalt och annan s.k. tomokemi krävs också välbestämda totala attenueringstvärsnitt, varav Compton och koherent spridning utgör en icke försumbar andel av attenueringen i energiområdet 10-100 keV.

    Fotonspridningen kan också utnyttjas positivt för att ge information om den kropp i vilken spridningen ägt rum. En review över metoder att använda Comptonspridningen till att göra elektrontäthetsbestämningar, såväl i enskilda volymer som i tomografiska snitt har publicerats av CARLSSON och ALM CARLSSON (1979).

    En viktig applikation av Comptonspridningen (inkoherent spridning) i diagnostisk radiologi är metoden att ur mätningar av antalet och energifördelningen av de fotoner, som spridits en viss vinkel bestämma energispektret av den primära röntgenstrålningen. Även här är kännedom om spridningstvärsnitten av vital betydelse för noggrannheten i bestämningen.

    Jag skall här ge en redogörelse för vår aktuella kunskap om tvärsnitten för koherent och inkoherent spridning för fotoner av röntgendiagnostisk kvalitet (10-200 keV). För dessa är det inte tillräckligt att applicera Klein-Nishina tvärsnittet, som gäller för spridning mot fria elektroner i vila utan hänsyn måste tas till att de atomära elektronerna är bundna och i rörelse i kollisionsögonblicket. Speciellt kommer konsekvenserna för metoden att bestämma primärstrålningsspektrum ur uppmätta spektra av spridd strålning att belysas.

  • 9.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Kavitetsteori: allmänna grunder1981Report (Other academic)
    Abstract [sv]

    Kavitetsteori är av fundamental betydelse för dosimetrin. Dess uppgift är att relatera den absorberade dosen i en dosimeter till den absorberade dosen i en given punkt i det medium dosimetern är placerad. Idealt har dosimetern samma strålningsabsorberande egenskaper som mediet. Detta är emellertid nästan aldrig möjligt att uppnå.

  • 10.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Klassisk elektrodynamik: Växelverkan mellan laddade partiklar och elektromagnetiska fält1975Report (Other academic)
    Abstract [sv]

    Varifrån kommer det elektromagnetiska fältet? Elektromagnetiska fält genereras av laddningar i rörelse (en laddning i vila genererar ett elektrostatiskt fält). I definitionen av fältstorheterna ovan tänks i första hand att det elektromagnetiska fält i vilket den betraktade laddningen q rör sig härstammar från alla de övriga laddningarna och deras rörelser i rymden. (Laddningen q genererar även själv ett elektromagnetiskt fält, som under vissa omständigheter återverkar på dess egen rörelse. Denna effekt diskuteras i ett senare avsnitt).

  • 11.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Kärnfysikaliska grunder för radioaktiva nuklider1974Report (Other academic)
    Abstract [sv]

    Förståelsen av den joniserande strålningen och dess växelverkan med materia förutsätter kännedom om atomens natur. Atomen (grekiska "atomos" = odelbar) är den minsta del av ett grundämne, som bibehåller ämnets identitet, dvs. uppvisar dess karakteristiska kemiska egenskaper. Individuella atomer är för små för att direkt kunna observeras. Man kan däremot observera vissa egenskaper hos atomen. Med hjälp av dessa försöker man bygga upp en enkel och åskådlig bild av atomen, en atommodell, med vars hjälp man kan förklara experimentellt gjorda observationer.

    Atomen består av en central, elektriskt positivt laddad kärna, till vilken den största delen av atomens massa är koncentrerad. Runt kärnan kretsar elektriskt negativt laddade elektroner, vilka neutraliserar kärnans positiva laddning, så att atomen utåt verkar elektriskt neutral.

    Atomkärnan är uppbyggd av två sorters elementarpartiklar, protoner och neutroner. En proton och en neutron har ungefär samma massa, men medan protonen är bärare av en positiv laddning lika stor som elektronens negativa laddning är neutronen elektriskt neutral. En elektriskt neutral atom innehåller alltså lika många protoner i kärnan som elektroner i det omgivande elektronskalet. Ett gemensamt namn på protoner och neutroner är nukleon.

  • 12.
    Alm Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Radiation protection of the patient.1999In: The Journal of the Australasian Radiation Protection Society, ISSN 1444-2752, Vol. 16, p. 20-25Article in journal (Other academic)
  • 13.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Skalära och vektoriella fysikaliska storheter: Deras betydelse för förståelsen av röntgendetektorernas uppträdande i ett strålningsfält1981Report (Other academic)
    Abstract [sv]

    Joniserande strålning är ett fysikaliskt fenomen. Varje del av rymden där detta fenomen uppträder utgör ett strålningsfält. För att kunna ge ett mått på "mängden strålning" i fältet krävs att vi först definierar en storhet och därefter mäter eller beräknar storleken på denna uttryckt i antalet enheter av storheten i fråga. Det förekommer alltför ofta att man talar om att "mäta strålningen", vilket egentligen är en omöjlighet. Om man t.ex. anger att ett visst raster "reducerar den spridda strålningen med en faktor 2" så säger detta ingenting om man inte samtidigt anger vilken storhet man avser; fluensen, energifluensen, antalet fotoner som träffar en detektor, summaenergin hos fotonerna som träffar detektorn eller energin absorberad (energy imparted) i detektorn.

    Signalen från en detektor, som placeras i strålningsfältet beror i första hand av den i detektorn absorberade strålningsenergin även om modifikationer till följd av den aktuella fördelningen i tid och rum kan förekomma. Förståelsen aven detektors uppträdande i strålningsfältet är i första hand av dosimetrisk natur.

    Vi skall här närmare betrakta de storheter, som används för att beskriva strålningsfältet och hur dessa kan användas för att bestämma väntevärdet av den i en strålningsdetektor absorberade strålningsenergin. Samtidigt ges tillfälle att presentera de nya storheter och den nya terminologi, som infördes i senaste ICRU-rapporten över kvantiteter och enheter.

  • 14.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Spencer-Attix Cavity Theory2002Report (Other academic)
    Abstract [en]

    The cavity theory by Spencer and Attix treats the energy deposition in a Bragg-Gray (B-G) cavity (detector). Originally the theory was developed for the case of a B-G detector inside a medium irradiated with photons and assuming electronic equilibrium in the medium at the position of the cavity. The theory is also applicable in media irradiated with other types of uncharged ionizing particles (e.g., neutrons) and charged particles such as electrons and protons.

    The special case of photon irradiation under CPE (charged particle equilibrium) conditions was coupled to a model for calculating the energy spectrum of the equilibrium fluence of electrons in the undisturbed medium. For other situations, e.g., in a medium externally irradiated with electrons, the problem is to evaluate the energy spectrum of the electron fluence at the point considered in the medium. Today, this is mostly accomplished using Monte Carlo simulations.

    A Bragg-Gray cavity is regarded to be so small that:

    • the energy imparted to the cavity from electrons released by photons in the cavity is negligible compared to the energy imparted from electrons released by photons in the surrounding medium and passing through the cavity
    • the cavity should not disturb the fluence of electrons in the medium, i. e., the fluence of electrons traversing the cavity is assumed to be identical to that existing at the point of interest in the medium in the absence of the cavity.
  • 15.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Spencer-Attix kavitetsteori2001Report (Other academic)
    Abstract [en]

    Spencer-Attix kavitetsteori behandlar energideponeringen i en Bragg-Gray kavitet (detektor) inuti ett medium bestrålat med fotoner och med elektronjämvikt i mediet på kavitetens plats. Med en Bragg-Gray kavitet menas en kavitet så liten att

    • energideponeringen i kaviteten från elektroner frigjorda av fotoner i kaviteten är försumbar jämfört med energideponeringen från elektroner frigjorda av fotoner i omgivande mediet och som passerar in kaviteten
    • kaviteten skall inte nämnvärt störa fluensen av elektronerna i mediet, dvs kaviteten antas i varje punkt genomkorsad av samma fluens av elektroner, som finns i mediet i frånvaro av kaviteten
  • 16.
    Alm Carlsson, Gudrun
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Carlsson, Carl A.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Statistisk precision vid radioaktivitetsmätning och Aktivitetsbestämning ur uppmätt räknehastighet1974Report (Other academic)
    Abstract [sv]

    Radioaktiva sönderfall sker slumpmässigt och det är omöjligt att i förväg veta exakt när en viss atom sönderfaller. Allt man kan säga är att under en halveringstid är sannolikheten 0.5 att en atom sönderfaller och 0.5 att den förblir i sitt ursprungliga radioaktiva tillstånd. Detta gäller en enstaka atom, är det ett stort antal atomer kan man förutsäga att hälften av dem kommer att sönderfalla inom en halveringstid.

    Antag att i ett experiment aktiviteten av ett prov bestäms under en minut. Räknaren anger 1000 cpm, counts per minute. Om man räknar en gång till kanske scalern anger 985 cpm, nästa gång 1023 cpm osv Skulle man utföra mätningen 1000 gånger skulle man få värdet 1000 12 - 13 gånger, 960 och faktiskt 1040 skulle man få 5-6 gångeroch 940 eller 1060 2 gånger. Detta beror inte på något experimentellt fel eller på någon speciell teknik som experimenttorn använder utan på de statistiska fluktuationerna. (Skulle man få värdet 1000 varje gång skall man kontrollera räknaren, någon kanske har ställt in pre-set counts 1000, dvs då är något fel).

    Vi skall i denna rapport se hur de statistiska fluktuationerna påverkar mätresultaten, hur osäkerheten presenteras och hur man gör en aktivitetsbestämning ur en uppmätt räknehastighet.

  • 17.
    Alm Carlsson, Gudrun
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Carlsson, Carl A.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Pettersson, Håkan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Riskuppskattningar och strålskydds-rekommendationer: Vår strålningsmiljö1991Report (Other academic)
    Abstract [sv]

    Människan har i alla tider varit utsatt för joniserande strålning. Kosmiskstrålning och naturligt radioaktiva nuklider i vår omgivning och i vår kropp ger ett årligtbidrag till den absorberade dosen i hela kroppen, som i genomsnitt för människorna påjorden uppgår till 1 mGy/år (1Gy = 1 J/kg). Det finns områden på jorden där stråldosenfrån naturlig strålning är 10-100 ggr större, jfr avsnittet "Vår strålningsmiljö".

    I slutet av 1800-talet upptäckte Röntgen röntgenstrålningen och Becquerel den naturligaradioaktiviteten. Människan fick därmed för första gången tillgång till starka källor avjoniserande strålning. Dessa togs snabbt i bruk framförallt inom medicinsk röntgendiagnostikoch radioterapi. Man gjorde snart bittra erfarenheter av den joniserandestrålningens skadliga biologiska verkningar efter höga stråldoser. Fram till år 1922 hadec:a 100 radiologer dött av strålskador. Man insåg att något måste göras för att förbättraläget för personalen och år 1928 bildades ICRP (International Commission on RadiationProtection). ICRP ger ut rekommendationer för strålskydd, som ligger till grund förnationella lagar och förordningar över hela världen.

    Den förhållandevis långa erfarenhet människan har av joniserande strålning och denlätthet med vilken även små stråldoser kan mätas har gett oss stränga normer vad gällerhanteringen av producerade strålkällor. Många har därför uppfattningen att joniserandestrålning är en exklusiv miljökomponent. Så är knappast fallet. Förutom att vi alltid varitnaturligt bestrålade finns det idag anledning att förmoda att den kemiska nedsmutsningenav miljön är ett långt allvarligare hot mot vårt välbefinnande än den nuvarandeanvändningen av producerade strålkällor. En rättvis bedömning av olika miljökomponenterkan endast göras den gång alla mäts med samma mått. Arbete med dennainriktning pågår med strålskydds-verksamheten som förebild.

  • 18.
    Alm Carlsson, Gudrun
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Chan, HP
    Commentary: progress in optimization of patient dose and image quality in x-ray diagnostics.1999In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 44Article in journal (Other (popular science, discussion, etc.))
  • 19.
    Alm Carlsson, Gudrun
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Ekberg, Stefan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Helmrot, Ebba
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Lindström, Jan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Lund, Eva
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Matscheko, Georg
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Nilsson, Håkan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Persliden, Jan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Stenström, Mats
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Monte Carlo metoden: ett verktyg inom strålningsfysiken1995Report (Other academic)
    Abstract [sv]

    Detta kompendium är tänkt att användas som ett propedeutiskt kursmaterial för kursdeltagare i kursen "Monte Carlo simulering av foton- och elektrontransport vid diagnostiska och radioterapeutiska strålkvaliteter".

    Först följer en kort repetition av den grundläggande statistik som utnyt1jas i beräkningarna. Därefter följer en beskrivning av slumptal. det fundament som metoden bygger på. Vidare beskrivs val ur olika frekvensfunktioner. Valet kan även göras ur så kallade falska fördelningar för att reducera variansen i den skattade storheten. Metoderna belyses i ett avsnitt om problemlösningsmetodik. först i allmänna termer för att sen gå in på ett specifikt problem (Buffons nålproblem) där en analys och strukturering av problemet görs varefter flödesschema och kodning exemplifieras. Så följer två moment där en beskrivning görs av färderna av fotoner respektive elektroner genom materia. För elektronfärderna gör man en indelning i klass 1- och klass II-färder. Vad detta innebär och hur deltapartiklar tas om hand beskrivs i ett kapitel. Till sist kommer en kort introduktion till de tre laborationerna med laborationshandledningar. Speciell vikt har lagts vid att initiera laboranten att fundera på fysiken i de simulerade experimenten.

    Detta kompendium har tillkommit som examinationsarbete vid en kurs i "Monte Carlo simulering av foton- och elektrontransport vid diagnostiska och radioterapeutiska strålkvaliteter", med andra ord den kurs du själv nu ämnar studera. Författarna önskar dig lycka till med kursen och hoppas att du kommer att få glädje av den. Speciellt hoppas vi att denna skrift ska underlätta för dig att tillgodogöra dig informationen vid föreläsningarna och under laborationerna.

  • 20.
    Alm-Carlsson, Gudrun
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Bergman, Ronny
    Harms-Ringdahl, Mats
    Swarén, Ulla
    The Swedish ICRP Project (SwIP) : a radiological protection policy under discussion2002Report (Other academic)
  • 21.
    Andersson-Engels, Stefan
    et al.
    Inst för fysik Lunds Tekniska Högskola.
    Pålsson, S
    Backlund, Erik Olof
    IMT LiU.
    Sturnegk, Patrik
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Östergötlands Läns Landsting, Reconstruction Centre, Department of Neurosurgery UHL.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Svanberg, K
    Eriksson, Ola
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Wårdell, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    ALA-PpIX Fluorescence and spectroscopy in connection with stereotactic biopsy of human glioblastomas2005In: European Conference on Biomedical Optics,2005, 2005Conference paper (Refereed)
  • 22.
    Antonovic, Laura
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Gustafsson, Håkan
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Carlsson Tedgren, Åsa
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Evaluation of a lithium formate EPR dosimetry system for dose measurements around Ir-192 brachytherapy sources2009In: MEDICAL PHYSICS, ISSN 0094-2405, Vol. 36, no 6, p. 2236-2247Article in journal (Refereed)
    Abstract [en]

    A dosimetry system using lithium formate monohydrate (HCO2Li center dot H2O) as detector material and electron paramagnetic resonance (EPR) spectroscopy for readout has been used to measure absorbed dose distributions around clinical Ir-192 sources. Cylindrical tablets with diameter of 4.5 mm, height of 4.8 mm, and density of 1.26 g/cm(3) were manufactured. Homogeneity test and calibration of the dosimeters were performed in a 6 MV photon beam. Ir-192 irradiations were performed in a PMMA phantom using two different source models, the GammaMed Plus HDR and the microSelectron PDR-v1 model. Measured absorbed doses to water in the PMMA phantom were converted to the corresponding absorbed doses to water in water phantoms of dimensions used by the treatment planning systems (TPSs) using correction factors explicitly derived for this experiment. Experimentally determined absorbed doses agreed with the absorbed doses to water calculated by the TPS to within +/- 2.9%. Relative standard uncertainties in the experimentally determined absorbed doses were estimated to be within the range of 1.7%-1.3% depending on the radial distance from the source, the type of source (HDR or PDR), and the particular absorbed doses used. This work shows that a lithium formate dosimetry system is well suited for measurements of absorbed dose to water around clinical HDR and PDR Ir-192 sources. Being less energy dependent than the commonly used thermoluminescent lithium fluoride (LiF) dosimeters, lithium formate monohydrate dosimeters are well suited to measure absorbed doses in situations where the energy dependence cannot easily be accounted for such as in multiple-source irradiations to verify treatment plans. Their wide dynamic range and linear dose response over the dose interval of 0.2-1000 Gy make them suitable for measurements on sources of the strengths used in clinical applications. The dosimeter size needs, however, to be reduced for application to single-source dosimetry.

  • 23. Bergman, I
    et al.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Preston, Caroline M
    Nilsson, Mats
    Degradiation of [U-13C] glucose in sphagnum majus litter: responses to redox, pH and temperature.2000In: Soil Science Society of America Journal, ISSN 0361-5995, E-ISSN 1435-0661, Vol. 64, p. 1368-1381Article in journal (Refereed)
  • 24.
    Borg, Roger
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Ekberg, Stefan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Improved dose planning with image fusion2004In: European Association of Nuclear Medicine,2004, 2004Conference paper (Other academic)
  • 25.
    Carlsson, C.A.
    et al.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Lund, Eva
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Pettersson, Håkan
    Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Matscheko, G.
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.
    An instrument for measuring ambient dose equivalent, H*(10)1996In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 67, no 1, p. 33-39Article in journal (Refereed)
    Abstract [en]

    The design and calibration of a small and simple instrument for measuring the ambient dose equivalent, H*(10), in photon fields is described. Comprising a thermoluminescence LiF dosemeter inside a 20 mm diameter PMMA sphere, it is capable of measuring the ambient dose equivalent with a nearly isotropic response. In the interval 0.1-100 mSv and for the energy range 30 keV to 1.25 MeV the energy response is within -31% and +15% relative to that of 137Cs gamma radiation (662 keV). In practical use, it is therefore sufficient to calibrate the instrument in a 137Cs gamma field using the corresponding conversion coefficient H*(10)/Kair taken from tabulations. The possibility of using the instrument to monitor the ambient dose equivalent for energies above 1.25 MeV is discussed and indicates that the range of applicability can be extended to 4.4 MeV with an energy response within -10% relative to 662 keV.

  • 26.
    Carlsson, Carl A.
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun Alm
    Linköping University, Department of Medicine and Care, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Basic physics of X-ray imaging1973Report (Other academic)
    Abstract [en]

    In X-ray diagnostics, radiation that is partly transmitted through and partly absorbed in the irradiated object is utilised. An X-ray image shows the variations in transmission caused by structures in the object of varying thickness, density or atomic composition.

    After an introductory description of the nature of X-rays, the most important processes in the X-ray source, the object (patient) and radiation detector for the generation of an X-ray image will be described.

  • 27.
    Carlsson Tedgren, Asa
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Ahnesjö, Anders
    Uppsala University.
    Optimization of the computational efficiency of a 3D, collapsed cone dose calculation algorithm for brachytherapy.2008In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 35, no 4, p. 1611-1618Article in journal (Refereed)
    Abstract [en]

    Brachytherapy dose calculations based on point kernel superposition using the collapsed cone method have been shown to accurately model the influence from finite dimensions of the patient and effects from heterogeneities including those of high atomic numbers. The collapsed cone method is for brachytherapy applications most effectively implemented through a successive-scattering approach, in which the dose from once and higher order of scattered photons is calculated separately and in successive scatter order. The calculation speed achievable is directly proportional to the number of directions used for point kernel discretization and to the number of voxels in the volume. In this work we investigate how to best divide the total number of directions between the two steps of successive-scattering dose calculations. Results show that the largest fraction of the total number of directions should be utilized in calculating the first-scatter dose. Also shown is how the number of directions required for keeping discretization artifacts at acceptably low levels decreases significantly in multiple-source configurations, as a result of the dose gradients being less steep than those around single sources. Investigating the number of kernel directions required to keep artifacts low enough within the high dose region of an implant (i.e., for dose levels above approximately 5%-10% of the mean central target dose) reveals similar figures for brachytherapy as for external beam applications, where collapsed cone superposition is clinically used. Also shown is that approximating point kernels with their isotropic average leads to small dose differences at low and intermediate energies, implying that the collapsed cone calculations can be done in a single operation common to all sources of the implant at these energies. The current findings show that collapsed cone calculations can be achieved for brachytherapy with the same efficiency as for external beams. This, combined with recent results on gains in efficiency through implementing the algorithm on graphical card parallel hardware indicates that dose can be calculated with account for heterogeneities and finite dimensions within a few seconds for large voxel arrays and is therefore of interest for practical application to treatment planning.

  • 28.
    Carlsson Tedgren, Åsa
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Dose calculation and Monte Carlo simulations beyond the TG43 formalism2007In: 9th Biennial ESTRO meeting on physics and radiation technology for clinical radiotherapy,2007, 2007, p. S33-S33Conference paper (Other academic)
    Abstract [en]

       

  • 29.
    Carlsson Tedgren, Åsa
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Evaluation of collapsed cone dose calculation accuracy for multiple source implants2008In: World Congress of Brachytherapy,2008, 2008, p. 136-136Conference paper (Other academic)
    Abstract [en]

          

  • 30.
    Carlsson Tedgren, Åsa
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Influence of phantom material and dimensions on experimental Ir-192 dosimetry2009In: MEDICAL PHYSICS, ISSN 0094-2405, Vol. 36, no 6, p. 2228-2235Article in journal (Refereed)
    Abstract [en]

    In treatment planning of brachytherapy, absorbed dose is calculated by superposing predetermined distributions of absorbed dose to water in water for the single source according to the irradiation pattern [i.e., placement of the source(s) or dwelling position(s)]. Single-source reference water data are derived from Monte Carlo (MC) simulations and/or experiments. For reasons of positional accuracy, experimental brachytherapy dosimetry is most often performed in plastic phantoms. This work investigates the water equivalence of phantoms made from polystyrene, PMMA, and solid water for Ir-192 dosimetry. The EGSnrc MC code is used to simulate radial absorbed dose distributions in cylindrical phantoms of dimensions ranging in size from diameter and height of 20 cm to diameter and height of 40 cm. Water equivalence prevails if the absorbed dose to water in the plastic phantom is the same as the absorbed dose to water in a water phantom at equal distances from the source. It is shown that water equivalence at a specified distance from the source depends not only on the size of the plastic phantom but also on the size of the water phantom used for comparison. Compared to equally sized water phantoms, phantoms of polystyrene are less water equivalent than phantoms of PMMA and solid water but compared to larger water phantoms they are the most water equivalent. Although phantom dimension is the most important single factor influencing the dose distributions around Ir-192 sources, the effect of material properties is non-negligible and becomes increasingly important as phantom dimensions increase. The importance of knowing the size of the water phantom whose data underlies treatment planning systems, when using such data as a reference in, e.g., detector evaluation studies, is discussed. To achieve the highest possible accuracy in experimental dosimetry, phantom-specific correction factors should be used.

  • 31.
    Carlsson Tedgren, Åsa
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Bengtsson, Emil
    Karolinska University Hospital.
    Hedtjärn, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics .
    Johansson, Asa
    Karolinska University Hospital.
    Karlsson, Leif
    Örebro University Hospital.
    Lamm, Inger-Lena
    Lund University Hospital.
    Lundell, Marie
    Karolinska University Hospital.
    Mejaddem, Younes
    Karolinska University Hospital.
    Munck af Rosenschold, Per
    Lund University Hospital.
    Nilsson, Josef
    Karolinska University Hospital.
    Wieslander, Elinore
    Lund University Hospital.
    Wolke, Jeanette
    Karolinska University Hospital.
    Experience from long-term monitoring of RAKR ratios in Ir-192 brachytherapy2008In: Radiotherapy and Oncology, ISSN 0167-8140, E-ISSN 1879-0887, Vol. 89, no 2, p. 217-221Article in journal (Refereed)
    Abstract [en]

    Background: Ratios of values of brachytherapy source strengths, as measured by hospitals and vendors, comprise constant differences as, e.g., systematic errors in ion chamber calibration factors and measurement setup. Such ratios therefore have the potential to reveal the systematic changes in routines or calibration services at either the hospital or the vendor laboratory, which could otherwise be hidden by the uncertainty in the source strength values.

    Methods: The RAKR of each new source in 13 afterloading units at five hospitals were measured by well-type ion chambers and compared to values for the same source stated on vendor certificates.

    Results: Differences from unity in the ratios of RAKR values determined by hospitals and vendors are most often small and stable around their mean values to within +/- 11.5%. Larger deviations are rare but occur. A decreasing ratio, seen at two hospitals for the same source, was useful in detecting an erroneous pressure gauge at the vendors site.

    Conclusions: Establishing a mean ratio of RAKR values, as measured at the hospital and supplied on the vendor certificate, and monitoring this as a function of time are an easy way for the early detection of problems with equipment or routines at either the hospital or the vendor site.

  • 32.
    Carlsson Tedgren, Åsa
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    de Luelmo, Sandro
    Swedish Radiation Safety Authority.
    Grindborg, Jan-Erik
    Swedish Radiation Safety Authority.
    Characterization of a Co-60 unit at a secondary standard dosimetry laboratory: Monte Carlo simulations compared to measurements and results from the literature2010In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 37, no 6, p. 2777-2786Article in journal (Refereed)
    Abstract [en]

    Purpose: To compare a Monte Carlo (MC) characterization of a Co-60 unit at the Swedish Secondary Standard Dosimetry Laboratory (SSDL) with the results of both measurements and literature with the aims of (1) resolving a change in the ratio of air-kerma free in air K-air and absorbed dose to water D-w in a water phantom noted experimentally after a source exchange in the laboratory and (2) reviewing results from the literature on similar MC simulations. Although their use in radiotherapy is decreasing, the characteristics of Co-60 beams are of interest since Co-60 beams are utilized in calibrating ionization chambers for the absolute dosimetry of radiotherapy beams and as reference radiation quality in evaluating the energy dependence of radiation detectors and in studies on radiobiological effectiveness. Methods: The BEAMnrc MC code was used with a detailed geometrical model of the treatment head and two models of the Co-60 source representing the sources used before and after source exchange, respectively. The active diameters of the Co-60 sources were 1.5 cm in pellet form and 2.0 cm in sintered form. Measurements were performed on the actual unit at the Swedish SSDL. Results: Agreement was obtained between the MC and the measured results within the estimated uncertainties for beam profiles, water depth-dose curve, relative air-kerma output factors, and for the ratios of K-air/D-w before and after source exchange. The on-axis energy distribution of the photon fluence free in air for the unit loaded with its present (1.5 cm in diameter) source agreed closely with the results from the literature in which a source of the same make and active diameter, inside a different treatment head, was simulated. The spectrum for the larger (2.0 cm in diameter) source was in close agreement with another published spectrum, also modeling a Co-60 source with an active diameter of 2.0 cm inside a different treatment head. Conclusions: The reduction in the value of K-air/D-w following source exchange was explained by the spectral differences between the two sources that were larger in the free in-air geometry used for K-air calibrations than at 5 g/cm(2) depth in the water phantom used for D-w calibrations. Literature review revealed differences between published in-air Co-60 spectra derived for sources of different active diameters, and investigators in need of an accurately determined Co-60 in-air spectrum should be aware of differences due to source active diameter.

  • 33.
    Carlsson Tedgren, Åsa
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Grindborg, Jan-Erik
    Stockholm.
    Audit on source strength determination for HDR and PDR 192Ir brachytherapy in Sweden2008In: Radiotherapy and Oncology, ISSN 0167-8140, E-ISSN 1879-0887, Vol. 86, no 1, p. 126-130Article in journal (Refereed)
    Abstract [en]

    Background and purpose: To investigate the status of source strength determination in terms of reference air kerma rate (RAKR) for HDR and PDR 192Ir brachytherapy in Sweden. Materials and methods: RAKR was determined in each of the 14 Swedish afterloaders, using calibrated equipment from the Swedish Secondary Standard Dosimetry Laboratory. Results: Values of RAKR from the external audit, the hospitals and vendors agreed within the uncertainty limits guaranteed by the vendors. Conclusions: The accuracy in RAKR determination has increased over the last years as a result of increased availability of interpolation standards for HDR 192Ir and the increased use of robust well-type ion chambers designed for brachytherapy. It is recommended to establish a ratio between the RAKR value from own measurements at the hospital and that of the vendor since such a ratio embeds constant systematic differences due to e.g. varying traceability and therefore has the potential of being less uncertain than the RAKR alone. Traceability to primary standards for HDR 192Ir sources will in the future significantly decrease the uncertainty in RAKR of 192Ir brachytherapy. © 2007 Elsevier Ireland Ltd. All rights reserved.

  • 34.
    Carlsson Tedgren, Åsa
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Grindborg, J-E
    Stockholm.
    192-Ir source strength dosimetry audit in Sweden2007In: 9th Biennial ESTRO meeting on physics and radiation technology for clinical radiotherapy,2007, 2007, p. S143-S143Conference paper (Other academic)
    Abstract [en]

    Posters Brachytherapy, publicerad i Radiotherapy and Oncology.

  • 35.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Dahlström, Nils
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Brismar, T
    Sandström, Per
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Surgery . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Kihlberg, Johan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    A liver function test based on measurement of liver-specific contrast agent uptake2008In: Proceedings 16th Scientific meeting, ISMRM,2008, 2008Conference paper (Other academic)
    Abstract [en]

      

  • 36.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Jacek, J.
    Aalto, Anne
    Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging.
    Grönqvist, A.
    Smedby, Örjan
    Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Lundberg, Peter
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Is Increased Normal White Matter Glutamate Concentration a Precursor of Gliosis and Disease Progression in Multiple Sclerosis?Manuscript (preprint) (Other academic)
    Abstract [en]

    Background: The multiple sclerosis (MS) severity scale (MSSS) is a new scoring procedure to clinically characterize the rate of disease progression in MS, rather than the disability of the patient. The latter is often characterized using the expanded disability status score (EDSS). The progress rate of the disease, magnetic resonance imaging (MRI)-based measures of ‘black hole lesions’, and atrophy have all been shown to be predicted well by MSSS. In this study we investigated possible relationships between brain metabolite concentrations, measured using proton (1H) magnetic resonance spectroscopy (MRS), and MSSS.

    Purpose: Our aims were to quantitatively investigate the metabolite concentrations in normal appearing white matter (NAWM) in MS-patients, and also to investigate possible correlations between disease subtype, EDSS and MSSS and metabolite concentrations. To minimize the interference from lesion contamination in the MRS measurement, a refined novel analysis procedure had to be developed in order to correct for partial volume effects in tissues near plaques.

    Materials and Methods: Forty eight patients with Clinically Definite MS (CDMS), and 18 normal control subjects (NC) were included retrospectively from several MRS studies. T1, T2, and proton density MRI, and four white matter 1H MRS single voxel PRESS (Point-REsolved SpectroScopy) spectra were acquired in each subject using echo time 35 ms and repetition time 6000 ms on a 1.5 T MR-scanner. A total of 108 examinations were acquired from patients and 18 from NC. Absolutely quantified NAWM metabolite concentrations were determined using a mixed linear model (MLM) analysis that included the degree of T2 lesion contamination in each voxel. The T2 lesion contamination of the MRS voxels was also used as an estimate of ‘lesion load’ at each exam. The corrected metabolite concentrations were then correlated with clinical measures of the patients’ status, including EDSS and MSSS.

    Results: The axonal marker N-acetyl aspartate (NAA) did not correlate with either EDSS or MSSS. The glial cell markers creatine and myo-inositol correlated positively with EDSS. Creatine and glutamate correlated positively with MSSS. The ‘estimated lesion load’ correlated positively not only with EDSS, but also with the number of bouts since disease onset. Importantly, it did not correlate with MSSS.

    Conclusion: The most interesting findings were the unchanged concentrations of NAA, and the concomitant increase of creatine and myo-inositol during the course of disease progression in MSpatients. These not only indicated a constant axonal density, but also that a simultaneous development of gliosis occurred. These processes are most likely linked to demyelination, as well as development of white matter atrophy, a process in which the demyelinated volume is replaced by the surrounding tissue leading to a net loss of white matter. As a consequence of this process, axons in NAWM are probably damaged, which leads to a higher concentration of glia cells relative to the axonal volume. The positive correlation that was found between MSSS, and the glutamate and creatine concentrations in NAWM, in combination with a complete lack of correlation between lesion load and MSSS, suggests that altered glutamate metabolism, and subsequent demyelination and gliosis, is an important pathophysiological mechanism in MS.

  • 37. Dance, D
    et al.
    Hunt, R
    Bakic, P
    Maidment, A
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Carlsson, GA
    Computer simulation of X-ray mammography using high resolution voxel phantoms2003In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 30, no 6, p. 1456-1456Conference paper (Other academic)
  • 38. Dance, D
    et al.
    Hunt, R
    Bakic, P
    Maidment, A
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Ullman, Gustaf
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Alm-Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Breast dosimetry using high-resolution voxel phantoms2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 359-363Article in journal (Refereed)
    Abstract [en]

    A computer model of X-ray mammography has been developed, which uses quasi-realistic high-resolution voxel phantoms to simulate the breast. The phantoms have 400 μm voxels and simulate the three-dimensional distributions of adipose and fibroglandular tissues, Cooper's ligaments, ducts and skin and allow the estimation of dose to individual tissues. Calculations of the incident air kerma to mean glandular dose conversion factor, g, were made using a Mo/Mo spectrum at 28 kV for eight phantoms in the thickness range 40-80 mm and of varying glandularity. The values differed from standard tabulations used for breast dosimetry by up to 43%, because of the different spatial distribution of glandular tissue within the breast. To study this further, additional voxel phantoms were constructed, which gave variations of between 9 and 59% compared with standard values. For accurate breast dosimetry, it is therefore very important to take the distribution of glandular tissues into account. © The Author 2005. Published by Oxford University Press. All rights reserved.

  • 39. Dance, D R
    et al.
    Skinner, C L
    Alm Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Breast dosimetry1999In: Applied Radiation and Isotopes, ISSN 0969-8043, E-ISSN 1872-9800, Vol. 50, p. 185-203Article in journal (Refereed)
  • 40.
    Dance, David
    et al.
    Royal Marsden NHS Trust.
    Lester, Sonia
    n/a.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Persliden, Jan
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    The use of carbon fibre material in radiographic cassettes: estimation of the dose and contrast advantages1997In: British Journal of Radiology, ISSN 0007-1285, E-ISSN 1748-880X, Vol. 70, p. 383-390Article in journal (Refereed)
    Abstract [en]

    A Monte Carlo simulation has been used to estimate the dose and contrast advantages of replacing radiographic cassette fronts fabricated from aluminium with cassette fronts fabricated from low atomic number material (carbon fibre). The simulation used a realistic imaging geometry and calculations were made both with and without an anti-scatter grid. Account was taken of the scatter generated in the cassette front and the effect of beam hardening on primary contrast. Dose and contrast were evaluated for a range of cassette front thicknesses and tube potentials (60-150 kV) as well as for four examinations representative of situations with varying amounts of scatter. The results with an anti-scatter grid show a clear dose and contrast advantage in all cases when an aluminium cassette front is replaced with a low attenuation cassette front. The contrast advantage is dependent upon the examination and is generally greater for imaging bony structures than for imaging soft tissue. If a 1.74 mm aluminium cassette front is compared with a 1.1 mm carbon fibre cassette front, then the dose advantages are 16%, 9%, 8% and 6% and the contrast advantages are 10%, 7%, 4% and 5% for the AP paediatric pelvis examination at 60 kV, the anteroposterior (AP) lumbar spine examination at 80 kV, the lateral lumbar spine examination at 100 kV and the posteroanterior (PA) chest examination at 150 kV, respectively. The results without an anti-scatter grid show an increased dose advantage when a low attenuation cassette front is used, but the contrast advantage is small and in some situations negative.

  • 41. Dance, David
    et al.
    McVey, Graham
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Verdun, Francis
    The optimisation of lumbar spine AP radiography using realistic computer model.2000In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 90, p. 207-210Article in journal (Refereed)
  • 42.
    Dance, David
    et al.
    n/a.
    Sandborg, Michael
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Persliden, Jan
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Optimisation of the design of antiscatter grids by computer modelling1995In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 57, no 1, p. 207-210Article in journal (Refereed)
    Abstract [en]

    A Monte Carlo computer program has been developed to model diagnostic radiological examinations, and has been used to study and optimise the design of antiscatter grids. This is important because the use of an inappropriate or poorly designed grid can lead to increased patient dose. Optimal grid parameters may be different for large and small scattering volumes. The program treats the patient as a rectangular block of tissue and takes account of the grid and image receptor. Image quality is measured in terms of contrast and signal-to-noise ratio and patient risk in terms of mean absorbed dose. Test objects of appropriate size and composition are used in the calculation of these image quality parameters. A new performance comparison and optimisation procedure has been developed, and the program has been used to study grid design in screen-film and digital radiology for small, medium and large scattering volumes.

  • 43. Dance, David
    et al.
    Thilander Klang, Anne
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Skinner, Claire
    Castellano Smith, Isabelle
    Alm Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Influence of anode/filter material and tube potential on contrast, signal-to-noise ratio and average absorbed dose in mammography: a Monte Carlo study.2000In: British Journal of Radiology, ISSN 0007-1285, E-ISSN 1748-880X, Vol. 76, p. 1056-1067Article in journal (Refereed)
  • 44. Dance, DR
    et al.
    McVey, G
    Sandborg, Michael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics.
    Persliden, J
    Alm Carlsson, Gudrun
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Calibration and validation of a voxel phantom for use in the Monte Carlo modelling and optimisation of x-ray imaging systems.1999In: SPIE Proc,1999, 1999, p. 548-559Conference paper (Refereed)
  • 45.
    Edholm, Paul
    Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Praktisk tomografi1981Report (Other academic)
    Abstract [sv]

    De basala principerna och geometrin för tomografi genomgås kortfattat, samt hur tomogrammet uppkommer. Avbildning av föremål i skiktet demonstreras och varför de avbildas med sämre skärpa och kontrast än vanliga bilder, men också hur tomogrammet kan visa mer av föremålen än vanliga bilder. Sedan redogörs för hur föremål utanför skiktet i olika. grad kan suddas ut genom den tomografiska rörelsoskärpan. För- och nackdelar med olika tomorörelser diskuteras liksom indikationer för när och hur man skall tomografera, samt hur man skall välja vinkel, rörelseform, rörelseriktning, bilder och snittval.

  • 46.
    Ekberg, Stefan
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Olsson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics.
    Hellerström, Sabine
    Linköping University, Department of Medicine and Care, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Cardiology.
    Quality control of gamma cameras with statistical process control2004In: European Association of Nuclear Medicine,2004, 2004Conference paper (Other academic)
  • 47.
    Engström, Maria
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Ragnehed, Mattias
    Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    On the Advantage of Data Driven Analysis in Aphasic Patients with Severe Language Latncy2010Conference paper (Other academic)
  • 48.
    Engström, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Ragnehed, Mattias
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Projection screen or video goggles as stimulus modality in functional magnetic resonance imaging2005In: Magnetic Resonance Imaging, ISSN 0730-725X, E-ISSN 1873-5894, Vol. 23, no 5, p. 695-699Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to investigate the reliability of functional magnetic resonance imaging (fMRI) by using either a projection screen or video goggles as stimulus modality. A sequence of visual stimuli were presented to the same subject at different occasions. The sequence was optimized with a genetic algorithm. In five sessions the stimuli were presented using a projection screen viewed through a mirror in the head coil and in five sessions using video goggles. Failure to detect visual activation in the medial left hemisphere was observed in sessions using the projection screen as stimulus modality. Decreased thresholds for P values and cluster size resulted in activation outside the occipital lobe and did not significantly increase activated areas in this region. Results in this study indicate that presentation of fMRI tasks with visual routes is more reliable with direct input through video goggles than with the conventional use of projection screens. Failure to detect crucial visual areas has severe consequences for tumor surgery in the visual cortex. Inferior visual impression might also have negative consequences for cognitive tests with high demand on attention and perception.

  • 49.
    Engström, Maria
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ragnehed, Mattias
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Axelsson Söderfeldt, Birgitta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurology. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Paradigm design of sensory–motor and language tests in clinical fMRI2004In: Neurophysiologie clinique, ISSN 0987-7053, E-ISSN 1769-7131, Vol. 34, no 6, p. 267-277Article in journal (Refereed)
    Abstract [en]

    Functional magnetic resonance imaging (fMRI) paradigms on sensory–motor and language functions are reviewed from a clinical user’s perspective. The objective was to identify special requirements regarding the design of fMRI paradigms for clinical applications. A wide range of methods for setting up fMRI examinations were found in the literature. It was concluded that there is a need for standardised procedures adapted for clinical settings. Sensory–motor activation patterns do not vary much at different hand motion tasks. Nevertheless it is one of the most important clinical tests. In contrast, the language system is much more complex. In several studies it has been observed that word production tasks are preferable in determination of language lateralisation. Broca’s area is activated by most tasks, whereas sentence processing and semantic decision also involve activation in temporoparietal and frontal areas. However, combined task analysis (CTA) of several different tasks has been found to be more robust and reliable for clinical fMRI compared to separate task analysis.

  • 50.
    Eriksson, Ola
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Backlund, Erik Olof
    Lindstam, Håkan
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Lindström, Sivert
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Wårdell, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Stereotactic RF-lesioning - A study in the pig brain2000In: Scandinavian Neurosurgical Society Meeting,2000, 2000Conference paper (Refereed)
12345 1 - 50 of 238
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf