liu.seSearch for publications in DiVA
Change search
Refine search result
123456 1 - 50 of 297
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abrahamsson, Annelie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Capodanno, Alessandra
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Rzepecka, Anna
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Dabrosin, Charlotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Downregulation of tumor suppressive microRNAs in vivo in dense breast tissue of postmenopausal women2017In: Oncotarget, E-ISSN 1949-2553, Vol. 8, no 54, p. 92134-92142Article in journal (Refereed)
    Abstract [en]

    Women with dense breast tissue on mammography are at higher risk of developing breast cancer but the underlying mechanisms are not well understood. De-regulation of microRNAs (miRNAs) has been associated with the onset of breast cancer. miRNAs in the extracellular space participate in the regulation of the local tissue microenvironment. Here, we recruited 39 healthy postmenopausal women attending their mammography-screen that were assessed having extreme dense or entirely fatty breasts (nondense). Microdialysis was performed in breast tissue and a reference catheter was inserted in abdominal subcutaneous fat for local sampling of extracellular compounds. Three miRNAs, associated with tumor suppression, miR-193b, miR-365a, and miR-452 were significantly down-regulated in dense breast tissue compared with nondense breast tissue. In addition, miR-452 exhibited significant negative correlations with several pro-inflammatory cytokines in vivo, which was confirmed in vitro by overexpression of miR-452 in breast cancer cells. No differences were found of miR-21, -29a, -30c, 146a, -148a, -203, or -451 in breast tissue and no miRs were different in plasma. Extracellular miRNAs may be among factors that should be included in studies of novel prevention strategies for breast cancer.

    Download full text (pdf)
    fulltext
  • 2.
    Abrahamsson, Annelie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Rzepecka, Anna
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Dabrosin, Charlotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Equal Pro-inflammatory Profiles of CCLs, CXCLs, and Matrix Metalloproteinases in the Extracellular Microenvironment In Vivo in Human Dense Breast Tissue and Breast Cancer2018In: Frontiers in Immunology, E-ISSN 1664-3224, Vol. 8, article id 1994Article in journal (Refereed)
    Abstract [en]

    The inflammatory microenvironment affects breast cancer progression. Proteins that govern the inflammatory response are secreted into the extracellular space, but this compartment still needs to be characterized in human breast tissues in vivo. Dense breast tissue is a major risk factor for breast cancer by yet unknown mechanisms and no non-toxic prevention for these patients exists. Here, we used the minimal invasive technique of microdialysis for sampling of extracellular proteins in live tissues in situ in breast cancers of women before surgery and in healthy women having dense or non-dense breast tissue on mammography. Proteins were profiled using a proximity extension assay. Out of the 32 proteins assessed, 26 exhibited similar profiles in breast cancers and dense breast tissues; CCL-4, -7, -8, -11, -15, -16, -22, -23, and -25, CXCL-5, -8, -9, -16 as well as sIL-6R, IL-18, vascular endothelial growth factor, TGF-a, fibroblast growth factor 19, matrix metalloproteinase (MMP)-1, -2, -3, and urokinase-type plasminogen activator were all increased, whereas CCL-3, CX3CL1, hepatocyte growth factor, and MMP-9 were unaltered in the two tissues. CCL-19 and -24, CXCL-1 and -10, and IL-6 were increased in dense breast tissue only, whereas IL-18BP was increased in breast cancer only. Our results provide novel insights in the inflammatory microenvironment in human breast cancer in situ and define potential novel therapeutic targets. Additionally, we show previously unrecognized similarities of the pro-inflammatory microenvironment in dense breast tissue and breast cancer in vivo suggesting that anti-inflammatory breast cancer prevention trials for women with dense breast tissue may be feasible.

    Download full text (pdf)
    fulltext
  • 3.
    Abrahamsson, Annelie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Rzepecka, Anna
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Dabrosin, Charlotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Increased nutrient availability in dense breast tissue of postmenopausal women in vivo2017In: Scientific Reports, E-ISSN 2045-2322, Vol. 7, article id 42733Article in journal (Refereed)
    Abstract [en]

    Metabolic reprogramming is a hallmark of cancer. Nutrient availability in the tissue microenvironment determines cellular events and may play a role in breast carcinogenesis. High mammographic density is an independent risk factor for breast cancer. Whether nutrient availability differs in normal breast tissues with various densities is unknown. Therefore we investigated whether breast tissues with various densities exhibited differences in nutrient availability. Healthy postmenopausal women from the regular mammographic screening program who had either predominantly fatty breast tissue (nondense), n = 18, or extremely dense breast tissue (dense), n = 20, were included. Microdialysis was performed for the in vivo sampling of amino acids (AAs), analyzed by ultra-high performance liquid chromatography with tandem mass spectroscopy, glucose, lactate and vascular endothelial growth factor (VEGF) in breast tissues and, as a control, in abdominal subcutaneous (s.c.) fat. We found that dense breast tissue exhibited significantly increased levels of 20 proteinogenic AAs and that 18 of these AAs correlated significantly with VEGF. No differences were found in the s.c. fat, except for one AA, suggesting tissue-specific alterations in the breast. Glucose and lactate were unaltered. Our findings provide novel insights into the biology of dense breast tissue that may be explored for breast cancer prevention strategies.

    Download full text (pdf)
    fulltext
  • 4.
    Abrahamsson, Annelie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Rzepecka, Anna
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Romu, Thobias
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Borga, Magnus
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dahlqvist Leinhard, Olof
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Dabrosin, Charlotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment in vivo2016In: Oncoimmunology, ISSN 2162-4011, E-ISSN 2162-402X, Vol. 5, no 10, article id e1229723Article in journal (Refereed)
    Abstract [en]

    Inflammation is one of the hallmarks of carcinogenesis. High mammographic density has been associated with increased risk of breast cancer but the mechanisms behind are poorly understood. We evaluated whether breasts with different mammographic densities exhibited differences in the inflammatory microenvironment.Postmenopausal women attending the mammography-screening program were assessed having extreme dense, n = 20, or entirely fatty breasts (nondense), n = 19, on their regular mammograms. Thereafter, the women were invited for magnetic resonance imaging (MRI), microdialysis for the collection of extracellular molecules in situ and a core tissue biopsy for research purposes. On the MRI, lean tissue fraction (LTF) was calculated for a continuous measurement of breast density. LTF confirmed the selection from the mammograms and gave a continuous measurement of breast density. Microdialysis revealed significantly increased extracellular in vivo levels of IL-6, IL-8, vascular endothelial growth factor, and CCL5 in dense breast tissue as compared with nondense breasts. Moreover, the ratio IL-1Ra/IL-1 was decreased in dense breasts. No differences were found in levels of IL-1, IL-1Ra, CCL2, leptin, adiponectin, or leptin:adiponectin ratio between the two breast tissue types. Significant positive correlations between LTF and the pro-inflammatory cytokines as well as between the cytokines were detected. Stainings of the core biopsies exhibited increased levels of immune cells in dense breast tissue.Our data show that dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment and, if confirmed in a larger cohort, suggests novel targets for prevention therapies for women with dense breast tissue.

  • 5.
    Abramian, David
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Blystad, Ida
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine.
    Eklund, Anders
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning.
    Evaluation of inverse treatment planning for gamma knife radiosurgery using fMRI brain activation maps as organs at risk2023In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 50, no 9, p. 5297-5311Article in journal (Refereed)
    Abstract [en]

    Background: Stereotactic radiosurgery (SRS) can be an effective primary or adjuvant treatment option for intracranial tumors. However, it carries risks of various radiation toxicities, which can lead to functional deficits for the patients. Current inverse planning algorithms for SRS provide an efficient way for sparing organs at risk (OARs) by setting maximum radiation dose constraints in the treatment planning process.Purpose: We propose using activation maps from functional MRI (fMRI) to map the eloquent regions of the brain and define functional OARs (fOARs) for Gamma Knife SRS treatment planning.Methods: We implemented a pipeline for analyzing patient fMRI data, generating fOARs from the resulting activation maps, and loading them onto the GammaPlan treatment planning software. We used the Lightning inverse planner to generate multiple treatment plans from open MRI data of five subjects, and evaluated the effects of incorporating the proposed fOARs.Results: The Lightning optimizer designs treatment plans with high conformity to the specified parameters. Setting maximum dose constraints on fOARs successfully limits the radiation dose incident on them, but can have a negative impact on treatment plan quality metrics. By masking out fOAR voxels surrounding the tumor target it is possible to achieve high quality treatment plans while controlling the radiation dose on fOARs.Conclusions: The proposed method can effectively reduce the radiation dose incident on the eloquent brain areas during Gamma Knife SRS of brain tumors.

    Download full text (pdf)
    fulltext
  • 6.
    Abtahi, Jahan
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Maxillofacial Unit.
    Klintström, Benjamin
    Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden.
    Klintström, Eva
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Ibandronate Reduces the Surface Bone Resorption of Mandibular Bone Grafts: A Randomized Trial With Internal Controls2021In: JBMR Plus, E-ISSN 2473-4039, Vol. 5, no 3, article id e10468Article in journal (Refereed)
    Abstract [en]

    ABSTRACT Autologous bone grafts are considered the gold standard for reconstruction of the edentulous alveolar ridges. However, this procedure is associated with unpredictable bone loss caused by physiological bone resorption. Bisphosphonates are antiresorptive drugs that act specifically on osteoclasts, thereby maintaining bone density, volume, and strength. It was hypothesized that the resorption of bone grafts treated with an ibandronate solution would be less advanced than bone grafts treated with saline. Ten patients who underwent bilateral sagittal split osteotomy were included in a randomized double-blind trial with internal controls. Each patient received a bone graft treated with a solution of ibandronate on one side and a graft treated with saline (controls) contralaterally. Radiographs for the measurement of bone volume were obtained at 2 weeks and at 6 months after surgery. The primary endpoint was the difference in the change of bone volume between the control and the ibandronate bone grafts 6 months after surgery. All of the bone grafts healed without complications. One patient was excluded because of reoperation. In eight of the nine patients, the ibandronate bone grafts showed an increase in bone volume compared with baseline, with an average gain of 126 mm3 (40% more than baseline) with a range of +27 to +218 mm3. Only one ibandronate-treated graft had a decrease in bone volume (8%). In the controls, an average bone volume loss of −146 mm3 (58% of baseline) with a range of −29 to −301 mm3 was seen. In the maxillofacial field, the reconstructions of atrophic alveolar ridges, especially in the esthetical zones, are challenging. These results show that bone grafts locally treated with ibandronate solution increases the remaining bone volume. This might lead to new possibilities for the maxillofacial surgeons in the preservation of bone graft volumes and for dental implant installations. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

    Download full text (pdf)
    fulltext
  • 7. Order onlineBuy this publication >>
    Ahle, Margareta
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Necrotising Enterocolitis: epidemiology and imaging2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Necrotising enterocolitis (NEC) is a potentially devastating intestinal inflammation of multifactorial aetiology in premature or otherwise vulnerable neonates. Because of the broad spectrum of presentations, diagnosis and timing of surgical intervention may be challenging, and imaging needs to be an integrated part of management.

    The first four studies included in this thesis used routinely collected, nationwide register data to describe the incidence of NEC in Sweden 1987‒2009, its variation with time, seasonality, space-time clustering, and associations with maternal, gestational, and perinatal factors, and the risk of intestinal failure in the aftermath of the disease.

    Early infant survival increased dramatically during the study period. The incidence rate of NEC was 0.34 per 1,000 live births, rising from 0.26 per 1,000 live births in the first six years of the study period to 0.57 in the last five. The incidence rates in the lowest birth weights were 100‒160 times those of the entire birth cohort. Seasonal variation was found, as well as space-time clustering in association with delivery hospitals but not with maternal residential municipalities.

    Comparing NEC cases with matched controls, some factors, positively associated with NEC, were isoimmunisation, fetal distress, caesarean section, persistent ductus arteriosus, cardiac and gastrointestinal malformations, and chromosomal abnormalities. Negative associations included maternal pre-eclampsia, maternal urinary infection, and premature rupture of the membranes. Intestinal failure occurred in 6% of NEC cases and 0.4% of controls, with the highest incidence towards the end of the study period.

    The last study investigated current practices and perceptions of imaging in the management of NEC, as reported by involved specialists. There was great consensus on most issues. Areas in need of further study seem mainly related to imaging routines, the use of ultrasound, and indications for surgery.

    Developing alongside the progress of neonatal care, NEC is a complex, multifactorial disease, with shifting patterns of predisposing and precipitating causes, and potentially serious long-term complications. The findings of seasonal variation, spacetime clustering, and negative associations with antenatal exposure to infectious agents, fit into the growing understanding of the central role of bacteria and immunological processes in normal maturation of the intestinal canal as well as in the pathogenesis of NEC. Imaging in the management of NEC may be developed through future studies combining multiple diagnostic parameters in relation to clinical outcome.

    List of papers
    1. Epidemiology and Trends of Necrotizing Enterocolitis in Sweden: 1987-2009
    Open this publication in new window or tab >>Epidemiology and Trends of Necrotizing Enterocolitis in Sweden: 1987-2009
    2013 (English)In: Pediatrics, ISSN 0031-4005, E-ISSN 1098-4275, Vol. 132, no 2, p. E443-E451Article in journal (Refereed) Published
    Abstract [en]

    OBJECTIVE: To investigate temporal, seasonal, and geographic variations in the incidence of necrotizing enterocolitis (NEC) and its relation to early infant survival in the Swedish population and in subgroups based on gestational age, birth weight, and gender. less thanbrgreater than less thanbrgreater thanMETHODS: In the Swedish birth cohort of 1987 through 2009 all children with a diagnosis of NEC were identified in the National Patient Register, the Swedish Medical Birth Register, and the National Cause of Death Register. NEC incidence, early mortality, and seasonality were analyzed with descriptive statistics, Poisson regression, and auto regression. less thanbrgreater than less thanbrgreater thanRESULTS: The overall incidence of NEC was 3.4 in 10 000 live births, higher in boys than in girls (incidence rate ratio 1.22, 95% confidence interval 1.06-1.40, P = .005), with a peak in November and a trough in May, and increased with an average of similar to 5% a year during the study period. In most subgroups, except the most immature, an initial decrease was followed by a steady increase. Seven-day mortality decreased strongly in all subgroups over the entire study period (annual incidence rate ratio 0.96, 95% confidence interval 0.95-0.96, P andlt; .001). This was especially marked in the most premature and low birth weight infants. less thanbrgreater than less thanbrgreater thanCONCLUSIONS: After an initial decrease, the incidence of NEC has increased in Sweden during the last decades. An association with the concurrent dramatically improved early survival seems likely.

    Place, publisher, year, edition, pages
    American Academy of Pediatrics, 2013
    Keywords
    necrotizing enterocolitis, premature infants, perinatal mortality, perinatal care, epidemiology, trends, seasonal variation
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-98148 (URN)10.1542/peds.2012-3847 (DOI)000322957300017 ()
    Note

    Funding Agencies|County Council of Ostergotland||Futurum||Academy of Health Care||Jonkoping County Council, Jonkoping, Sweden||Medical Research Council of Southeast Sweden||

    Available from: 2013-09-30 Created: 2013-09-30 Last updated: 2018-03-27
    2. Population-based study showed that necrotising enterocolitis occurred in space-time clusters with a decreasing secular trend in Sweden
    Open this publication in new window or tab >>Population-based study showed that necrotising enterocolitis occurred in space-time clusters with a decreasing secular trend in Sweden
    Show others...
    2017 (English)In: Acta Paediatrica, ISSN 0803-5253, E-ISSN 1651-2227, Vol. 106, no 7, p. 1097-1102Article in journal (Refereed) Published
    Abstract [en]

    Aim: This study investigated space-time clustering of neonatal necrotising enterocolitis over three decades. Methods: Space-time clustering analyses objects that are grouped by a specific place and time. The Knox test and Kulldorffs scan statistic were used to analyse space-time clusters in 808 children diagnosed with necrotising enterocolitis in a national cohort of 2 389 681 children born between 1987 and 2009 in Sweden. The municipality the mother lived in and the delivery hospital defined closeness in space and the time between when the cases were born - seven, 14 and 21 days - defined closeness in time. Results: The Knox test showed no indication of space-time clustering at the residential level, but clear indications at the hospital level in all the time windows: seven days (p = 0.026), 14 days (p = 0.010) and 21 days (p = 0.004). Significant clustering at the hospital level was found during 1987-1997, but not during 1998-2009. Kulldorffs scan statistic found seven significant clusters at the hospital level. Conclusion: Space-time clustering was found at the hospital but not residential level, suggesting a contagious environmental effect after delivery, but not in the prenatal period. The decrease in clustering over time may reflect improved routines to minimise the risk of contagion between patients receiving neonatal care.

    Place, publisher, year, edition, pages
    WILEY, 2017
    Keywords
    Cluster analysis; Necrotising enterocolitis; Neonatal care; Precipitating contagion; Preterm infant
    National Category
    Pediatrics
    Identifiers
    urn:nbn:se:liu:diva-139608 (URN)10.1111/apa.13851 (DOI)000405216700022 ()28349558 (PubMedID)
    Note

    Funding Agencies|Swedish government; county councils

    Available from: 2017-08-16 Created: 2017-08-16 Last updated: 2022-10-04
    3. Maternal, fetal and perinatal factors associated with necrotizing enterocolitis in Sweden: A national case-control study
    Open this publication in new window or tab >>Maternal, fetal and perinatal factors associated with necrotizing enterocolitis in Sweden: A national case-control study
    2018 (English)In: PLOS ONE, E-ISSN 1932-6203, PLoS ONE, ISSN 1932-6203, Vol. 13, no 3, article id e0194352Article in journal (Refereed) Published
    Abstract [en]

    Objective

    To analyze associations of maternal, fetal, gestational, and perinatal factors with necrotizing enterocolitis in a matched case-control study based on routinely collected, nationwide register data.

    Study design

    All infants born in 1987 through 2009 with a diagnosis of necrotizing enterocolitis in any of the Swedish national health care registers were identified. For each case up to 6 controls, matched for birth year and gestational age, were selected. The resulting study population consisted of 720 cases and 3,567 controls. Information on socioeconomic data about the mother, maternal morbidity, pregnancy related diagnoses, perinatal diagnoses of the infant, and procedures in the perinatal period, was obtained for all cases and controls and analyzed with univariable and multivariable logistic regressions for the whole study population as well as for subgroups according to gestational age.

    Results

    In the study population as a whole, we found independent positive associations with necrotizing enterocolitis for isoimmunization, fetal distress, cesarean section, neonatal bacterial infection including sepsis, erythrocyte transfusion, persistent ductus arteriosus, cardiac malformation, gastrointestinal malformation, and chromosomal abnormality. Negative associations were found for maternal weight, preeclampsia, maternal urinary infection, premature rupture of the membranes, and birthweight. Different patterns of associations were seen in the subgroups of different gestational age.

    Conclusion

    With some interesting exceptions, especially in negative associations, the results of this large, population based study, are in keeping with earlier studies. Although restrained by the limitations of register data, the findings mirror conceivable pathophysiological processes and underline that NEC is a multifactorial disease.

    Place, publisher, year, edition, pages
    San Francisco, United States: Public Library of Science, 2018
    National Category
    Pediatrics
    Identifiers
    urn:nbn:se:liu:diva-146093 (URN)10.1371/journal.pone.0194352 (DOI)000428168400016 ()29570713 (PubMedID)2-s2.0-85044427061 (Scopus ID)
    Note

    Funding agencies: Region Ostergotland, Sweden [LiO-107641]; Medical Research Council of Southeast Sweden [FORSS-77481]; Futurum - the Academy of Health Care, Jonkoping County Council, Jonkoping, Sweden; Region Ostergotland [LIO-130291, LIO-204581, LIO-280451, LIO-361481, L

    Available from: 2018-03-27 Created: 2018-03-27 Last updated: 2021-06-14Bibliographically approved
    4. The role of imaging in the management of necrotising enterocolitis: a multispecialist survey and a review of the literature
    Open this publication in new window or tab >>The role of imaging in the management of necrotising enterocolitis: a multispecialist survey and a review of the literature
    2018 (English)In: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084, Vol. 28, no 9, p. 3621-3631Article in journal (Refereed) Published
    Abstract [en]

    Objectives

    To investigate current practices and perceptions of imaging in necrotising enterocolitis (NEC) according to involved specialists, put them in the context of current literature, and identify needs for further investigation.

    Methods

    Two hundred two neonatologists, paediatric surgeons, and radiologists answered a web-based questionnaire about imaging in NEC at their hospitals. The results were descriptively analysed, using proportion estimates with 95% confidence intervals.

    Results

    There was over 90% agreement on the value of imaging for confirmation of the diagnosis, surveillance, and guidance in decisions on surgery as well as on abdominal radiography as the first-choice modality and the most important radiographic signs. More variation was observed regarding some indications for surgery and the use of some ultrasonographic signs. Fifty-eight per cent stated that ultrasound was used for NEC at their hospital. Examination frequency, often once daily or more but with considerable variations, and projections used in AR were usually decided individually rather than according to fixed schedules. Predicting the need of surgery was regarded more important than formal staging.

    Conclusion

    Despite great agreement on the purposes of imaging in NEC and the most important radiographic signs of the disease, there was considerable diversity in routines, especially regarding examination frequency and the use of ultrasound. Apart from continuing validation of ultrasound, important objectives for future studies include definition of the supplementary roles of both imaging modalities in relation to other diagnostic parameters and evaluation of various imaging routines in relation to timing of surgery, complications, and mortality rate.

    Place, publisher, year, edition, pages
    Springer, 2018
    Keywords
    Enterocolitis, necrotising, Abdominal radiography, Ultrasonography, Surveys and questionnaires, Professional practice
    National Category
    Pediatrics
    Identifiers
    urn:nbn:se:liu:diva-146094 (URN)10.1007/s00330-018-5362-x (DOI)000440984300006 ()
    Available from: 2018-03-27 Created: 2018-03-27 Last updated: 2018-08-24
    Download full text (pdf)
    Necrotising Enterocolitis: epidemiology and imaging
    Download (pdf)
    omslag
    Download (jpg)
    presentationsbild
  • 8.
    Ahle, Margareta
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Drott, Peder
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Elfvin, Anders
    Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
    Andersson, Roland E.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Department of Surgery, Ryhov County Hospital, Jönköping, Sweden .
    Maternal, fetal and perinatal factors associated with necrotizing enterocolitis in Sweden: A national case-control study2018In: PLOS ONE, E-ISSN 1932-6203, PLoS ONE, ISSN 1932-6203, Vol. 13, no 3, article id e0194352Article in journal (Refereed)
    Abstract [en]

    Objective

    To analyze associations of maternal, fetal, gestational, and perinatal factors with necrotizing enterocolitis in a matched case-control study based on routinely collected, nationwide register data.

    Study design

    All infants born in 1987 through 2009 with a diagnosis of necrotizing enterocolitis in any of the Swedish national health care registers were identified. For each case up to 6 controls, matched for birth year and gestational age, were selected. The resulting study population consisted of 720 cases and 3,567 controls. Information on socioeconomic data about the mother, maternal morbidity, pregnancy related diagnoses, perinatal diagnoses of the infant, and procedures in the perinatal period, was obtained for all cases and controls and analyzed with univariable and multivariable logistic regressions for the whole study population as well as for subgroups according to gestational age.

    Results

    In the study population as a whole, we found independent positive associations with necrotizing enterocolitis for isoimmunization, fetal distress, cesarean section, neonatal bacterial infection including sepsis, erythrocyte transfusion, persistent ductus arteriosus, cardiac malformation, gastrointestinal malformation, and chromosomal abnormality. Negative associations were found for maternal weight, preeclampsia, maternal urinary infection, premature rupture of the membranes, and birthweight. Different patterns of associations were seen in the subgroups of different gestational age.

    Conclusion

    With some interesting exceptions, especially in negative associations, the results of this large, population based study, are in keeping with earlier studies. Although restrained by the limitations of register data, the findings mirror conceivable pathophysiological processes and underline that NEC is a multifactorial disease.

    Download full text (pdf)
    fulltext
  • 9.
    Ahle, Margareta
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Magnusson, Amanda
    Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden.
    Elfvin, Anders
    Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden.
    Andersson, Roland
    Department of Surgery, County Hospital Ryhov, Jönköping, Sweden.
    Space-time clustering of necrotizing enterocolitis supports the existence of transmissible causes.2017Conference paper (Other academic)
    Abstract [en]

    Problem Statement: Despite great efforts to prevent necrotizing enterocolitis (NEC) the incidence may in fact be increasing, and changes in the patient population over time seem to lead to changes in clinical presentation and risk factor spectrum as well. The presence of bacteria is an important prerequisite in the pathogenesis, but, rather than being caused by specific pathogens, inflammation and bacterial invasion are thought to be mediated through erroneous interaction between microbiota and innate immunity during colonization of the gut. There are, however, reports of episodic outbreaks of NEC, seasonal variation in incident rates, and clustering, suggesting a role for transmissible infectious agents or other environmental factors around the pregnant mother or newborn infant. In order to investigate evidence for such factors we have analyzed the occurrence of space-time clusters in Sweden over 23 years. Methods: A national register-based cohort of all children born between 1987 and 2009 in Sweden, diagnosed with NEC, was identified. The Knox test and Kulldorff’s scan method were used to analyze signs of space-time clusters at two geographical levels; the mother’s residential address and the delivery hospital. Time windows of seven, 14 and 21 days were used for closeness in time. Results: The Knox test showed clustering on hospital level in all studied temporal windows; seven days (p=0.022) 14 days (p=0.011) and 21 days (p=0.006), and Kulldorff’s scan method found seven significant clusters. On residential level, there was no indication of space-time interaction. When comparing two time periods, significant clustering on hospital level was found during 1987-1997, but not during 1998-2009. Conclusion: Space-time clustering was found on hospital level, but not on community level, suggesting a contagious environmental effect at and after delivery but not in the materno-fetal environment outside the hospital before birth. The decrease in clustering over time suggests that improved routines in neonatal care have minimized the risk of NEC precipitating contagions spreading between patients in the neonatal intensive care unit. The importance of such routines should not be forgotten while our efforts to bring down NEC incidence are directed towards other challenges.

  • 10.
    Ahle, Margareta
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Ringertz, Hans G.
    Department of Radiology, Stanford University Medical Center, Stanford, USA; Division of Diagnostic Radiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
    Rubesova, Erika
    Department of Radiology, Lucile Packard Children’s Hospital, Stanford University Medical Center, Stanford, USA.
    The role of imaging in the management of necrotising enterocolitis: a multispecialist survey and a review of the literature2018In: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084, Vol. 28, no 9, p. 3621-3631Article in journal (Refereed)
    Abstract [en]

    Objectives

    To investigate current practices and perceptions of imaging in necrotising enterocolitis (NEC) according to involved specialists, put them in the context of current literature, and identify needs for further investigation.

    Methods

    Two hundred two neonatologists, paediatric surgeons, and radiologists answered a web-based questionnaire about imaging in NEC at their hospitals. The results were descriptively analysed, using proportion estimates with 95% confidence intervals.

    Results

    There was over 90% agreement on the value of imaging for confirmation of the diagnosis, surveillance, and guidance in decisions on surgery as well as on abdominal radiography as the first-choice modality and the most important radiographic signs. More variation was observed regarding some indications for surgery and the use of some ultrasonographic signs. Fifty-eight per cent stated that ultrasound was used for NEC at their hospital. Examination frequency, often once daily or more but with considerable variations, and projections used in AR were usually decided individually rather than according to fixed schedules. Predicting the need of surgery was regarded more important than formal staging.

    Conclusion

    Despite great agreement on the purposes of imaging in NEC and the most important radiographic signs of the disease, there was considerable diversity in routines, especially regarding examination frequency and the use of ultrasound. Apart from continuing validation of ultrasound, important objectives for future studies include definition of the supplementary roles of both imaging modalities in relation to other diagnostic parameters and evaluation of various imaging routines in relation to timing of surgery, complications, and mortality rate.

    Download full text (pdf)
    fulltext
  • 11.
    Ahle, Margareta
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Rubesova, Erika
    Stanford university, US.
    Ringertz, Hans
    Stanford university, US.
    The significance of radiographic and ultrasonographic findings in the management of necrotising enterocolitis - results from a survey2017Conference paper (Other academic)
    Abstract [en]

    Necrotising Enterocolitis (NEC) remains a potentially devastating emergency in neonates, predominantly the premature. Ever since it was first described in the 60's, imaging has played a great role in definition, staging, and monitoring of the disease. The radiographic image can change before the clinical condition, but typical signs are often transient and may be missing even in severe NEC [1-4]. These circumstances have led to the recommendation of frequent imaging and to the insight that the clinical decisions cannot rely solely on radiological signs [5-7]. Ultrasound (US) as a possibility to enhance sensitivity and diagnostic accuracy was first described in the mid 80's [8, 9] and was included in a diagnostic algorithm suggested by in 1994 [6], but despite great effort to develop and validate the method, its role in the management of NEC has not yet been established [7, 10, 11].

    Meanwhile, in order to improve interobserver agreement and diagnostic accuracy of AR, the radiographic signs of NEC have also been systematized into the DAAS scale [12]. Imaging, as an adjunct to clinical assessment [11], is crucial in the diagnosis and management of NEC. The purpose of this survey was to investigate current views and routines, as described by involved specialists, and identify areas in need of further study and discussion.

    Download full text (pdf)
    The significance of radiographic and ultrasonographic findings in the management of necrotising enterocolitis - results from a survey
  • 12.
    Ahle, Margareta
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Rubesova, Erika
    Stanford university, US.
    Ringertz, Hans
    Stanford university, US.
    The use of imaging in necrotising enterocolitis - results from a survey2017Conference paper (Other academic)
    Download full text (pdf)
    E-poster C-2872
  • 13.
    Akbar, Muhammad Usman
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Larsson, Måns
    Eigenvision, Malmö, Sweden.
    Blystad, Ida
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine.
    Eklund, Anders
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning.
    Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models2024In: Scientific Data, E-ISSN 2052-4463, Vol. 11, no 1, article id 259Article in journal (Refereed)
    Abstract [en]

    Large annotated datasets are required for training deep learning models, but in medical imaging data sharing is often complicated due to ethics, anonymization and data protection legislation. Generative AI models, such as generative adversarial networks (GANs) and diffusion models, can today produce very realistic synthetic images, and can potentially facilitate data sharing. However, in order to share synthetic medical images it must first be demonstrated that they can be used for training different networks with acceptable performance. Here, we therefore comprehensively evaluate four GANs (progressive GAN, StyleGAN 1–3) and a diffusion model for the task of brain tumor segmentation (using two segmentation networks, U-Net and a Swin transformer). Our results show that segmentation networks trained on synthetic images reach Dice scores that are 80%–90% of Dice scores when training with real images, but that memorization of the training images can be a problem for diffusion models if the original dataset is too small. Our conclusion is that sharing synthetic medical images is a viable option to sharing real images, but that further work is required. The trained generative models and the generated synthetic images are shared on AIDA data hub.

    Download full text (pdf)
    fulltext
  • 14.
    Ali, Adnan
    et al.
    Univ Lancaster, England.
    Ahle, Margareta
    Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Health, Medicine and Caring Sciences.
    Björnsson, Bergthor
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Sandström, Per
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Portal vein embolization with N-butyl cyanoacrylate glue is superior to other materials: a systematic review and meta-analysis2021In: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084, Vol. 31, no 8, p. 5464-5478Article, review/survey (Refereed)
    Abstract [en]

    Objectives It remains uncertain which embolization material is best for portal vein embolization (PVE). We investigated the various materials for effectiveness in inducing future liver remnant (FLR) hypertrophy, technical and growth success rates, and complication and resection rates. Methods A systematic review from 1998 to 2019 on embolization materials for PVE was performed on Pubmed, Embase, and Cochrane. FLR growth between the two most commonly used materials was compared in a random effects meta-analysis. In a separate analysis using local data (n = 52), n-butyl cyanoacrylate (NBCA) was compared with microparticles regarding costs, radiation dose, and procedure time. Results In total, 2896 patients, 61.0 +/- 4.0 years of age and 65% male, from 51 papers were included in the analysis. In 61% of the patients, either NBCA or microparticles were used for embolization. The remaining were treated with ethanol, gelfoam, or sclerosing agents. The FLR growth with NBCA was 49.1% +/- 29.7 compared to 42.2% +/- 40 with microparticles (p = 0.037). The growth success rate with NBCA vs microparticles was 95.3% vs 90.7% respectively (p < 0.001). There were no differences in major complications between NBCA and microparticles. In the local analysis, NBCA (n = 41) entailed shorter procedure time and reduced fluoroscopy time (p < 0.001), lower radiation exposure (p < 0.01), and lower material costs (p < 0.0001) than microparticles (n = 11). Conclusion PVE with NBCA seems to be the best choice when combining growth of the FLR, procedure time, radiation exposure, and costs.

  • 15.
    Aljabery, Firas
    et al.
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Urology in Östergötland. Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Lindblom, Gunnar
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Skoog, Susann
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Shabo, Ivan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Olsson, Hans
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Rosell, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Health and Developmental Care, Regional Cancer Center South East Sweden.
    Jahnson, Staffan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Urology in Östergötland.
    PET/CT versus conventional CT for detection of lymph node metastases in patients with locally advanced bladder cancer.2015In: BMC Urology, E-ISSN 1471-2490, Vol. 15, no 1, p. 87-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: We studied patients treated with radical cystectomy for locally advanced bladder cancer to compare the results of both preoperative positron emission tomography/computed tomography (PET/CT) and conventional CT with the findings of postoperative histopathological evaluation of lymph nodes.

    METHODS: Patients who had bladder cancer and were candidates for cystectomy underwent preoperative PET/CT using 18-fluorodeoxyglucose (FDG) and conventional CT. The results regarding lymph node involvement were independently evaluated by two experienced radiologists and were subsequently compared with histopathology results, the latter of which were reassessed by an experienced uropathologist (HO).

    RESULTS: There were 54 evaluable patients (mean age 68 years, 47 [85 %] males and 7 [15 %] females) with pT and pN status as follows: < pT2-14 (26 %), pT2-10 (18 %), and > pT2-30 (56 %); pN0 37 (69 %) and pN+ 17 (31 %). PET/CT showed positive lymph nodes in 12 patients (22 %), and 7 of those cases were confirmed by histopathology; the corresponding results for conventional CT were 11 (20 %) and 7 patients (13 %), respectively. PET/CT had 41 % sensitivity, 86 % specificity, 58 % PPV, and 76 % NPV, whereas the corresponding figures for conventional CT were 41 %, 89 %, 64 %, and 77 %. Additional analyses of the right and left side of the body or in specified anatomical regions gave similar results.

    CONCLUSIONS: In this study, PET/CT and conventional CT had similar low sensitivity in detecting and localizing regional lymph node metastasis in bladder cancer.

    Download full text (pdf)
    fulltext
  • 16.
    Almlöv, Karin
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Norrköping.
    Woisetschläger, Mischa
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences.
    Loftås, Per
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Hallböök, Olof
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Elander, Nils
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Sandström, Per
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    MRI Lymph Node Evaluation for Prediction of Metastases in Rectal Cancer2020In: Anticancer Research, ISSN 0250-7005, E-ISSN 1791-7530, Vol. 40, no 5, p. 2757-2763Article in journal (Refereed)
    Abstract [en]

    Aim: To explore whether the size and characteristics of the largest regional lymph node in patients with rectal cancer, based on magnetic resonance imaging (MRI), following neoadjuvant therapy and before surgery, is able to identify patients at high risk of developing metachronous metastases.

    Patients and Methods: A retrospective case–control study with data from the Swedish Colo-Rectal Cancer Registry. Forty patients were identified with metachronous metastases (M+), and 40 patients without metastases (M0) were matched as controls.

    Results: Patients with M+ disease were more likely to have a regional lymph node measuring ≥5 mm than patients with M0. (87% vs. 65%, p=0.02). There was also a significant difference between the groups regarding the presence of an irregular border of the largest lymph node (68% vs. 40%, p=0.01).

    Conclusion: Lymph nodes measuring ≥5 mm with/without displaying irregular borders at MRI performed after neoadjuvant therapy emerged as risk factors for metachronous metastases in patients with rectal cancer. Intensified follow-up programmes may be indicated in these patients.

    Download full text (pdf)
    fulltext
  • 17.
    Andersson, Charlotta
    et al.
    Region Östergötland, Center for Diagnostics, Department of Clinical Physiology in Norrköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lindström, Lena
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Phase-contrast MRI volume flow - a comparison of breath held and navigator based acquisitions2016In: BMC Medical Imaging, E-ISSN 1471-2342, Vol. 16, no 26Article in journal (Refereed)
    Abstract [en]

    Background: Magnetic Resonance Imaging (MRI) 2D phase-contrast flow measurement has been regarded as the gold standard in blood flow measurements and can be performed with free breathing or breath held techniques. We hypothesized that the accuracy of flow measurements obtained with segmented phase-contrast during breath holding, and in particular higher number of k-space segments, would be non-inferior compared to navigator phase-contrast. Volumes obtained from anatomic segmentation of cine MRI and Doppler echocardiography were used for additional reference. Methods: Forty patients, five women and 35 men, mean age 65 years (range 53-80), were randomly selected and consented to the study. All underwent EKG-gated cardiac MRI including breath hold cine, navigator based free-breathing phase-contrast MRI and breath hold phase-contrast MRI using k-space segmentation factors 3 and 5, as well as transthoracic echocardiography within 2 days. Results: In navigator based free-breathing phase-contrast flow, mean stroke volume and cardiac output were 79.7 +/- 17.1 ml and 5071 +/- 1192 ml/min, respectively. The duration of the acquisition was 50 +/- 6 s. With k-space segmentation factor 3, the corresponding values were 77.7 ml +/- 17.5 ml and 4979 +/- 1211 ml/min (p = 0.15 vs navigator). The duration of the breath hold was 17 +/- 2 s. K-space segmentation factor 5 gave mean stroke volume 77.9 +/- 16.4 ml, cardiac output 5142 +/- 1197 ml/min (p = 0.33 vs navigator), and breath hold time 11 +/- 1 s. Anatomical segmentation of cine gave mean stroke volume and cardiac output 91.2 +/- 20.8 ml and 5963 +/- 1452 ml/min, respectively. Echocardiography was reliable in 20 of the 40 patients. The mean diameter of the left ventricular outflow tract was 20.7 +/- 1.5 mm, stroke volume 78.3 ml +/- 15.2 ml and cardiac output 5164 +/- 1249 ml/min. Conclusions: In forty consecutive patients with coronary heart disease, breath holding and segmented k-space sampling techniques for phase-contrast flow produced stroke volumes and cardiac outputs similar to those obtained with free-breathing navigator based phase-contrast MRI, using less time. The values obtained agreed fairly well with Doppler echocardiography while there was a larger difference when compared with anatomical volume determinations using SSFP (steady state free precession) cine MRI.

    Download full text (pdf)
    fulltext
  • 18.
    Andersson, Malin
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences.
    Jägervall, Karl
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Eriksson, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Region Östergötland, Heart and Medicine Center, Department of Rheumatology. Linköping University, Faculty of Medicine and Health Sciences.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Granerus, Göran
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Wang, Chunliang
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). KTH Royal Institute Technology, Sweden.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). KTH Royal Institute Technology, Sweden.
    How to measure renal artery stenosis - a retrospective comparison of morphological measurement approaches in relation to hemodynamic significance2015In: BMC Medical Imaging, E-ISSN 1471-2342, Vol. 15, no 42Article in journal (Refereed)
    Abstract [en]

    Background: Although it is well known that renal artery stenosis may cause renovascular hypertension, it is unclear how the degree of stenosis should best be measured in morphological images. The aim of this study was to determine which morphological measures from Computed Tomography Angiography (CTA) and Magnetic Resonance Angiography (MRA) are best in predicting whether a renal artery stenosis is hemodynamically significant or not. Methods: Forty-seven patients with hypertension and a clinical suspicion of renovascular hypertension were examined with CTA, MRA, captopril-enhanced renography (CER) and captopril test (Ctest). CTA and MRA images of the renal arteries were analyzed by two readers using interactive vessel segmentation software. The measures included minimum diameter, minimum area, diameter reduction and area reduction. In addition, two radiologists visually judged the diameter reduction without automated segmentation. The results were then compared using limits of agreement and intra-class correlation, and correlated with the results from CER combined with Ctest (which were used as standard of reference) using receiver operating characteristics (ROC) analysis. Results: A total of 68 kidneys had all three investigations (CTA, MRA and CER + Ctest), where 11 kidneys (16.2 %) got a positive result on the CER + Ctest. The greatest area under ROC curve (AUROC) was found for the area reduction on MRA, with a value of 0.91 (95 % confidence interval 0.82-0.99), excluding accessory renal arteries. As comparison, the AUROC for the radiologists visual assessments on CTA and MRA were 0.90 (0.82-0.98) and 0.91 (0.83-0.99) respectively. None of the differences were statistically significant. Conclusions: No significant differences were found between the morphological measures in their ability to predict hemodynamically significant stenosis, but a tendency of MRA having higher AUROC than CTA. There was no significant difference between measurements made by the radiologists and measurements made with fuzzy connectedness segmentation. Further studies are required to definitely identify the optimal measurement approach.

    Download full text (pdf)
    fulltext
  • 19.
    Andersson, Thord
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Romu, Thobias
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Karlsson, Anette
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Norén, Bengt
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Forsgren, Mikael
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Kechagias, Stergios
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Almer, Sven
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Borga, Magnus
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dahlqvist Leinhard, Olof
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Consistent intensity inhomogeneity correction in water–fat MRI2015In: Journal of Magnetic Resonance Imaging, ISSN 1053-1807, E-ISSN 1522-2586, Vol. 42, no 2, p. 468-476Article in journal (Refereed)
    Abstract [en]

    PURPOSE:

    To quantitatively and qualitatively evaluate the water-signal performance of the consistent intensity inhomogeneity correction (CIIC) method to correct for intensity inhomogeneities METHODS: Water-fat volumes were acquired using 1.5 Tesla (T) and 3.0T symmetrically sampled 2-point Dixon three-dimensional MRI. Two datasets: (i) 10 muscle tissue regions of interest (ROIs) from 10 subjects acquired with both 1.5T and 3.0T whole-body MRI. (ii) Seven liver tissue ROIs from 36 patients imaged using 1.5T MRI at six time points after Gd-EOB-DTPA injection. The performance of CIIC was evaluated quantitatively by analyzing its impact on the dispersion and bias of the water image ROI intensities, and qualitatively using side-by-side image comparisons.

    RESULTS:

    CIIC significantly ( P1.5T≤2.3×10-4,P3.0T≤1.0×10-6) decreased the nonphysiological intensity variance while preserving the average intensity levels. The side-by-side comparisons showed improved intensity consistency ( Pint⁡≤10-6) while not introducing artifacts ( Part=0.024) nor changed appearances ( Papp≤10-6).

    CONCLUSION:

    CIIC improves the spatiotemporal intensity consistency in regions of a homogenous tissue type. J. Magn. Reson. Imaging 2014.

    Download full text (pdf)
    fulltext
  • 20.
    Arvidsson, Ida
    et al.
    Lund Univ, Sweden.
    Davidsson, Anette
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping.
    Overgaard, Niels Christian
    Lund Univ, Sweden.
    Pagonis, Christos
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Cardiology in Linköping.
    Astrom, Kalle
    Lund Univ, Sweden.
    Good, Elin
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Cardiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Frias-Rose, Jeronimo
    Linköping University, Department of Health, Medicine and Caring Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Heyden, Anders
    Lund Univ, Sweden.
    Ochoa-Figueroa, Miguel
    Linköping University, Department of Health, Medicine and Caring Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Deep learning prediction of quantitative coronary angiography values using myocardial perfusion images with a CZT camera2023In: Journal of Nuclear Cardiology, ISSN 1071-3581, E-ISSN 1532-6551, Vol. 30, p. 116-126Article in journal (Refereed)
    Abstract [en]

    Purpose Evaluate the prediction of quantitative coronary angiography (QCA) values from MPI, by means of deep learning. Methods 546 patients (67% men) undergoing stress 99mTc-tetrofosmin MPI in a CZT camera in the upright and supine position were included (1092 MPIs). Patients were divided into two groups: ICA group included 271 patients who performed an ICA within 6 months of MPI and a control group with 275 patients with low pre-test probability for CAD and a normal MPI. QCA analyses were performed using radiologic software and verified by an expert reader. Left ventricular myocardium was segmented using clinical nuclear cardiology software and verified by an expert reader. A deep learning model was trained using a double cross-validation scheme such that all data could be used as test data as well. Results Area under the receiver-operating characteristic curve for the prediction of QCA, with &gt; 50% narrowing of the artery, by deep learning for the external test cohort: per patient 85% [95% confidence interval (CI) 84%-87%] and per vessel; LAD 74% (CI 72%-76%), RCA 85% (CI 83%-86%), LCx 81% (CI 78%-84%), and average 80% (CI 77%-83%). Conclusion Deep learning can predict the presence of different QCA percentages of coronary artery stenosis from MPIs.

  • 21.
    Arvidsson, Ida
    et al.
    Lund Univ, Sweden.
    Overgaard, Niels Christian
    Lund Univ, Sweden.
    Astrom, Kalle
    Lund Univ, Sweden.
    Heyden, Anders
    Lund Univ, Sweden.
    Figueroa, Miguel Ochoa
    Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Frias Rose, Miguel Jeronimo
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Davidsson, Anette
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping.
    Prediction of Obstructive Coronary Artery Disease from Myocardial Perfusion Scintigraphy using Deep Neural Networks2021In: 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), IEEE COMPUTER SOC , 2021, p. 4442-4449Conference paper (Refereed)
    Abstract [en]

    For diagnosis and risk assessment in patients with stable ischemic heart disease, myocardial perfusion scintigraphy is one of the most common cardiological examinations performed today. There are however many motivations for why an artificial intelligence algorithm would provide useful input to this task. For example to reduce the subjectiveness and save time for the nuclear medicine physicians working with this time consuming task. In this work we have developed a deep learning algorithm for multi-label classification based on a convolutional neural network to estimate the probability of obstructive coronary artery disease in the left anterior artery, left circumflex artery and right coronary artery. The prediction is based on data from myocardial perfusion scintigraphy studies conducted in a dedicated Cadmium-Zinc-Telluride cardio camera (D-SPECT Spectrum Dynamics). Data from 588 patients was available, with stress images in both upright and supine position, as well as a number of auxiliary parameters such as angina symptoms and age. The data was used to train and evaluate the algorithm using 5-fold cross-validation. We achieve state-of-the-art results for this task with an area under the receiver operating characteristics curve of 0.89 as average on per-vessel level and 0.95 on per-patient level.

  • 22.
    Arvidsson, Ida
    et al.
    Lund Univ, Sweden.
    Overgaard, Niels Christian
    Lund Univ, Sweden.
    Davidsson, Anette
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping.
    Frias Rose, Miguel Jeronimo
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Astrom, Kalle
    Lund Univ, Sweden.
    Figueroa, Miguel Ochoa
    Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping. Linköping University, Department of Health, Medicine and Caring Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Heyden, Anders
    Lund Univ, Sweden.
    Detection of left bundle branch block and obstructive coronary artery disease from myocardial perfusion scintigraphy using deep neural networks2021In: MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, SPIE-INT SOC OPTICAL ENGINEERING , 2021, Vol. 11597, article id 115970NConference paper (Refereed)
    Abstract [en]

    Myocardial perfusion scintigraphy, which is a non-invasive imaging technique, is one of the most common cardiological examinations performed today, and is used for diagnosis of coronary artery disease. Currently the analysis is performed visually by physicians, but this is both a very time consuming and a subjective approach. These are two of the motivations for why an automatic tool to support the decisions would be useful. We have developed a deep neural network which predicts the occurrence of obstructive coronary artery disease in each of the three major arteries as well as left bundle branch block. Since multiple, or none, of these could have a defect, this is treated as a multi-label classification problem. Due to the highly imbalanced labels, the training loss is weighted accordingly. The prediction is based on two polar maps, captured during stress in upright and supine position, together with additional information such as BMI and angina symptoms. The polar maps are constructed from myocardial perfusion scintigraphy examinations conducted in a dedicated Cadmium-Zinc-Telluride cardio camera (D-SPECT Spectrum Dynamics). The study includes data from 759 patients. Using 5-fold cross-validation we achieve an area under the receiver operating characteristics curve of 0.89 as average on per-vessel level for the three major arteries, 0.94 on per-patient level and 0.82 for left bundle branch block.

  • 23.
    Balata, Dilan
    et al.
    Region Östergötland, Heart Center, Department of Cardiology in Linköping.
    Mellergård, Johan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Neurologiska kliniken i Linköping.
    Ekqvist, David
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Medicine Center, Department of Infectious Diseases.
    Baranowski, Jacek
    Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping.
    Garcia, Isidro Albert
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Volosyraki, Marina
    Region Östergötland, Local Health Care Services in Central Östergötland, Department of Acute Internal Medicine and Geriatrics.
    Broqvist, Mats
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Cardiology in Linköping.
    Non-Bacterial Thrombotic Endocarditis: A Presentation of COVID-192020In: European journal of case reports in internal medicine, ISSN 2284-2594, Vol. 7, no 8Article in journal (Refereed)
    Abstract [en]

    The SARS-CoV-2 virus is a newly emergent pathogen first identified in Wuhan, China, and responsible for the COVID-19 global pandemic. In this case report we describe a manifestation of non-bacterial thrombotic endocarditis with continuous peripheral embolization in a COVID-19-positive patient. The patient responded well to high-dose LMWH treatment with cessation of the embolic process.

    Download full text (pdf)
    fulltext
  • 24.
    Bark, David
    et al.
    Uppsala Univ Hosp, Sweden.
    Basu, Julia
    Uppsala Univ, Sweden.
    Toumpanakis, Dimitrios
    Uppsala Univ, Sweden.
    Nyberg, Johan Burwick
    Uppsala Univ, Sweden.
    Bjerner, Tomas
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Rostami, Elham
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Uppsala Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Fallmar, David
    Uppsala Univ, Sweden.
    Clinical Impact of an AI Decision Support System for Detection of Intracranial Hemorrhage in CT Scans2024In: NEUROTRAUMA REPORTS, ISSN 2689-288X, Vol. 5, no 1, p. 1009-1015Article in journal (Refereed)
    Abstract [en]

    This study aimed to evaluate the predictive value and clinical impact of a clinically implemented artificial neural network software model. The software detects intracranial hemorrhage (ICH) from head computed tomography (CT) scans and artificial intelligence (AI)-identified positive cases are then annotated in the work list for early radiologist evaluation. The index test was AI detection by the program Zebra Medical Vision-HealthICH+. Radiologist-confirmed ICH was the reference standard. The study compared whether time benefits from using the AI model led to faster escalation of patient care or surgery within the first 24 h. A total of 2,306 patients were evaluated by the software, and 288 AI-positive cases were included. The AI tool had a positive predictive value of 0.823. There was, however, no significant time reduction when comparing the patients who required escalation of care and those who did not. There was also no significant time reduction in those who required acute surgery compared with those who did not. Among the individual patients with reduced time delay, no cases with evident clinical benefit were identified. Although the clinically implemented AI-based decision support system showed adequate predictive value in identifying ICH, there was no significant clinical benefit for the patients in our setting. While AI-assisted detection of ICH shows great promise from a technical perspective, there remains a need to evaluate the clinical impact and perform external validation across different settings.

  • 25.
    Bar-Sever, Zvi
    et al.
    Tel Aviv Univ, Israel.
    Biassoni, Lorenzo
    Great Ormond St Hosp Children NHS Fdn Trust, England.
    Shulkin, Barry
    St Jude Childrens Res Hosp, TN 38105 USA.
    Kong, Grace
    Peter MacCallum Canc Ctr, Australia.
    Hofman, Michael S.
    Peter MacCallum Canc Ctr, Australia.
    Lopci, Egesta
    Humanitas Clin and Res Hosp, Italy.
    Manea, Irina
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Koziorowski, Jacek
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Castellani, Rita
    Ist Nazl Tumori, Italy.
    Boubaker, Ariane
    Clin Source, Switzerland.
    Lambert, Bieke
    Univ Ghent, Belgium.
    Pfluger, Thomas
    Ludwig Maximilian Univ Hosp, Germany.
    Nadel, Helen
    British Columbia Childrens Hosp, Canada.
    Sharp, Susan
    Cincinnati Childrens Hosp Med Ctr, OH 45229 USA.
    Giammarile, Francesco
    IAEA, Austria.
    Guidelines on nuclear medicine imaging in neuroblastoma2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, no 11, p. 2009-2024Article in journal (Refereed)
    Abstract [en]

    Nuclear medicine has a central role in the diagnosis, staging, response assessment and long-term follow-up of neuroblastoma, the most common solid extracranial tumour in children. These EANM guidelines include updated information on I-123-mIBG, the most common study in nuclear medicine for the evaluation of neuroblastoma, and on PET/CT imaging with F-18-FDG, F-18-DOPA and Ga-68-DOTA peptides. These PET/CT studies are increasingly employed in clinical practice. Indications, advantages and limitations are presented along with recommendations on study protocols, interpretation of findings and reporting results.

  • 26.
    Bauckneht, Matteo
    et al.
    IRCCS Osped Policlin San Martino, Italy.
    Chincarini, Andrea
    Natl Inst Nucl Phys INFN, Italy.
    Brendel, Matthias
    Ludwig Maximilians Univ Munchen, Germany.
    Rominger, Axel
    Ludwig Maximilians Univ Munchen, Germany; Univ Hosp Bern, Switzerland.
    Beyer, Leonie
    Ludwig Maximilians Univ Munchen, Germany.
    Bruffaerts, Rose
    Katholieke Univ Leuven, Belgium; Univ Hosp Leuven, Belgium; Hasselt Univ, Belgium.
    Vandenberghe, Rik
    Katholieke Univ Leuven, Belgium; Univ Hosp Leuven, Belgium.
    Kramberger, Milica G.
    Univ Med Ctr Ljubljana, Slovenia; Univ Ljubljana, Slovenia.
    Trost, Maja
    Univ Med Ctr Ljubljana, Slovenia; Univ Ljubljana, Slovenia.
    Garibotto, Valentina
    Univ Geneva, Switzerland; Univ Geneva, Switzerland.
    Nicastro, Nicolas
    Geneva Univ Hosp, Switzerland; Univ Cambridge, England.
    Frisoni, Giovanni B.
    Geneva Univ Hosp, Switzerland.
    Lemstra, Afina W.
    Vrije Univ Amsterdam, Netherlands.
    Berckel, Bart N. M.
    Vrije Univ Amsterdam, Netherlands.
    Pilotto, Andrea
    Univ Brescia, Italy; Isidoro Hosp, Italy.
    Padovani, Alessandro
    Univ Brescia, Italy.
    Ochoa-Figueroa, Miguel A.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping.
    Davidsson, Anette
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping.
    Camacho, Valle
    Univ Autonoma Barcelona, Spain.
    Peira, Enrico
    Natl Inst Nucl Phys INFN, Italy; Univ Genoa, Italy.
    Arnaldi, Dario
    Univ Genoa, Italy; IRCCS Osped Policlin San Martino, Italy.
    Pardini, Matteo
    Univ Genoa, Italy; IRCCS Osped Policlin San Martino, Italy.
    Donegani, Maria Isabella
    Univ Genoa, Italy.
    Raffa, Stefano
    Univ Genoa, Italy.
    Miceli, Alberto
    Univ Genoa, Italy.
    Sambuceti, Gianmario
    IRCCS Osped Policlin San Martino, Italy; Univ Genoa, Italy.
    Aarsland, Dag
    Stavanger Univ Hosp, Norway; Kings Coll London, England.
    Nobili, Flavio
    Univ Genoa, Italy; IRCCS Osped Policlin San Martino, Italy.
    Morbelli, Silvia
    IRCCS Osped Policlin San Martino, Italy; Univ Genoa, Italy.
    Associations among education, age, and the dementia with Lewy bodies (DLB) metabolic pattern: A European-DLB consortium project2021In: Alzheimer's & Dementia: Journal of the Alzheimer's Association, ISSN 1552-5260, E-ISSN 1552-5279, Vol. 17, no 8, p. 1277-1286Article in journal (Refereed)
    Abstract [en]

    Introduction We assessed the influence of education as a proxy of cognitive reserve and age on the dementia with Lewy bodies (DLB) metabolic pattern. Methods Brain 18F-fluorodeoxyglucose positron emission tomography and clinical/demographic information were available in 169 probable DLB patients included in the European DLB-consortium database. Principal component analysis identified brain regions relevant to local data variance. A linear regression model was applied to generate age- and education-sensitive maps corrected for Mini-Mental State Examination score, sex (and either education or age). Results Age negatively covaried with metabolism in bilateral middle and superior frontal cortex, anterior and posterior cingulate, reducing the expression of the DLB-typical cingulate island sign (CIS). Education negatively covaried with metabolism in the left inferior parietal cortex and precuneus (making the CIS more prominent). Discussion These findings point out the importance of tailoring interpretation of DLB biomarkers considering the concomitant effect of individual, non-disease-related variables such as age and cognitive reserve.

  • 27.
    Baumann, Stefan
    et al.
    Med Univ South Carolina, SC 29425 USA; Univ Med Ctr Mannheim, Germany.
    Renker, Matthias
    Med Univ South Carolina, SC 29425 USA; Kerckhoff Heart and Thorax Ctr, Germany.
    Schoepf, U. Joseph
    Med Univ South Carolina, SC 29425 USA; Med Univ South Carolina, SC 29425 USA.
    De Cecco, Carlo N.
    Med Univ South Carolina, SC 29425 USA.
    Coenen, Adriaan
    Erasmus Univ, Netherlands; Erasmus Univ, Netherlands.
    de Geer, Jakob
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Kruk, Mariusz
    Inst Cardiol, Poland.
    Kim, Young-Hak
    Univ Ulsan, South Korea.
    Albrecht, Moritz H.
    Med Univ South Carolina, SC 29425 USA; Univ Hosp Frankfurt, Germany.
    Duguay, Taylor M.
    Med Univ South Carolina, SC 29425 USA.
    Jacobs, Brian E.
    Med Univ South Carolina, SC 29425 USA.
    Bayer, Richard R.
    Med Univ South Carolina, SC 29425 USA; Med Univ South Carolina, SC 29425 USA.
    Litwin, Sheldon E.
    Med Univ South Carolina, SC 29425 USA; Med Univ South Carolina, SC 29425 USA.
    Weiss, Christel
    Heidelberg Univ, Germany.
    Akin, Ibrahim
    Univ Med Ctr Mannheim, Germany.
    Borggrefe, Martin
    Univ Med Ctr Mannheim, Germany.
    Yang, Dong Hyun
    Univ Ulsan, South Korea.
    Kepka, Cezary
    Inst Cardiol, Poland.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Nieman, Koen
    Erasmus Univ, Netherlands; Erasmus Univ, Netherlands; Stanford Univ, CA 94305 USA.
    Tesche, Christian
    Med Univ South Carolina, SC 29425 USA; Heart Ctr Munich Bogenhausen, Germany; Ludwig Maximilians Univ Munchen, Germany.
    Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry2019In: European Journal of Radiology, ISSN 0720-048X, E-ISSN 1872-7727, Vol. 119, article id UNSP 108657Article in journal (Refereed)
    Abstract [en]

    Purpose: This study investigated the impact of gender differences on the diagnostic performance of machine-learning based coronary CT angiography (cCTA)-derived fractional flow reserve (CT-FFR mL ) for the detection of lesion-specific ischemia. Method: Five centers enrolled 351 patients (73.5% male) with 525 vessels in the MACHINE (Machine leArning Based CT angiograpHy derIved FFR: a Multi-ceNtEr) registry. CT-FFRML and invasive FFR amp;lt;= 0.80 were considered hemodynamically significant, whereas cCTA luminal stenosis amp;gt;= 50% was considered obstructive. The diagnostic performance to assess lesion-specific ischemia in both men and women was assessed on a per-vessel basis. Results: In total, 398 vessels in men and 127 vessels in women were included. Compared to invasive FFR, CT-FFRML reached a sensitivity, specificity, positive predictive value, and negative predictive value of 78% (95%CI 72-84), 79% (95%CI 73-84), 75% (95%CI 69-79), and 82% (95%CI: 76-86) in men vs. 75% (95%CI 58-88), 81 (95%CI 72-89), 61% (95%CI 50-72) and 89% (95%CI 82-94) in women, respectively. CT-FFRML showed no statistically significant difference in the area under the receiver-operating characteristic curve (AUC) in men vs. women (AUC: 0.83 [95%CI 0.79-0.87] vs. 0.83 [95%CI 0.75-0.89], p = 0.89). CT-FFRML was not superior to cCTA alone [AUC: 0.83 (95%CI: 0.75-0.89) vs. 0.74 (95%CI: 0.65-0.81), p = 0.12] in women, but showed a statistically significant improvement in men [0.83 (95%CI: 0.79-0.87) vs. 0.76 (95%CI: 0.71-0.80), p = 0.007]. Conclusions: Machine-learning based CT-FFR performs equally in men and women with superior diagnostic performance over cCTA alone for the detection of lesion-specific ischemia.

  • 28.
    Bendrik, Christina
    et al.
    Linköping University, Faculty of Medicine and Health Sciences.
    Blystad, Ida
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine.
    Gimm, Oliver
    Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping. Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology.
    Milovanovic, Micha
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Nursing Sciences and Reproductive Health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in East Östergötland, Department of Internal Medicine in Norrköping.
    Pedagogiskt utvecklingsarbete för implementation av visualiseringsbordet på Hälsouniversitetet (HU), Linköping och Sahlgrenska Akademin, Göteborg.2013Conference paper (Other academic)
  • 29.
    Bergström, G
    et al.
    University of Gothenburg / Sahlgrenska University Hospital.
    Berglund, G
    Lund University.
    Blomberg, A
    Umeå University.
    Brandberg, J
    Sahlgrenska University Hospital / University of Gothenburg.
    Engström, G
    Lund University.
    Engvall, Jan
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Department of Medical and Health Sciences, Division of Drug Research.
    Eriksson, M
    Karolinska University Hospital, Stockholm.
    de Faire, U
    Karolinska Institutet, Stockholm / Karolinska University Hospital, Stockholm.
    Flinck, A
    Sahlgrenska University Hospital, Stockholm / University of Gothenburg.
    Hansson, M G
    Uppsala University.
    Hedblad, B
    Lund University.
    Hjelmgren, O
    University of Gothenburg / Sahlgrenska University Hospital, Gothenburg.
    Janson, C
    Uppsala University.
    Jernberg, T
    Karolinska University Hospital, Stockholm / Karolinska Institutet, Stockholm.
    Johnsson, Å
    Sahlgrenska University Hospital, Gothenburg / University of Gothenburg.
    Johansson, L
    Unit of Radiology.
    Lind, L
    Uppsala University.
    Löfdahl, C-G
    Lund University / Lund University Hospital.
    Melander, O
    Lund University / Skåne University Hospital, Malmö.
    Östgren, Carl Johan
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in West Östergötland, Primary Health Care in Motala.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Persson, M
    Lund University / Skåne University Hospital, Malmö.
    Sandström, A
    Umeå University.
    Schmidt, C
    University of Gothenburg.
    Söderberg, S
    Umeå University.
    Sundström, J
    Uppsala University / Uppsala Clinical Resarch Centre.
    Toren, K
    University of Gothenburg.
    Waldenström, A
    Umeå University Hospital.
    Wedel, H
    Nordic School of Public Health, Gothenburg.
    Vikgren, J
    Sahlgrenska University Hospital, Gothenburg / University of Gothenburg.
    Fagerberg, B
    University of Gothenburg.
    Rosengren, A
    University of Gothenburg.
    The Swedish CArdioPulmonary BioImage Study: objectives and design2015In: Journal of Internal Medicine, ISSN 0954-6820, E-ISSN 1365-2796, Vol. 278, no 6, p. 645-659Article in journal (Refereed)
    Abstract [en]

    Cardiopulmonary diseases are major causes of death worldwide, but currently recommended strategies for diagnosis and prevention may be outdated because of recent changes in risk factor patterns. The Swedish CArdioPulmonarybioImage Study (SCAPIS) combines the use of new imaging technologies, advances in large-scale 'omics' and epidemiological analyses to extensively characterize a Swedish cohort of 30 000 men and women aged between 50 and 64 years. The information obtained will be used to improve risk prediction of cardiopulmonary diseases and optimize the ability to study disease mechanisms. A comprehensive pilot study in 1111 individuals, which was completed in 2012, demonstrated the feasibility and financial and ethical consequences of SCAPIS. Recruitment to the national, multicentre study has recently started.

    Download full text (pdf)
    fulltext
  • 30.
    Bergström, Göran
    et al.
    Sahlgrens Acad, Sweden; Reg Västra Götaland, Sweden.
    Persson, Margaretha
    Lund Univ, Sweden; Skåne Univ Hosp, Sweden.
    Adiels, Martin
    Univ Gothenburg, Sweden.
    Björnson, Elias
    Sahlgrens Acad, Sweden.
    Bonander, Carl
    Univ Gothenburg, Sweden.
    Ahlström, Håkan
    Uppsala Univ, Sweden.
    Alfredsson, Joakim
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Region Östergötland, Heart Center, Department of Cardiology in Linköping. Linköping University, Faculty of Medicine and Health Sciences.
    Angerås, Oskar
    Sahlgrens Acad, Sweden; Reg Västra Götaland, Sweden.
    Berglund, Göran
    Lund Univ, Sweden.
    Blomberg, Anders
    Umeå Univ, Sweden.
    Brandberg, John
    Sahlgrens Acad, Sweden; Reg Västra Götaland, Sweden.
    Börjesson, Mats
    Sahlgrens Acad, Sweden; Univ Gothenburg, Sweden.
    Cederlund, Kerstin
    Karolinska Inst, Sweden.
    de Faire, Ulf
    Karolinska Inst, Sweden.
    Duvernoy, Olov
    Uppsala Univ, Sweden.
    Ekblom, Örjan
    Swedish Sch Sport & Hlth Sci GIH, Sweden.
    Engström, Gunnar
    Lund Univ, Sweden.
    Engvall, Jan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Fagman, Erika
    Sahlgrens Acad, Sweden; Reg Vastra Gotaland, Sweden.
    Eriksson, Mats
    Karolinska Univ Hosp Huddinge, Sweden; Karolinska Univ Hosp Huddinge, Sweden.
    Erlinge, David
    Lund Univ, Sweden; Skåne Univ Hosp, Sweden.
    Fagerberg, Björn
    Sahlgrens Acad, Sweden; Sahlgrens Univ Hosp, Sweden.
    Flinck, Agneta
    Sahlgrens Acad, Sweden; Reg Västra Götaland, Sweden.
    Goncalves, Isabel
    Lund Univ, Sweden.
    Hagström, Emil
    Uppsala Univ, Sweden; Uppsala Univ, Sweden.
    Hjelmgren, Ola
    Sahlgrens Acad, Sweden; Reg Västra Götaland, Sweden.
    Lind, Lars
    Uppsala Univ, Sweden.
    Lindberg, Eva
    Uppsala Univ, Sweden.
    Lindqvist, Per
    Umea Univ, Sweden.
    Ljungberg, Johan
    Umeå Univ, Sweden.
    Magnusson, Martin
    Lund Univ, Sweden; Skåne Univ Hosp, Sweden; Lund Univ, Sweden; North West Univ, South Africa.
    Mannila, Maria
    Karolinska Univ Hosp, Sweden.
    Markstad, Hanna
    Lund Univ, Sweden; Lund Univ, Sweden.
    Mohammad, Moman A.
    Lund Univ, Sweden; Skåne Univ Hosp, Sweden.
    Nyström, Fredrik H
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Primary Care Center, Primary Health Care Center Cityhälsan Centrum.
    Ostenfeld, Ellen
    Skane Univ Hosp, Sweden; Lund Univ, Sweden.
    Persson, Anders
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Rosengren, Annika
    Sahlgrens Acad, Sweden; Sahlgrens Univ Hosp, Sweden.
    Sandström, Anette
    Umeå Univ, Sweden.
    Själander, Anders
    Umea Univ, Sweden; Umea Univ, Sweden.
    Sköld, Magnus C.
    Karolinska Inst, Sweden; Karolinska Inst, Sweden; Karolinska Univ Hosp Solna, Sweden.
    Sundström, Johan
    Uppsala Univ, Sweden; Univ New South Wales, Australia.
    Swahn, Eva
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Cardiology in Linköping.
    Söderberg, Stefan
    Umeå Univ, Sweden.
    Torén, Kjell
    Univ Gothenburg, Sweden; Sahlgrens Univ Hosp, Sweden.
    Östgren, Carl Johan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Primary Care Center, Primary Health Care Center Ekholmen. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Jernberg, Tomas
    Danderyd Hosp, Sweden.
    Prevalence of Subclinical Coronary Artery Atherosclerosis in the General Population2021In: Circulation, ISSN 0009-7322, E-ISSN 1524-4539, Vol. 144, no 12, p. 916-929Article in journal (Refereed)
    Abstract [en]

    Background: Early detection of coronary atherosclerosis using coronary computed tomography angiography (CCTA), in addition to coronary artery calcification (CAC) scoring, may help inform prevention strategies. We used CCTA to determine the prevalence, severity, and characteristics of coronary atherosclerosis and its association with CAC scores in a general population. Methods: We recruited 30 154 randomly invited individuals age 50 to 64 years to SCAPIS (the Swedish Cardiopulmonary Bioimage Study). The study includes individuals without known coronary heart disease (ie, no previous myocardial infarctions or cardiac procedures) and with high-quality results from CCTA and CAC imaging performed using dedicated dual-source CT scanners. Noncontrast images were scored for CAC. CCTA images were visually read and scored for coronary atherosclerosis per segment (defined as no atherosclerosis, 1% to 49% stenosis, or &gt;= 50% stenosis). External validity of prevalence estimates was evaluated using inverse probability for participation weighting and Swedish register data. Results: In total, 25 182 individuals without known coronary heart disease were included (50.6% women). Any CCTA-detected atherosclerosis was found in 42.1%; any significant stenosis (&gt;= 50%) in 5.2%; left main, proximal left anterior descending artery, or 3-vessel disease in 1.9%; and any noncalcified plaques in 8.3% of this population. Onset of atherosclerosis was delayed on average by 10 years in women. Atherosclerosis was more prevalent in older individuals and predominantly found in the proximal left anterior descending artery. Prevalence of CCTA-detected atherosclerosis increased with increasing CAC scores. Among those with a CAC score &gt;400, all had atherosclerosis and 45.7% had significant stenosis. In those with 0 CAC, 5.5% had atherosclerosis and 0.4% had significant stenosis. In participants with 0 CAC and intermediate 10-year risk of atherosclerotic cardiovascular disease according to the pooled cohort equation, 9.2% had CCTA-verified atherosclerosis. Prevalence estimates had excellent external validity and changed marginally when adjusted to the age-matched Swedish background population. Conclusions: Using CCTA in a large, random sample of the general population without established disease, we showed that silent coronary atherosclerosis is common in this population. High CAC scores convey a significant probability of substantial stenosis, and 0 CAC does not exclude atherosclerosis, particularly in those at higher baseline risk.

    Download full text (pdf)
    fulltext
  • 31.
    Bergström, Göran
    et al.
    Univ Gothenburg, Sweden; Sahlgrens Univ Hosp, Sweden.
    Rosengren, Annika
    Univ Gothenburg, Sweden; Sahlgrenska Univ Hosp Ostra Hosp, Sweden.
    Bacsovics Brolin, Elin
    Karolinska Inst, Sweden; Capio St Goran Hosp, Sweden.
    Brandberg, John
    Univ Gothenburg, Sweden; Sahlgrens Univ Hosp, Sweden.
    Cederlund, Kerstin
    Karolinska Inst, Sweden.
    Engström, Gunnar
    Lund Univ, Sweden.
    Engvall, Jan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping.
    Eriksson, Maria J.
    Karolinska Inst, Sweden; Karolinska Univ Hosp, Sweden.
    Gonçalves, Isabel
    Skane Univ Hosp, Sweden; Lund Univ, Sweden.
    Hagström, Emil
    Uppsala Univ, Sweden.
    James, Stefan K.
    Uppsala Univ, Sweden.
    Jernberg, Tomas
    Danderyd Hosp, Sweden.
    Lilja, Mikael
    Umea Univ, Sweden.
    Magnusson, Martin
    Lund Univ, Sweden; Skane Univ Hosp, Sweden; North West Univ, South Africa.
    Persson, Anders
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Karolinska Inst, Sweden.
    Persson, Margaretha
    Lund Univ, Sweden; Skane Univ Hosp, Sweden.
    Sandström, Anette
    Umea Univ, Sweden.
    Schmidt, Caroline
    Univ Gothenburg, Sweden.
    Skoglund Larsson, Linn
    Umea Univ, Sweden.
    Sundström, Johan
    Uppsala Univ, Sweden; Univ New South Wales, Australia.
    Swahn, Eva
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Region Östergötland, Heart Center, Department of Cardiology in Linköping.
    Söderberg, Stefan
    Umea Univ, Sweden.
    Torén, Kjell
    Univ Gothenburg, Sweden; Sahlgrens Univ Hosp, Sweden.
    Östgren, Carl Johan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Primary Care Center, Primary Health Care Center Ekholmen.
    Lampa, Erik
    Uppsala Univ, Sweden.
    Lind, Lars
    Uppsala Univ, Sweden.
    Body weight at age 20 and in midlife is more important than weight gain for coronary atherosclerosis: Results from SCAPIS2023In: Atherosclerosis, ISSN 0021-9150, E-ISSN 1879-1484, Vol. 373, p. 46-54Article in journal (Refereed)
    Abstract [en]

    Background and aims: Elevated body weight in adolescence is associated with early cardiovascular disease, but whether this association is traceable to weight in early adulthood, weight in midlife or to weight gain is not known. The aim of this study is to assess the risk of midlife coronary atherosclerosis being associated with body weight at age 20, body weight in midlife and body weight change.Methods: We used data from 25,181 participants with no previous myocardial infarction or cardiac procedure in the Swedish CArdioPulmonary bioImage Study (SCAPIS, mean age 57 years, 51% women). Data on coronary atherosclerosis, self-reported body weight at age 20 and measured midlife weight were recorded together with potential confounders and mediators. Coronary atherosclerosis was assessed using coronary computed tomog-raphy angiography (CCTA) and expressed as segment involvement score (SIS).Results: The probability of having coronary atherosclerosis was markedly higher with increasing weight at age 20 and with mid-life weight (p < 0.001 for both sexes). However, weight increase from age 20 until mid-life was only modestly associated with coronary atherosclerosis. The association between weight gain and coronary atherosclerosis was mainly seen in men. However, no significant sex difference could be detected when adjusting for the 10-year delay in disease development in women.Conclusions: Similar in men and women, weight at age 20 and weight in midlife are strongly related to coronary atherosclerosis while weight increase from age 20 until midlife is only modestly related to coronary atherosclerosis.

  • 32.
    Bernard, Olivier
    et al.
    University of Lyon 1, France.
    Bosch, Johan G.
    Erasmus MC, Netherlands.
    Heyde, Brecht
    Katholieke University of Leuven, Belgium.
    Alessandrini, Martino
    Katholieke University of Leuven, Belgium.
    Barbosa, Daniel
    University of Minho, Portugal.
    Camarasu-Pop, Sorina
    University of Lyon 1, France.
    Cervenansky, Frederic
    University of Lyon 1, France.
    Valette, Sebastien
    University of Lyon 1, France.
    Mirea, Oana
    Katholieke University of Leuven, Belgium.
    Bernier, Michel
    University of Sherbrooke, Canada.
    Jodoin, Pierre-Marc
    University of Sherbrooke, Canada.
    Santo Domingos, Jaime
    University of Oxford, England.
    Stebbing, Richard V.
    University of Oxford, England.
    Keraudren, Kevin
    University of London Imperial Coll Science Technology and Med, England.
    Oktay, Ozan
    University of London Imperial Coll Science Technology and Med, England.
    Caballero, Jose
    University of London Imperial Coll Science Technology and Med, England.
    Shi, Wei
    University of London Imperial Coll Science Technology and Med, England.
    Rueckert, Daniel
    University of London Imperial Coll Science Technology and Med, England.
    Milletari, Fausto
    Technical University of Munich, Germany.
    Ahmadi, Seyed-Ahmad
    University of Munich, Germany.
    Smistad, Erik
    Norwegian University of Science and Technology, Norway.
    Lindseth, Frank
    Norwegian University of Science and Technology, Norway.
    van Stralen, Maartje
    University of Medical Centre Utrecht, Netherlands.
    Wang, Chen
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Royal Institute of Technology—KTH, Sweden.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). Royal Institute of Technology—KTH, Sweden.
    Donal, Erwan
    University of Rennes 1, France; University of Rennes 1, France; University of Rennes 1, France.
    Monaghan, Mark
    Kings Coll Hospital NHS Fdn Trust, England.
    Papachristidis, Alex
    Kings Coll Hospital NHS Fdn Trust, England.
    Geleijnse, Marcel L.
    Erasmus MC, Netherlands.
    Galli, Elena
    University of Rennes 1, France; University of Rennes 1, France; University of Rennes 1, France.
    Dhooge, Jan
    Katholieke University of Leuven, Belgium.
    Standardized Evaluation System for Left Ventricular Segmentation Algorithms in 3D Echocardiography2016In: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 35, no 4, p. 967-977Article in journal (Refereed)
    Abstract [en]

    Real-time 3D Echocardiography (RT3DE) has been proven to be an accurate tool for left ventricular (LV) volume assessment. However, identification of the LV endocardium remains a challenging task, mainly because of the low tissue/blood contrast of the images combined with typical artifacts. Several semi and fully automatic algorithms have been proposed for segmenting the endocardium in RT3DE data in order to extract relevant clinical indices, but a systematic and fair comparison between such methods has so far been impossible due to the lack of a publicly available common database. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms developed to segment the LV border in RT3DE. A database consisting of 45 multivendor cardiac ultrasound recordings acquired at different centers with corresponding reference measurements from three experts are made available. The algorithms from nine research groups were quantitatively evaluated and compared using the proposed online platform. The results showed that the best methods produce promising results with respect to the experts measurements for the extraction of clinical indices, and that they offer good segmentation precision in terms of mean distance error in the context of the experts variability range. The platform remains open for new submissions.

  • 33.
    Bernhardsson, Magnus
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Sandberg, Olof
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Ressner, Marcus
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Koziorowski, Jacek
    Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Malmqvist, Jonas
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Shining dead bone-cause for cautious interpretation of [F-18]NaF PET scans2018In: Acta Orthopaedica, ISSN 1745-3674, E-ISSN 1745-3682, Vol. 89, no 1, p. 124-127Article in journal (Refereed)
    Abstract [en]

    Background and purpose — [18F]Fluoride ([18F]NaF) PET scan is frequently used for estimation of bone healing rate and extent in cases of bone allografting and fracture healing. Some authors claim that [18F]NaF uptake is a measure of osteoblastic activity, calcium metabolism, or bone turnover. Based on the known affinity of fluoride to hydroxyapatite, we challenged this view.

    Methods — 10 male rats received crushed, frozen allogeneic cortical bone fragments in a pouch in the abdominal wall on the right side, and hydroxyapatite granules on left side. [18F]NaF was injected intravenously after 7 days. 60 minutes later, the rats were killed and [18F]NaF uptake was visualized in a PET/CT scanner. Specimens were retrieved for micro CT and histology.

    Results — MicroCT and histology showed no signs of new bone at the implant sites. Still, the implants showed a very high [18F]NaF uptake, on a par with the most actively growing and remodeling sites around the knee joint.

    Interpretation — [18F]NaF binds with high affinity to dead bone and calcium phosphate materials. Hence, an [18F]NaF PET/CT scan does not allow for sound conclusions about new bone ingrowth into bone allograft, healing activity in long bone shaft fractures with necrotic fragments, or remodeling around calcium phosphate coated prostheses

    Download full text (pdf)
    fulltext
  • 34.
    Bivik Stadler, Caroline
    et al.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lindvall, Martin
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Sectra AB, Tekn Ringen 20, SE-58330 Linkoping, Sweden.
    Lundström, Claes
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Sectra AB, Tekn Ringen 20, SE-58330 Linkoping, Sweden.
    Boden, Anna
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lindman, Karin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Rose, Jeronimo
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences.
    Treanor, Darren
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology. Linköping University, Center for Medical Image Science and Visualization (CMIV). Leeds Teaching Hosp NHS Trust, England; Univ Leeds, England.
    Blomma, Johan
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Stacke, Karin
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Sectra AB, Tekn Ringen 20, SE-58330 Linkoping, Sweden.
    Pinchaud, Nicolas
    ContextVision AB, Sweden.
    Hedlund, Martin
    ContextVision AB, Sweden.
    Landgren, Filip
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry. Linköping University, Faculty of Medicine and Health Sciences.
    Woisetschläger, Mischa
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Forsberg, Daniel
    Sectra AB, Tekn Ringen 20, SE-58330 Linkoping, Sweden.
    Proactive Construction of an Annotated Imaging Database for Artificial Intelligence Training2021In: Journal of digital imaging, ISSN 0897-1889, E-ISSN 1618-727X, Vol. 34, p. 105-115Article in journal (Refereed)
    Abstract [en]

    Artificial intelligence (AI) holds much promise for enabling highly desired imaging diagnostics improvements. One of the most limiting bottlenecks for the development of useful clinical-grade AI models is the lack of training data. One aspect is the large amount of cases needed and another is the necessity of high-quality ground truth annotation. The aim of the project was to establish and describe the construction of a database with substantial amounts of detail-annotated oncology imaging data from pathology and radiology. A specific objective was to be proactive, that is, to support undefined subsequent AI training across a wide range of tasks, such as detection, quantification, segmentation, and classification, which puts particular focus on the quality and generality of the annotations. The main outcome of this project was the database as such, with a collection of labeled image data from breast, ovary, skin, colon, skeleton, and liver. In addition, this effort also served as an exploration of best practices for further scalability of high-quality image collections, and a main contribution of the study was generic lessons learned regarding how to successfully organize efforts to construct medical imaging databases for AI training, summarized as eight guiding principles covering team, process, and execution aspects.

    Download full text (pdf)
    fulltext
  • 35.
    Bjällmark, A.
    et al.
    Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden.
    Bazzi, M.
    Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden.
    Karlsson, M.
    Department of Radiology, Höglandssjukhuset, Eksjö, Sweden.
    Krakys, E.
    Region Östergötland, Center for Diagnostics, Department of Radiology in Motala.
    Kihlberg, Johan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Radiology departmental policy compliance with Swedish guidelines regarding post-contrast acute kidney injury for examinations with iodinated contrast media2021In: Radiography, ISSN 1078-8174, E-ISSN 1532-2831, Vol. 27, no 4, p. 1058-1063Article in journal (Refereed)
    Abstract [en]

    Introduction: Guidelines concerning intravenous iodinated contrast media (CM) during computed tomography (CT) examinations are important to follow to minimize the risk for post-contrast acute kidney injury (PC-AKI). The purpose of this study was to investigate the radiology departmental policy compliance with Swedish guidelines concerning PC-AKI. Methods: In February 2020, an electronic survey was distributed to the responsible radiographer at 41 radiology departments in all university hospitals and medium-sized hospitals in Sweden. The questions focused on routines around renal functional tests, individualized contrast administration and handling of patients with diabetes mellitus taking metformin. Results: The response rate was 83%. Seventy-six percent (n = 26) of radiology departments calculated estimated glomerular filtration rate (eGFR) from serum creatinine prior to CM administration, but only 24% (n = 8) followed the recommendation to calculate eGFR from both serum creatinine and cystatin C. For acute/inpatients, 55% (n = 18) followed the recommendation that renal functional tests should be performed within 12 h before CM administration. For elective patients, 97% (n = 33) followed the recommendation to have eGFR newer than three months which is acceptable for patients with no history of disease that may have affected renal function. Approximately 80% of the radiology departments followed the recommendation that CM dose always should be individually adjusted to patient eGFR. Seventy-six percent (n = 26) followed the recommendation to continue with metformin at eGFR > 45 ml/min. Conclusion: Compliance with the national guidelines was high regarding routines around renal functional tests, dose adjustment of CM and metformin discontinuation. Improvements can be made in using both cystatin C and serum creatinine for eGFR calculations as well as ensuring renal function tests within 12 h for acute/inpatients with acute disease that may affect renal function. Implications for practice: This study raises awareness of the importance of adhering to guidelines in healthcare. To have knowledge about the current level of compliance regarding PCI-AKI is important to maintain and develop effective clinical implementation of guidelines. The variation in practice seen in this study emphasizes the need of more effective implementation strategies to ensure adherence with best practice. (C) 2021 The College of Radiographers. Published by Elsevier Ltd.

    Download full text (pdf)
    fulltext
  • 36.
    Björk, Dennis
    et al.
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Bartholomä, Wolf
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Hasselgren, Kristina
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Edholm, David
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Björnsson, Bergthor
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Lundgren, Linda
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Malignancy in elective cholecystectomy due to gallbladder polyps or thickened gallbladder wall: a single-centre experience2021In: Scandinavian Journal of Gastroenterology, ISSN 0036-5521, E-ISSN 1502-7708, Vol. 56, no 4, p. 458-462Article in journal (Refereed)
    Abstract [en]

    Introduction Gallbladder cancer is a rare but aggressive malignancy. Surgical resection is recommended for gallbladder polyps &gt;= 10 mm. For gallbladder wall thickening, resection is recommended if malignancy cannot be excluded. The incidence of gallbladder malignancy after cholecystectomy with indications of polyps or wall thickening in the Swedish population is not known. Material/methods A retrospective study was performed at Linkoping University Hospital and included patients who underwent cholecystectomy 2010 - 2018. All cholecystectomies performed due to gallbladder polyps or gallbladder wall thickening without other preoperative malignant signs were identified. Preoperative radiological examinations were re-analysed by a single radiologist. Medical records and histopathology reports were analysed. Results In all, 102 patients were included, of whom 65 were diagnosed with gallbladder polyps and 37 with gallbladder wall thickening. In each group, one patient (1.5% and 2.7% in each group) had gallbladder malignancy &gt;= pT1b.Two (3.1%) and three (8.1%) patients with gallbladder malignancy &lt; T1b were identified in each group. Discussion/conclusion This study indicates that the incidence of malignancy is low without other malignant signs beyond gallbladder polyps and/or gallbladder wall thickening. We propose that these patients should be discussed at a multidisciplinary tumour board. If the polyp is 10-15 mm or if the gallbladder wall is thickened but no other malignant signs are observed, cholecystectomy can be safely performed by an experienced general surgeon at a general surgery unit. If the histopathology indicates &gt;= pT1b, the patient should be referred immediately to a hepatobiliary centre for liver and lymph node resection.

  • 37.
    Björkman, Ann-Sofi
    et al.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gauffin, Håkan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Persson, Anders
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Koskinen, Seppo
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Department of Clinical Science, Intervention, and Technology, Division for Radiology, Karolinska Institute, Stockholm, Sweden.
    Sensitivity of DECT in ACL tears. A prospective study with arthroscopy as reference method2022In: Acta Radiologica Open, E-ISSN 2058-4601, Vol. 11, no 3Article in journal (Refereed)
    Abstract [en]

    Background: CT is often used for fracture evaluation following knee trauma and to diagnose ACL injuries would also be valuable. Purpose: To investigate the diagnostic accuracy of dual energy CT (DECT) for detection of ACL tears in acute and subacute knee injuries. Material and Methods: Patients with suspected ACL injury were imaged with DECT and MRI. Clinically blinded DECT images were independently read twice by two radiologists. ACL was classified as normal or abnormal. Arthroscopy served as reference method. Sensitivity and positive predictive value (PPV) were calculated, and diagnostic performance between DECT and MRI was assessed. Results: 48 patients (26 M, 22 F, mean age 23 years, range 15-37 years) were imaged with a mean of 25 days following trauma. Of these, 21 patients underwent arthroscopy with a mean of 195 days after trauma. Arthroscopy revealed 19 ACL tears and 2 ACLs with no tear. The combined sensitivity was 76.3% (95% CI 66.8-85.9) and 86.8 (95% CI 71.9-95.6) for DECT and MRI, respectively. There was no statistically significant difference between these two methods (p = .223). The positive predictive value (PPV) was 93.5 (95% CI 84.3-98.2) and 91.7 (95% CI 77.5-98.3) for DECT and MRI, respectively. Conclusion: DECT has lower sensitivity to detect an ACL rupture than MRI, but the difference is not statistically significant. The PPV is high in both methods.

    Download full text (pdf)
    fulltext
  • 38.
    Björkman, Ann-Sofi
    et al.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Koskinen, Seppo K.
    Karolinska Inst, Sweden.
    Lindblom, Maria
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Persson, Anders
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Karolinska Inst, Sweden.
    Diagnostic accuracy of dual-energy CT for detection of bone marrow lesions in the subacutely injured knee with MRI as reference method2020In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 61, no 6, p. 749-759Article in journal (Refereed)
    Abstract [en]

    Background Dual-energy computer tomography (DECT) can detect post-traumatic bone marrow lesions. Prospective studies of the knee with large numbers of participants and intra-observer agreement assessment are limited. Purpose To investigate the diagnostic accuracy of DECT in detecting bone marrow lesions as well as estimating the bone marrow lesion volume in patients with suspected anterior cruciate ligament trauma with magnetic resonance imaging (MRI) as reference standard. Material and Methods Forty-eight consecutive patients with suspected anterior cruciate ligament injury were imaged bilaterally with DECT within a mean of 25 days (range 4-55 days) following injury and MRI within seven days of DECT. Two readers analyzed DECT virtual non-calcium-blinded images. Consensus MRI was reference standard. Intra- and inter-observer agreement were determined using weighted kappa statistics. Sensitivity, specificity, and negative and positive predictive values were calculated. Bone marrow lesion volumes were measured; for comparison, intra-class correlation coefficient was used. Results The 48 patients (26 men, 22 women; mean age 23 years, age range 15-37 years) were imaged bilaterally yielding 52 knees with bone marrow lesions, of which 44 were in the femur and 41 were in the tibia. Intra- and inter-observer agreement to detect bone marrow lesions was moderate and fair to moderate (kappa 0.54-0.66, 95% confidence interval [CI] 0.39-0.80 and 0.37-0.41, 95% CI 0.20-0.57) and overall sensitivity and specificity were 70.1% and 69.1%, respectively. Positive and negative predictive values were 72.9% and 66.1%, respectively. Bone marrow lesion volumes showed excellent intra- and inter-observer agreement (0.83-0.91, 95% CI 0.74-0.94 and 0.76-0.78, 95% CI 0.57-0.87). Conclusion The diagnostic performance of DECT to detect bone marrow lesions in the subacutely injured knee was moderate with intra- and inter-observer agreement ranging from moderate to substantial and fair to moderate. Bone marrow lesion volume correlation was excellent.

  • 39.
    Björkman, Ann-Sofi
    et al.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Malusek, Alexandr
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gauffin, Håkan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Persson, Anders
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Koskinen, Seppo
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Terveystalo Inc, Finland; Karolinska Inst, Sweden.
    Spectral photon-counting CT: Image quality evaluation using a metal-containing bovine bone specimen2023In: European Journal of Radiology, ISSN 0720-048X, E-ISSN 1872-7727, Vol. 168, article id 111110Article in journal (Refereed)
    Abstract [en]

    Purpose: To find the optimal imaging parameters for a photon-counting detector CT (PCD-CT) and to compare it to an energy-integrating detector CT (EID-CT) in terms of image quality and metal artefact severity using a metal-containing bovine knee specimen. Methods: A bovine knee with a stainless-steel plate and screws was imaged in a whole-body research PCD-CT at 120 kV and 140 kV and in an EID dual-source CT (DSCT) at Sn150 kV and 80/Sn150 kV. PCD-CT virtual monoenergetic 72 and 150 keV images and EID-CT images processed with and without metal artefact reduction algorithms (iMAR) were compared. Four radiologists rated the visualisation of bony structures and metal artefact severity. The Friedman test and Wilcoxon signed-rank test with Bonferronis correction were used. P-values of &lt;= 0.0001 were considered statistically significant. Distributions of HU values of regions of interest (ROIs) in artefact-affected areas were analysed.Results: PCD-CT 140 kV 150 keV images received the highest scores and were significantly better than EID-CT Sn150 kV images. PCD-CT 72 keV images were rated significantly lower than all the others. HU-value variation was larger in the 120 kV and the 72 keV images. The ROI analysis revealed no large difference between scanners regarding artefact severity.Conclusion: PCD-CT 140 kV 150 keV images of a metal-containing bovine knee specimen provided the best image quality. They were superior to, or as good as, the best EID-CT images; even without the presumed advantage of tin filter and metal artefact reduction algorithms. PCD-CT is a promising method for reducing metal artefacts.

    Download full text (pdf)
    fulltext
  • 40.
    Björkman, Ann-Sofi
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Spångeus, Anna
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Endocrinology.
    Woisetschläger, Mischa
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Mobile learning device increased study efficiency for radiology residents but with risk of temporary novelty effect2019In: Acta Radiologica Open, E-ISSN 2058-4601, Vol. 8, no 11, p. 1-8Article in journal (Refereed)
    Abstract [en]

    Background: Digital resources in learning are increasingly available and offer new possibilities in education. Mobile learning devices (MLD) such as tablets provide easy and flexible access for users.

    Purpose: To investigate whether the introduction of MLDs in radiology education affected time spent on studies over a longer time frame and whether learning behavior and attitudes changed.

    Material and Methods: The radiology residents employed during 2015–2016 were invited to participate in this 12-month MLD intervention study. Results were evaluated using online questionnaires at six months (6 m) and 12 months (12 m).

    Results: Thirty-one residents were included, of whom half were in the early stages of residency (<2 years). After the MLD introduction, most participants (91% [6 m] and 83% [12 m]) estimated increased time spent on studies. Of these, 32% stated “a lot more” at 6 m but only 8% at 12 m (P ¼ 0.12). The MLDs showed positive effects on the experience of radiology studies, as a majority of participants stated better quality and effectiveness in their studies (100% [6 m]–92% [12 m]), that MLD facilitated access to educational materials to a high degree (83% [6 m]–75% [12 m]), and that studies had become better and more fun (96% [6 m]–100% [12 m]).

    Conclusion: The use of MLDs seems to facilitate learning effectively for radiologic residents. However, a larger scale study is required as a trend of decreasing figures in the longer term was seen, but our results did not show a significant reduction of time spent on radiology studies.

    Download full text (pdf)
    fulltext
  • 41.
    Björnsson Hallgren, Hanna
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Nicolescu, Dan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Tornqvist, Lena
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Casselgren, Marcus
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Adolfsson, Lars
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Ultrasonographic examination of acute soft tissue lesions in the elbow has good inter-rater reliability and acceptable agreement with magnetic resonance imaging2024In: Journal of shoulder and elbow surgery, ISSN 1058-2746, E-ISSN 1532-6500, Vol. 33, no 7, p. 1615-1623Article in journal (Refereed)
    Abstract [en]

    Background: Ultrasonography (US) has been suggested as a valuable complement to clinical and radiologic examinations in elbow trauma. Magnetic resonance imaging (MRI) has been the method of choice, despite fair to moderate inter -rater reliability (IRR). US has potential advantages but is assessor dependent and the IRR scarcely examined. The primary aim of the present study was to investigate IRR for US and secondarily interobserver agreement (IOA) between US and MRI in the acute phase after elbow trauma. Acute phase was defined as 2 weeks and, if applicable, the following weekend. The hypothesis was that US reliability would be at least substantial for complete muscle or ligament lesions. Methods: A total of 116 patients (50 men, median age 47 [range 19-87] years) who had an elbow trauma with dislocation and/or fracture were included. Exclusion criteria were prior injury to the same elbow, and US and/or MRI not possible within 16 days. During US, the condition of muscle origins at the epicondyles and collateral and annular ligament complexes was recorded in a predesigned protocol, with the alternatives intact, partially or completely torn. Seventy-two patients had a second US examination the same day by an independent upper extremity surgeon, and 58 of the 116 patients underwent an MRI before or after the US, evaluated by 2 radiologists using the same protocol. IOA and IRR between assessors and modalities were analyzed with kappa statistics and interpreted according to Landis and Koch. Perfect agreement (PA) was reported in percentages. Results: US examination within 2 weeks was feasible with tolerable discomfort. Defining muscle origins and ligaments as intact or completely torn, the US IRR ranged from substantial to near perfect (kappa 0.63-1, PA 93%-100%). Intact tissues vs. tear (partial and complete tear combined) or intact vs. partial vs. complete tear resulted in kappa values from moderate to substantial and PA 74%-96% with lowest reliability for the muscle origins. The IOA between MRI and US ranged from fair to near perfect for no tear vs. complete tear (kappa 0.25-1, PA 65%-100%). Agreement between no tear and tear (partial and complete together) ranged from fair to substantial (0.25-0.66, PA 63%-89%) and no tear vs. partial or complete tear ranged from fair to moderate (0.25-0.53, PA 50%-79%). Conclusion: US in the acute setting is suitable and reliable for diagnosis of ligament injuries in the elbow and is in addition fast, cheap, and easily accessible. The agreement with MRI seems to vary with the structure assessed and severity of the lesions, ranging from fair to near perfect. Level of evidence: Level III; Diagnostic Study (c) 2024 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

  • 42.
    Blomberg, Anders
    et al.
    Umeå Univ, Sweden.
    Toren, Kjell
    Univ Gothenburg, Sweden; Reg Vastra Gotaland, Sweden.
    Liv, Per
    Umeå Univ, Sweden.
    Granasen, Gabriel
    Umeå Univ, Sweden.
    Andersson, Anders
    Univ Gothenburg, Sweden; Reg Vastra Gotaland, Sweden.
    Behndig, Annelie
    Umeå Univ, Sweden.
    Bergstrom, Goran
    Univ Gothenburg, Sweden; Reg Vastra Gotaland, Sweden.
    Brandberg, John
    Univ Gothenburg, Sweden; Reg Vastra Gotaland, Sweden.
    Caidahl, Kenneth
    Reg Vastra Gotaland, Sweden; Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Cederlund, Kerstin
    Karolinska Inst, Sweden.
    Egesten, Arne
    Lund Univ, Sweden.
    Ekstrom, Magnus
    Lund Univ, Sweden.
    Eriksson, Maria J.
    Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Hagstrom, Emil
    Uppsala Univ, Sweden.
    Janson, Christer
    Uppsala Univ, Sweden.
    Jernberg, Tomas
    Karolinska Inst, Sweden.
    Kylhammar, David
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping.
    Lind, Lars
    Uppsala Univ, Sweden; Uppsala Univ, Sweden.
    Lindberg, Anne
    Umeå Univ, Sweden.
    Lindberg, Eva
    Uppsala Univ, Sweden.
    Lofdahl, Claes-Goran
    Lund Univ, Sweden.
    Malinovschi, Andrei
    Uppsala Univ, Sweden.
    Mannila, Maria
    Karolinska Univ Hosp, Sweden.
    Nilsson, Lars T.
    Umeå Univ, Sweden.
    Olin, Anna-Carin
    Univ Gothenburg, Sweden.
    Persson, Anders
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). Karolinska Inst, Sweden.
    Persson, Lennart
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Respiratory Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Rosengren, Annika
    Univ Gothenburg, Sweden; Sahlgrens Univ Hosp, Sweden.
    Sundstrom, Johan
    Uppsala Univ, Sweden; Univ New South Wales, Australia.
    Swahn, Eva
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Cardiology in Linköping. Univ New South Wales, Australia.
    Soderberg, Stefan
    Umeå Univ, Sweden.
    Vikgren, Jenny
    Univ Gothenburg, Sweden.
    Wollmer, Per
    Uppsala Univ, Sweden.
    Östgren, Carl Johan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Primary Care Center, Primary Health Care Center Ekholmen. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Engvall, Jan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Skold, C. Magnus
    Karolinska Inst, Sweden.
    Chronic Airflow Limitation, Emphysema, and Impaired Diffusing Capacity in Relation to Smoking Habits in a Swedish Middle-aged Population2024In: Annals of the American Thoracic Society, ISSN 2329-6933, E-ISSN 2325-6621, Vol. 21, no 12, p. 1678-1687Article in journal (Refereed)
    Abstract [en]

    Rationale: Chronic obstructive pulmonary disease (COPD) includes respiratory symptoms and chronic airflow limitation (CAL). In some cases, emphysema and impaired diffusing capacity of the lung for carbon monoxide (DLCO) are present, but characteristics and symptoms vary with smoking exposure. Objective: To study the prevalence of CAL, emphysema, and impaired D L CO in relation to smoking and respiratory symptoms in a middle-aged population. Methods: We investigated 28,746 randomly invited individuals (52% women) aged 50-64 years across six Swedish sites. We performed spirometry, D L CO testing, and high-resolution computed tomography and asked for smoking habits and respiratory symptoms. CAL was defined as post-bronchodilator forced expiratory volume in 1 second divided by forced vital capacity (FEV1/FVC) &lt; 0.7. Results: The overall prevalence was 8.8% for CAL, 5.7% for impaired D L CO (DLCO &lt; LLN), and 8.8% for emphysema, with a higher prevalence in current smokers than in ex-smokers and never-smokers. The proportion of never-smokers among those with CAL, emphysema, and impaired D L CO was 32%, 19%, and 31%, respectively. Regardless of smoking habits, the prevalence of respiratory symptoms was higher among people with CAL and impaired D L CO than those with normal lung function. Asthma prevalence in never- smokers with CAL was 14%. In this group, asthma was associated with lower FEV1 and more respiratory symptoms. Conclusions: In this large population-based study of middle-aged people, CAL and impaired D L CO were associated with common respiratory symptoms. Self-reported asthma was not associated with CAL in never-smokers. Our findings suggest that CAL in never- smokers signifies a separate clinical phenotype that may be monitored and, possibly, treated differently from smoking-related COPD.

  • 43.
    Blystad, Ida
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Håkansson, Irene
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Tisell, Anders
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Larsson, Elna-Marie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Uppsala University, Sweden.
    Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent2016In: American Journal of Neuroradiology, ISSN 0195-6108, E-ISSN 1936-959X, Vol. 37, no 1, p. 94-100Article in journal (Refereed)
    Abstract [en]

    BACKGROUND AND PURPOSE: Contrast-enhancing MS lesions are important markers of active inflammation in the diagnostic work-up of MS and in disease monitoring with MR imaging. Because intravenous contrast agents involve an expense and a potential risk of adverse events, it would be desirable to identify active lesions without using a contrast agent. The purpose of this study was to evaluate whether pre-contrast injection tissue-relaxation rates and proton density of MS lesions, by using a new quantitative MR imaging sequence, can identify active lesions. MATERIALS AND METHODS: Forty-four patients with a clinical suspicion of MS were studied. MR imaging with a standard clinical MS protocol and a quantitative MR imaging sequence was performed at inclusion (baseline) and after 1 year. ROIs were placed in MS lesions, classified as nonenhancing or enhancing. Longitudinal and transverse relaxation rates, as well as proton density were obtained from the quantitative MR imaging sequence. Statistical analyses of ROI values were performed by using a mixed linear model, logistic regression, and receiver operating characteristic analysis. RESULTS: Enhancing lesions had a significantly (P &lt; .001) higher mean longitudinal relaxation rate (1.22 0.36 versus 0.89 +/- 0.24), a higher mean transverse relaxation rate (9.8 +/- 2.6 versus 7.4 +/- 1.9), and a lower mean proton density (77 +/- 11.2 versus 90 +/- 8.4) than nonenhancing lesions. An area under the receiver operating characteristic curve value of 0.832 was obtained. CONCLUSIONS: Contrast-enhancing MS lesions often have proton density and relaxation times that differ from those in nonenhancing lesions, with lower proton density and shorter relaxation times in enhancing lesions compared with nonenhancing lesions.

  • 44.
    Blystad, Ida
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Warntjes, Marcel Jan Bertus
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). KTH Royal Institute Technology, Sweden.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Larsson, Elna-Marie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Uppsala University, Sweden.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Quantitative MRI for analysis of peritumoral edema in malignant gliomas2017In: PLOS ONE, E-ISSN 1932-6203, Vol. 12, no 5, article id e0177135Article in journal (Refereed)
    Abstract [en]

    Background and purpose Damage to the blood-brain barrier with subsequent contrast enhancement is a hallmark of glioblastoma. Non-enhancing tumor invasion into the peritumoral edema is, however, not usually visible on conventional magnetic resonance imaging. New quantitative techniques using relaxometry offer additional information about tissue properties. The aim of this study was to evaluate longitudinal relaxation R-1, transverse relaxation R-2, and proton density in the peritumoral edema in a group of patients with malignant glioma before surgery to assess whether relaxometry can detect changes not visible on conventional images. Methods In a prospective study, 24 patients with suspected malignant glioma were examined before surgery. A standard MRI protocol was used with the addition of a quantitative MR method (MAGIC), which measured R-1, R-2, and proton density. The diagnosis of malignant glioma was confirmed after biopsy/surgery. In 19 patients synthetic MR images were then created from the MAGIC scan, and ROIs were placed in the peritumoral edema to obtain the quantitative values. Dynamic susceptibility contrast perfusion was used to obtain cerebral blood volume (rCBV) data of the peritumoral edema. Voxel-based statistical analysis was performed using a mixed linear model. Results R-1, R-2, and rCBV decrease with increasing distance from the contrast-enhancing part of the tumor. There is a significant increase in R1 gradient after contrast agent injection (Pamp;lt;.0001). There is a heterogeneous pattern of relaxation values in the peritumoral edema adjacent to the contrast-enhancing part of the tumor. Conclusion Quantitative analysis with relaxometry of peritumoral edema in malignant gliomas detects tissue changes not visualized on conventional MR images. The finding of decreasing R-1 and R-2 means shorter relaxation times closer to the tumor, which could reflect tumor invasion into the peritumoral edema. However, these findings need to be validated in the future.

    Download full text (pdf)
    fulltext
  • 45.
    Blystad, Ida
    et al.
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine.
    Warntjes, Marcel, Jan Bertus
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Smedby, Örjan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
    Lundberg, Peter
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Larsson, Elna-Marie
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences. Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.
    Tisell, Anders
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema2020In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1, article id 17986Article in journal (Refereed)
    Abstract [en]

    Malignant gliomas are primary brain tumours with an infiltrative growth pattern, often with contrast enhancement on magnetic resonance imaging (MRI). However, it is well known that tumour infiltration extends beyond the visible contrast enhancement. The aim of this study was to investigate if there is contrast enhancement not detected visually in the peritumoral oedema of malignant gliomas by using relaxometry with synthetic MRI. 25 patients who had brain tumours with a radiological appearance of malignant glioma were prospectively included. A quantitative MR-sequence measuring longitudinal relaxation (R1), transverse relaxation (R2) and proton density (PD), was added to the standard MRI protocol before surgery. Five patients were excluded, and in 20 patients, synthetic MR images were created from the quantitative scans. Manual regions of interest (ROIs) outlined the visibly contrast-enhancing border of the tumours and the peritumoral area. Contrast enhancement was quantified by subtraction of native images from post GD-images, creating an R1-difference-map. The quantitative R1-difference-maps showed significant contrast enhancement in the peritumoral area (0.047) compared to normal appearing white matter (0.032), p = 0.048. Relaxometry detects contrast enhancement in the peritumoral area of malignant gliomas. This could represent infiltrative tumour growth.

    Download full text (pdf)
    Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema.
  • 46.
    Boito, Deneb
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering.
    Eklund, Anders
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning.
    Tisell, Anders
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine.
    Levi, Richard
    Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Rehabilitation Medicine. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Özarslan, Evren
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Blystad, Ida
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine.
    MRI with generalized diffusion encoding reveals damaged white matter in patients previously hospitalized for COVID-19 and with persisting symptoms at follow-up2023In: Brain Communications, E-ISSN 2632-1297, Vol. 5, no 6, article id fcad284Article in journal (Refereed)
    Abstract [en]

    There is mounting evidence of the long-term effects of COVID-19 on the central nervous system, with patients experiencing diverse symptoms, often suggesting brain involvement. Conventional brain MRI of these patients shows unspecific patterns, with no clear connection of the symptomatology to brain tissue abnormalities, whereas diffusion tensor studies and volumetric analyses detect measurable changes in the brain after COVID-19. Diffusion MRI exploits the random motion of water molecules to achieve unique sensitivity to structures at the microscopic level, and new sequences employing generalized diffusion encoding provide structural information which are sensitive to intravoxel features. In this observational study, a total of 32 persons were investigated: 16 patients previously hospitalized for COVID-19 with persisting symptoms of post-COVID condition (mean age 60 years: range 41–79, all male) at 7-month follow-up and 16 matched controls, not previously hospitalized for COVID-19, with no post-COVID symptoms (mean age 58 years, range 46–69, 11 males). Standard MRI and generalized diffusion encoding MRI were employed to examine the brain white matter of the subjects. To detect possible group differences, several tissue microstructure descriptors obtainable with the employed diffusion sequence, the fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, microscopic anisotropy, orientational coherence (Cc) and variance in compartment’s size (CMD) were analysed using the tract-based spatial statistics framework. The tract-based spatial statistics analysis showed widespread statistically significant differences (P < 0.05, corrected for multiple comparisons using the familywise error rate) in all the considered metrics in the white matter of the patients compared to the controls. Fractional anisotropy, microscopic anisotropy and Cc were lower in the patient group, while axial diffusivity, radial diffusivity, mean diffusivity and CMD were higher. Significant changes in fractional anisotropy, microscopic anisotropy and CMD affected approximately half of the analysed white matter voxels located across all brain lobes, while changes in Cc were mainly found in the occipital parts of the brain. Given the predominant alteration in microscopic anisotropy compared to Cc, the observed changes in diffusion anisotropy are mostly due to loss of local anisotropy, possibly connected to axonal damage, rather than white matter fibre coherence disruption. The increase in radial diffusivity is indicative of demyelination, while the changes in mean diffusivity and CMD are compatible with vasogenic oedema. In summary, these widespread alterations of white matter microstructure are indicative of vasogenic oedema, demyelination and axonal damage. These changes might be a contributing factor to the diversity of central nervous system symptoms that many patients experience after COVID-19.

    Download full text (pdf)
    fulltext
  • 47.
    Boito, Deneb
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering.
    Herberthson, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Mathematics, Algebra, Geometry and Discrete Mathematics.
    Dela Haije, Tom
    University of Copenhagen, Denmark.
    Blystad, Ida
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine.
    Özarslan, Evren
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Diffusivity-limited q-space trajectory imaging2023In: Magnetic Resonance Letters, ISSN 2772-5162, Vol. 3, no 2, p. 187-196Article in journal (Refereed)
    Abstract [en]

    Q-space trajectory imaging (QTI) allows non-invasive estimation of microstructural features of heterogeneous porous media via diffusion magnetic resonance imaging performed with generalised gradient waveforms. A recently proposed constrained estimation framework, called QTI+, improved QTI’s resilience to noise and data sparsity, thus increasing the reliability of the method by enforcing relevant positivity constraints. In this work we consider expanding the set of constraints to be applied during the fitting of the QTI model. We show that the additional conditions, which introduce an upper bound on the diffusivity values, further improve the retrieved parameters on a publicly available human brain dataset as well as on data acquired from healthy volunteers using a scanner-ready protocol.

    Download full text (pdf)
    fulltext
  • 48.
    Bonzon, Jerome
    et al.
    University of Bern, Switzerland.
    Schoen, Corinna A.
    University of Bern, Switzerland.
    Schwendener, Nicole
    University of Bern, Switzerland.
    Zech, Wolf-Dieter
    University of Bern, Switzerland.
    Kara, Levent
    Triemli Hospital, Switzerland.
    Persson, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Jackowski, Christian
    University of Bern, Switzerland.
    Rigor mortis at the myocardium investigated by post-mortem magnetic resonance imaging2015In: Forensic Science International, ISSN 0379-0738, E-ISSN 1872-6283, Vol. 257, p. 93-97Article in journal (Refereed)
    Abstract [en]

    Introduction: Post-mortem cardiac MR exams present with different contraction appearances of the left ventricle in cardiac short axis images. It was hypothesized that the grade of post-mortem contraction may be related to the post-mortem interval (PMI) or cause of death and a phenomenon caused by internal rigor mortis that may give further insights in the circumstances of death. Method and materials: The cardiac contraction grade was investigated in 71 post-mortem cardiac MR exams (mean age at death 52 y, range 12-89 y; 48 males, 23 females). In cardiac short axis images the left ventricular lumen volume as well as the left ventricular myocardial volume were assessed by manual segmentation. The quotient of both (LVQ) represents the grade of myocardial contraction. LVQ was correlated to the PMI, sex, age, cardiac weight, body mass and height, cause of death and pericardial tamponade when present. In cardiac causes of death a separate correlation was investigated for acute myocardial infarction cases and arrhythmic deaths. Results: LVQ values ranged from 1.99 (maximum dilatation) to 42.91 (maximum contraction) with a mean of 15.13. LVQ decreased slightly with increasing PMI, however without significant correlation. Pericardial tamponade positively correlated with higher LVQ values. Variables such as sex, age, body mass and height, cardiac weight and cause of death did not correlate with LVQ values. There was no difference in LVQ values for myocardial infarction without tamponade and arrhythmic deaths. Conclusion: Based on the observation in our investigated cases, the phenomenon of post-mortem myocardial contraction cannot be explained by the influence of the investigated variables, except for pericardial tamponade cases. Further research addressing post-mortem myocardial contraction has to focus on other, less obvious factors, which may influence the early post-mortem phase too. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

  • 49.
    Booij, Ronald
    et al.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Erasmus MC, Netherlands.
    Kammerling, Nina F.
    Linköping University, Department of Health, Medicine and Caring Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Oei, Edwin H. G.
    Erasmus MC, Netherlands.
    Persson, Anders
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Tesselaar, Erik
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Assessment of visibility of bone structures in the wrist using normal and half of the radiation dose with photon-counting detector CT2023In: European Journal of Radiology, ISSN 0720-048X, E-ISSN 1872-7727, Vol. 159, article id 110662Article in journal (Refereed)
    Abstract [en]

    Purpose: To quantitatively and qualitatively assess the visibility of bone structures in the wrist on photon-counting detector computed tomography (PCD-CT) images compared to state-of-the-art energy-integrating de-tector CT (EID-CT).Method: Four human cadaveric wrist specimens were scanned with EID-CT and PCD-CT at identical CTDIvolof 12.2 mGy and with 6.1 mGy (half dose PCD-CT). Axial images were reconstructed using the thinnest possible slice thickness, i.e. 0.4 mm on EID-CT and 0.2 mm on PCD-CT, with the largest image matrix size possible using reconstruction kernels optimized for bone (EID-CT: Ur68, PCD-CT: Br92). Quantitative evaluation was performed to determine contrast-noise ratio (CNR) of bone/ fat, cortical and trabecular sharpness. An observer study using visual grading characteristics (VGC) analysis was performed by six observers to assess the visibility of nutrient canals, trabecular architecture, cortical bone and the general image quality.Results: At equal dose, images obtained with PCD-CT had 39 +/- 6 % lower CNR (p = 0.001), 71 +/- 57 % higher trabecular sharpness in the radius (p = 0.02) and 42 +/- 8 % (p &lt; 0.05) sharper cortical edges than those obtained with EID-CT. This was confirmed by VGC analysis showing a superior visibility of nutrient canals, trabeculae and cortical bone area under the curve (AUC) &gt; 0.89) for PCD-CT, even at half dose.Conclusions: Despite a lower CNR and increased noise, the trabecular and cortical sharpness were twofold higher with PCD-CT. Visual grading analysis demonstrated superior visibility of cortical bone, trabeculae, nutrient canals and an overall improved image quality with PCD-CT over EID-CT. At half dose, PCD-CT also yielded superior image quality, both in quantitative measures and as evaluated by radiologists.

    Download full text (pdf)
    fulltext
  • 50.
    Booij, Ronald
    et al.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Department of Radiology & Nuclear Medicine, Erasmus MC, The Netherlands.
    Sandstedt, Mårten
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Droog Tesselaar, Erik
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Farnebo, Simon
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Photon-counting detector computed tomography (PCD-CT) – an emerging technology in hand and wrist imaging2023In: Journal of Hand Surgery, European Volume, ISSN 1753-1934, E-ISSN 2043-6289, Vol. 48, no 5, p. 489-494Article in journal (Other academic)
    Download full text (pdf)
    fulltext
123456 1 - 50 of 297
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf