liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Pettersson, Per Olof
    Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab. Linköping University, The Institute of Technology.
    Sampling-based Path Planning for an Autonomous Helicopter2006Licentiate thesis, monograph (Other academic)
    Abstract [en]

    Many of the applications that have been proposed for future small unmanned aerial vehicles (UAVs) are at low altitude in areas with many obstacles. A vital component for successful navigation in such environments is a path planner that can find collision free paths for the UAV.

    Two popular path planning algorithms are the probabilistic roadmap algorithm (PRM) and the rapidly-exploring random tree algorithm (RRT).

    Adaptations of these algorithms to an unmanned autonomous helicopter are presented in this thesis, together with a number of extensions for handling constraints at different stages of the planning process.

    The result of this work is twofold:

    First, the described planners and extensions have been implemented and integrated into the software architecture of a UAV. A number of flight tests with these algorithms have been performed on a physical helicopter and the results from some of them are presented in this thesis.

    Second, an empirical study has been conducted, comparing the performance of the different algorithms and extensions in this planning domain. It is shown that with the environment known in advance, the PRM algorithm generally performs better than the RRT algorithm due to its precompiled roadmaps, but that the latter is also usable as long as the environment is not too complex. The study also shows that simple geometric constraints can be added in the runtime phase of the PRM algorithm, without a big impact on performance. It is also shown that postponing the motion constraints to the runtime phase can improve the performance of the planner in some cases.

    Download full text (pdf)
    FULLTEXT01
  • 2.
    Pettersson, Per Olof
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Doherty, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Probabilistic Roadmap Based Path Planning for an Autonomous Unmanned Aerial Vehicle2004In: ICAPS-04 Workshop on Connecting Planning Theory with Practice,2004, 2004, p. 49-55Conference paper (Refereed)
  • 3.
    Pettersson, Per Olof
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Doherty, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Probabilistic roadmap based path planning for an autonomous unmanned helicopter2006In: Journal of Intelligent & Fuzzy Systems, ISSN 1064-1246, E-ISSN 1875-8967, Vol. 17, no 4, p. 395-405Article in journal (Refereed)
    Abstract [en]

    The emerging area of intelligent unmanned aerial vehicle (UAV) research has shown rapid development in recent years and offers a great number of research challenges for artificial intelligence. For both military and civil applications, there is a desire to develop more sophisticated UAV platforms where the emphasis is placed on development of intelligent capabilities. Imagine a mission scenario where a UAV is supplied with a 3D model of a region containing buildings and road structures and is instructed to fly to an arbitrary number of building structures and collect video streams of each of the building's respective facades. In this article, we describe a fully operational UAV platform which can achieve such missions autonomously. We focus on the path planner integrated with the platform which can generate collision free paths autonomously during such missions. Both probabilistic roadmap-based (PRM) and rapidly exploring random trees-based (RRT) algorithms have been used with the platform. The PRM-based path planner has been tested together with the UAV platform in an urban environment used for UAV experimentation.

  • 4.
    Pettersson, Per Olof
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Doherty, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab.
    Probabilistic Roadmap Based Path Planning for an Autonomous Unmanned Helicopter2005In: Proceedings of the 3rd joint SAIS-SSLS event on Artificial Intelligence and Learning Systems (SAIS-SSLS) / [ed] Peter Funk, Thorsteinn Rögnvaldsson and Ning Xiong, Mälardalen University , 2005Conference paper (Refereed)
    Abstract [en]

    The emerging area of intelligent unmanned aerialvehicle (UAV) research has shown rapid development in recentyears and offers a great number of research challenges for artificialintelligence. For both military and civil applications, thereis a desire to develop more sophisticated UAV platforms wherethe emphasis is placed on development of intelligent capabilities.Imagine a mission scenario where a UAV is supplied with a 3Dmodel of a region containing buildings and road structures andis instructed to fly to an arbitrary number of building structuresand collect video streams of each of the building’s respectivefacades. In this article, we describe a fully operational UAVplatform which can achieve such missions autonomously. Wefocus on the path planner integrated with the platform which cangenerate collision free paths autonomously during such missions.It is based on the use of probabilistic roadmaps. The path plannerhas been tested together with the UAV platform in an urbanenvironment used for UAV experimentation.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf