liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Keelan, Oliver
    et al.
    Linköping University, Department of Biomedical Engineering.
    Mårtensson, Henrik
    Linköping University, Department of Biomedical Engineering.
    Feature Engineering and Machine Learning for Driver Sleepiness Detection2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Falling asleep while operating a moving vehicle is a contributing factor to the statistics of road related accidents. It has been estimated that 20% of all accidents where a vehicle has been involved are due to sleepiness behind the wheel. To prevent accidents and to save lives are of uttermost importance. In this thesis, given the world’s largest dataset of driver participants, two methods of evaluating driver sleepiness have been evaluated. The first method was based on the creation of epochs from lane departures and KSS, whilst the second method was based solely on the creation of epochs based on KSS. From the epochs, a number of features were extracted from both physiological signals and the car’s controller area network. The most important features were selected via a feature selection step, using sequential forward floating selection. The selected features were trained and evaluated on linear SVM, Gaussian SVM, KNN, random forest and adaboost. The random forest classifier was chosen in all cases when classifying previously unseen data.The results shows that method 1 was prone to overfit. Method 2 proved to be considerably better, and did not suffer from overfitting. The test results regarding method 2 were as follows; sensitivity = 80.3%, specificity = 96.3% and accuracy = 93.5%.The most prominent features overall were found in the EEG and EOG domain together with the sleep/wake predictor feature. However indications have been made that complexities might contribute to the detection of sleepiness as well, especially the Higuchi’s fractal dimension.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf