liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 19 of 19
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ahmed, Bilal
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Electrochemical activation of commercial graphite sheets for supercapacitive applications2022Inngår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 431, artikkel-id 140882Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Carbon-based substrates are widely used as current collectors for high-performance energy storage materials in supercapacitors. However, these substrates exhibit negligible charge storage due to inferior electrochemical activity and small surface area. Herein, electrochemical activation is utilized to enhance the electrochemical activity of - inherently inactive - commercial graphite sheets for supercapacitive applications. The results reveal that the electrochemically activated graphite sheets render a 30-fold increase in areal capacitance, i.e., from 22 to 447 mF cm(-2), which can be ascribed to the activation of graphite oxide functional groups on the surface. Also, the influence of electrochemical activation time on electrochemical performance is explored in detail, followed by the fabrication and characterization of symmetric supercapacitors based on the optimum process parameters in single-cell and tandem configurations, demonstrating the potential of electrochemically activated graphite sheets in practical applications.

  • 2.
    Ahmed, Bilal
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    i-MXenes for Energy Storage and Catalysis2020Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 30, nr 47, artikkel-id 2000894Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In 2017, a new family of in-plane, chemically-ordered quaternary MAX phases, coined i-MAX, has been reported since 2017. The first i-MAX phase, (Mo2/3Sc1/3)(2)AlC, garnered significant research attention due to the presence of chemically ordered Sc within the Mo-dominated M layer, and the facilitated removal of both Al and Sc upon etching, resulting in 2D i-MXene, Mo1.33C, with ordered divacancies. The i-MXene renders an exceptionally low resistivity of 33.2 mu omega m(-1) and a high volumetric capacitance of approximate to 1150 F cm(-3). This discovery has been followed by the synthesis of, to date, 32 i-MAX phases and 5 i-MXenes, where the latter have shown potential for applications including, but not limited to, energy storage and catalysis. Herein, fundamental investigations of i-MAX phases and i-MXenes, along with their applicability in supercapacitive and catalytic applications, are reviewed. Moreover, recent results on ion intercalation and post-etching treatment of Mo1.33C are presented. The charge storage performance can also be tuned by forming MXene hydrogel and through inert atmosphere annealing, where the latter renders a superior volumetric capacitance of approximate to 1635 F cm(-3). This report demonstrates the potential of the i-MXene family for catalytic and energy storage applications, and highlights novel research directions for further development and successful employment in practical applications.

    Fulltekst (pdf)
    fulltext
  • 3.
    Ahmed, Heba
    et al.
    RMIT Univ, Australia.
    Alijani, Hossein
    RMIT Univ, Australia.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Murdoch, Billy J.
    RMIT Univ, Australia.
    Ehrnst, Yemima
    RMIT Univ, Australia.
    Massahud, Emily
    RMIT Univ, Australia.
    Rezk, Amgad R.
    RMIT Univ, Australia.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Yeo, Leslie Y.
    RMIT Univ, Australia.
    Recovery of oxidized two-dimensional MXenes through high frequency nanoscale electromechanical vibration2023Inngår i: Nature Communications, E-ISSN 2041-1723, Vol. 14, nr 1, artikkel-id 3Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    MXenes hold immense potential given their superior electrical properties. The practical adoption of these promising materials is, however, severely constrained by their oxidative susceptibility, leading to significant performance deterioration and lifespan limitations. Attempts to preserve MXenes have been limited, and it has not been possible thus far to reverse the materials performance. In this work, we show that subjecting oxidized micron or nanometer thickness dry MXene films-even those constructed from nanometer-order solution-dispersed oxidized flakes-to just one minute of 10 MHz nanoscale electromechanical vibration leads to considerable removal of its surface oxide layer, whilst preserving its structure and characteristics. Importantly, electrochemical performance is recovered close to that of their original state: the pseudocapacitance, which decreased by almost 50% due to its oxidation, reverses to approximately 98% of its original value, with good capacitance retention ( approximate to 93%) following 10,000 charge-discharge cycles at 10 A g(-1). These promising results allude to the exciting possibility for rejuvenating the material for reuse, therefore offering a more economical and sustainable route that improves its potential for practical translation. Despite their vast potential, the practical deployment of MXenes has been hampered by their tendency to be oxidized. Here, the authors show that simply vibrating MXene films in just a minute can remove the oxide layer formed and restore their electrochemical performance close to its original state.

    Fulltekst (pdf)
    fulltext
  • 4.
    Ahmed, Heba
    et al.
    RMIT Univ, Australia.
    Yang, Xinci
    RMIT Univ, Australia.
    Ehrnst, Yemima
    RMIT Univ, Australia.
    Jeorje, Ninweh N.
    RMIT Univ, Australia.
    Marqus, Susan
    RMIT Univ, Australia.
    Sherrell, Peter C.
    RMIT Univ, Australia; Univ Melbourne, Australia.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rezk, Amgad R.
    RMIT Univ, Australia.
    Yeo, Leslie Y.
    RMIT Univ, Australia.
    Ultrafast assembly of swordlike Cu-3(1,3,5-benzenetricarboxylate)(n) metal-organic framework crystals with exposed active metal sites2020Inngår i: Nanoscale Horizons, ISSN 2055-6764, E-ISSN 2055-6756, Vol. 5, nr 7, s. 1050-1057Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Owing to their large surface area and high uptake capacity, metal-organic frameworks (MOFs) have attracted considerable attention as potential materials for gas storage, energy conversion, and electrocatalysis. Various strategies have recently been proposed to manipulate the MOF surface chemistry to facilitate exposure of the embedded metal centers at the crystal surface to allow more effective binding of target molecules to these active sites. Nevertheless, such strategies remain complex, often requiring strict control over the synthesis conditions to avoid blocking pore access, reduction in crystal quality, or even collapse of the entire crystal structure. In this work, we exploit the hydrodynamics and capillary resonance associated with acoustically-driven dynamically spreading and nebulizing thin films as a new method for ultrafast synthesis of swordlike Cu-3(1,3,5-benzenetricarboxylate)(n) (Cu-BTC) MOFs with unique monoclinic crystal structures (P2(1)/n) distinct to that obtained via conventional bulk solvothermal synthesis, with swordlike morphologies whose lengths far exceed their thicknesses. Through pulse modulation and taking advantage of the rapid solvent evaporation associated with the high nebulisation rates, we are also able to control the thicknesses of these large aspect ratio (width and length with respect to the thickness) crystals by arresting their vertical growth, which, in turn, allows exposure of the metal active sites at the crystal surface. An upshot of such active site exposure on the crystal surface is the concomitant enhancement in the conductivity of the MOF, evident from the improvement in its current density by two orders of magnitude.

  • 5.
    Alijani, Hossein
    et al.
    RMIT Univ, Australia.
    Rezk, Amgad R.
    RMIT Univ, Australia.
    Farsani, Mohammad Mehdi Khosravi
    RMIT Univ, Australia.
    Ahmed, Heba
    RMIT Univ, Australia.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Reineck, Philipp
    RMIT Univ, Australia.
    Murdoch, Billy J.
    RMIT Univ, Australia.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Yeo, Leslie Y.
    RMIT Univ, Australia.
    Acoustomicrofluidic Synthesis of Pristine Ultrathin Ti3C2Tz MXene Nanosheets and Quantum Dots2021Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 15, nr 7, s. 12099-12108Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The conversion of layered transition metal carbides and/or nitrides (MXenes) into zero-dimensional structures with thicknesses and lateral dimensions of a few nanometers allows these recently discovered materials with exceptional electronic properties to exploit the additional benefits of quantum confinement, edge effects, and large surface area. Conventional methods for the conversion of MXene nanosheets and quantum dots, however, involve extreme conditions such as high temperatures and/or harsh chemicals that, among other disadvantages, lead to significant degradation of the material as a consequence of their oxidation. Herein, we show that the large surface acceleration.on the order of 10 million gs.produced by high-frequency (10 MHz) nanometer-order electromechanical vibrations on a chipscale piezoelectric substrate is capable of efficiently nebulizing, and consequently dimensionally reducing, a suspension of multilayer Ti3C2Tz (MXene) into predominantly monolayer nanosheets and quantum dots while, importantly, preserving the material from any appreciable oxidation. As an example application, we show that the high-purity MXene quantum dots produced using this room-temperature chemical-free synthesis method exhibit superior performance as electrode materials for electrochemical sensing of hydrogen peroxide compared to the highly oxidized samples obtained through conventional hydrothermal synthesis. The ability to detect concentrations as low as 5 nM is a 10-fold improvement to the best reported performance of Ti3C2Tz MXene electrochemical sensors to date.

    Fulltekst (pdf)
    fulltext
  • 6. Bestill onlineKjøp publikasjonen >>
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Acoustic Platform for MXene Synthesis and Electrochemical Behaviour of i-MXenes in Aqueous Electrolytes2021Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Climate Change is believed to be the greatest global challenge and on its forefront is the topic of energy. While being of extreme importance, debates over energy have become a normality. The related field of material synthesis for energy storage applications has also been growing, as well as the demand for industrial electrification from renewable sources of energy. Water-based supercapacitors are a type of energy storage devices that can deliver high power densities while maintaining long term cyclability in an environmen-tally friendly media. However, their challenges include maintaining high per-formance in term of energy density, safety, and low cost of electrode manu-facturing. 

    MXene is family of two-dimensional transition metal carbides/nitrides that are terminated with H, OH and F groups. The material demonstrates superior physical and chemical properties related to energy applications in compari-son to its 3D parent material, the MAX phase. Since its discovery in 2011, MXene, such as Ti3C2Tz, has been widely investigated in the field of energy storage due to its high conductivity (20,000 S.cm-1) and a volumetric capac-itance that can reach 900 Fcm-3. However, reported synthesis processes for MXene are fraught with hazardous procedures that are time consuming. The first section of this thesis presents a new innovative method for Ti3C2Tz MXene synthesis, in which MXene was synthesized in a few milliseconds with the assistance of 30 MHz frequency surface acoustic waves (SAW) and 0.05M of LiF. The aluminium element in the Ti3AlC2 MAX phase was etched by so called “localized HF”, and the powder was converted to 2D Ti3C2Tz. This method showed resulting MXene comparable to that of previ-ously reported synthesis techniques, as demonstrated by the material’s elec-trochemical performance.  

    The second section of the thesis focuses on investigating the electrochemical performance of a comparatively new family of MXene, coined i-MXene, in aqueous electrolyte. i-MXene, reported in 2017, has the chemical formula Mo1.33CTz and is a product of chemical etching of the in-plane chemically ordered (Mo2/3Sc1/3)2AlC i-MAX phase. The Mo1.33CTz was studied in a sul-phuric acid electrolyte. This electrolyte sets a limit for the electrode potential window and capacitance, and therefore, post-synthesis treatment protocols was used to enhance the electrochemical performance. The Mo1.33CTz recorded a volumetric capacitance of 1050 Fcm-3 and1600 Fcm-3 for hydrogel treatment and heat-treated electrodes, respectively. Moreover, mixing Mo1.33CTz with MoS2 and graphene improved both the specific capacitance and the electrode stability even further.  

    The electrochemical properties of Mo1.33CTz were thereafter explored in dif-ferent sulfate-based aqueous electrolytes with univalent (Li+, Na+, and K+) and divalent (Mg2+ Mn2+ or Zn2+) cations. Mo1.33CTz exhibited a wider po-tential window without degradation, expanding the previously reported limit in sulphuric acid for both symmetric and asymmetric devices. Lithium chlo-ride gave the best results, being an electrolyte based on a natural salt that has high solubility at room temperature. It presented a large potential window, -1.2 to +0.3V (vs. Ag/AgCl), and a volumetric capacitance of ~800 Fcm−3 at a scan rate of 2 mVs−1. In addition, the performance of a Mo1.33CTz //MnxOn asymmetric device was tested in 5M LiCl electrolyte. The results showed a potential window of 2 V, a volumetric energy density of 58 mWhcm-3, and a 100% columbic efficiency after 10,000 charge/discharge cycles. A cyclic sta-bility is crucial for practical applications, and altogether, the promising re-sults motivate further exploration of i-MXenes for energy storage and be-yond.

    Delarbeid
    1. Ultrafast, One-Step, Salt-Solution-Based Acoustic Synthesis of Ti3C2 MXene
    Åpne denne publikasjonen i ny fane eller vindu >>Ultrafast, One-Step, Salt-Solution-Based Acoustic Synthesis of Ti3C2 MXene
    Vise andre…
    2021 (engelsk)Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 15, nr 3, s. 4287-4293Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The current quest for two-dimensional transition metal carbides and nitrides (MXenes) has been to circumvent the slow, hazardous, and laborious multistep synthesis procedures associated with conventional chemical MAX phase exfoliation. Here, we demonstrate a one-step synthesis method with local Ti3AlC2 MAX to Ti3C2Tz MXene conversion on the order of milliseconds, facilitated by proton production through solution dissociation under megahertz frequency acoustic excitation. These protons combined with fluorine ions from LiF to selectively etch the MAX phase into MXene, whose delamination is aided by the acoustic forcing. These results have important implications for the future applicability of MXenes, which crucially depend on the development of more efficient synthesis procedures. For proof-of-concept, we show that flexible electrodes fabricated by this method exhibit comparable electrochemical performance to that previously reported.

    sted, utgiver, år, opplag, sider
    American Chemical Society (ACS), 2021
    Emneord
    MAX phase; MXene; surface acoustic waves; synthesis; electrochemistry
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-175453 (URN)10.1021/acsnano.0c07242 (DOI)000634569100049 ()33635629 (PubMedID)
    Merknad

    Funding Agencies|Swedish Foundation for Strategic Research (SSF)Swedish Foundation for Strategic Research [EM16-0004, RIF 14-0074]; Knut and Alice Wallenberg (KAW) FoundationKnut & Alice Wallenberg Foundation; Australian Research CouncilAustralian Research Council [DP180102110]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [201604412]; Knut and Alice Wallenbergs FoundationKnut & Alice Wallenberg Foundation; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]

    Tilgjengelig fra: 2021-05-05 Laget: 2021-05-05 Sist oppdatert: 2021-11-05bibliografisk kontrollert
    2. i-MXenes for Energy Storage and Catalysis
    Åpne denne publikasjonen i ny fane eller vindu >>i-MXenes for Energy Storage and Catalysis
    2020 (engelsk)Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 30, nr 47, artikkel-id 2000894Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    In 2017, a new family of in-plane, chemically-ordered quaternary MAX phases, coined i-MAX, has been reported since 2017. The first i-MAX phase, (Mo2/3Sc1/3)(2)AlC, garnered significant research attention due to the presence of chemically ordered Sc within the Mo-dominated M layer, and the facilitated removal of both Al and Sc upon etching, resulting in 2D i-MXene, Mo1.33C, with ordered divacancies. The i-MXene renders an exceptionally low resistivity of 33.2 mu omega m(-1) and a high volumetric capacitance of approximate to 1150 F cm(-3). This discovery has been followed by the synthesis of, to date, 32 i-MAX phases and 5 i-MXenes, where the latter have shown potential for applications including, but not limited to, energy storage and catalysis. Herein, fundamental investigations of i-MAX phases and i-MXenes, along with their applicability in supercapacitive and catalytic applications, are reviewed. Moreover, recent results on ion intercalation and post-etching treatment of Mo1.33C are presented. The charge storage performance can also be tuned by forming MXene hydrogel and through inert atmosphere annealing, where the latter renders a superior volumetric capacitance of approximate to 1635 F cm(-3). This report demonstrates the potential of the i-MXene family for catalytic and energy storage applications, and highlights novel research directions for further development and successful employment in practical applications.

    sted, utgiver, år, opplag, sider
    WILEY-V C H VERLAG GMBH, 2020
    Emneord
    catalysis; energy storage; hydrogen evolution reaction; MXenes; supercapacitors
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-166186 (URN)10.1002/adfm.202000894 (DOI)000531293500001 ()
    Merknad

    Funding Agencies|Wenner-Gren Stiftelserna [UPD2017-0171]; Knut and Alice Wallenbergs FoundationKnut & Alice Wallenberg Foundation; Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Vinnova; Swedish Strategy Group for EU-Coordination [2018-02677]

    Tilgjengelig fra: 2020-06-09 Laget: 2020-06-09 Sist oppdatert: 2022-10-28
    3. Enhanced supercapacitive performance of Mo1.33C MXene based asymmetric supercapacitors in lithium chloride electrolyte
    Åpne denne publikasjonen i ny fane eller vindu >>Enhanced supercapacitive performance of Mo1.33C MXene based asymmetric supercapacitors in lithium chloride electrolyte
    Vise andre…
    2021 (engelsk)Inngår i: Energy Storage Materials, ISSN 2405-8289, E-ISSN 2405-8297, Vol. 41, s. 203-208Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Two-dimensional (2D) Mo1.33C MXene renders great potential for energy storage applications and is mainly studied in the sulfuric acid (H2SO4) electrolyte. However, H2SO4 limits the electrode potential to 0.9 V for symmetric devices and 1.3 V for asymmetric devices. Herein, we explore the electrochemical behavior of Mo1.33C MXene in LiCl electrolyte. In comparison to H2SO4, LiCl electrolyte is a neutral salt with high solubility at room temperature and low hazardousness. The analysis shows a volumetric capacitance of 815 Fcm(-3) at a scan rate of 2 mVs(-1) with a large operating potential window of -1.2 to +0.3V (vs. Ag/AgCl). This is further exploited to construct MXene-based asymmetric supercapacitors Mo1.33C//MnxOn, and the electrochemical performance is evaluated in 5M LiCl electrolyte. Owing to the wide voltage widow of the Mo1.33C//MnxOn devices (2V) and high packing density of the electrodes, we have achieved a volumetric energy density of 58 mWh/cm(3), a maximum power density of 31 Wcm(-3) and retained 92% of the initial capacitance after 10,000 charge/discharge cycles at 10 A g(-1). One of the main value propositions of this work, aside from the high energy density, is the outstanding columbic efficiency (100%), which ensures excellent cyclic stability and is highly desirable for practical applications.

    sted, utgiver, år, opplag, sider
    Elsevier, 2021
    Emneord
    Mo1.33C; MXene; Asymmetric supercapacitors, LiCl electrolyte
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-178736 (URN)10.1016/j.ensm.2021.05.006 (DOI)000684979900007 ()
    Merknad

    Funding Agencies|Knut and Alice Wallenberg (KAW) FoundationKnut & Alice Wallenberg Foundation [KAW 2015.0043]; Swedish Foundation for Strategic Research (SSF)Swedish Foundation for Strategic Research [EM16-0004]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]; VinnovaVinnova; Swedish Strategy Group for EU-Coordination [2018-02677]; KAW Foundation

    Tilgjengelig fra: 2021-08-31 Laget: 2021-08-31 Sist oppdatert: 2022-06-03
    Fulltekst (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 7.
    El Ghazaly, Ahmed
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ahmed, Heba
    RMIT Univ, Australia.
    Rezk, Amgad R.
    RMIT Univ, Australia.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Yeo, Leslie Y.
    RMIT Univ, Australia.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ultrafast, One-Step, Salt-Solution-Based Acoustic Synthesis of Ti3C2 MXene2021Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 15, nr 3, s. 4287-4293Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The current quest for two-dimensional transition metal carbides and nitrides (MXenes) has been to circumvent the slow, hazardous, and laborious multistep synthesis procedures associated with conventional chemical MAX phase exfoliation. Here, we demonstrate a one-step synthesis method with local Ti3AlC2 MAX to Ti3C2Tz MXene conversion on the order of milliseconds, facilitated by proton production through solution dissociation under megahertz frequency acoustic excitation. These protons combined with fluorine ions from LiF to selectively etch the MAX phase into MXene, whose delamination is aided by the acoustic forcing. These results have important implications for the future applicability of MXenes, which crucially depend on the development of more efficient synthesis procedures. For proof-of-concept, we show that flexible electrodes fabricated by this method exhibit comparable electrochemical performance to that previously reported.

    Fulltekst (pdf)
    fulltext
  • 8.
    El Ghazaly, Ahmed
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Mendez-Romero, Ulises A.
    Chalmers Univ Technol, Sweden.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Tseng, Eric Nestor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Person, Per O. Å.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ahmed, Bilal
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Wang, Ergang
    Chalmers Univ Technol, Sweden.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Improved charge storage performance of a layered Mo1.33C MXene/MoS2/graphene nanocomposite2021Inngår i: Nanoscale Advances, E-ISSN 2516-0230, Vol. 3, nr 23, s. 6689-6695Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The construction of nanocomposite electrodes based on 2D materials is an efficient route for property enrichment and for exploitation of constituent 2D materials. Herein, a flexible Mo1.33C i-MXene/MoS2/graphene (MOMG) composite electrode is constructed, utilizing an environment-friendly method for high-quality graphene and MoS2 synthesis. The presence of graphene and MoS2 between MXene sheets limits the commonly observed restacking, increases the interlayer spacing, and facilitates the ionic and electronic conduction. The as-prepared MOMG electrode delivers a volumetric capacitance of 1600 F cm(-3) (450 F g(-1)) at the scan rate of 2 mV s(-1) and retains 96% of the initial capacitance after 15 000 charge/discharge cycles (10 A g(-1)). The current work demonstrates that the construction of nanocomposite electrodes is a promising route towards property enhancement for energy storage applications.

    Fulltekst (pdf)
    fulltext
  • 9.
    El Ghazaly, Ahmed
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zheng, Wei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Tseng, Eric Nestor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O Å
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ahmed, Bilal
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Enhanced supercapacitive performance of Mo1.33C MXene based asymmetric supercapacitors in lithium chloride electrolyte2021Inngår i: Energy Storage Materials, ISSN 2405-8289, E-ISSN 2405-8297, Vol. 41, s. 203-208Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Two-dimensional (2D) Mo1.33C MXene renders great potential for energy storage applications and is mainly studied in the sulfuric acid (H2SO4) electrolyte. However, H2SO4 limits the electrode potential to 0.9 V for symmetric devices and 1.3 V for asymmetric devices. Herein, we explore the electrochemical behavior of Mo1.33C MXene in LiCl electrolyte. In comparison to H2SO4, LiCl electrolyte is a neutral salt with high solubility at room temperature and low hazardousness. The analysis shows a volumetric capacitance of 815 Fcm(-3) at a scan rate of 2 mVs(-1) with a large operating potential window of -1.2 to +0.3V (vs. Ag/AgCl). This is further exploited to construct MXene-based asymmetric supercapacitors Mo1.33C//MnxOn, and the electrochemical performance is evaluated in 5M LiCl electrolyte. Owing to the wide voltage widow of the Mo1.33C//MnxOn devices (2V) and high packing density of the electrodes, we have achieved a volumetric energy density of 58 mWh/cm(3), a maximum power density of 31 Wcm(-3) and retained 92% of the initial capacitance after 10,000 charge/discharge cycles at 10 A g(-1). One of the main value propositions of this work, aside from the high energy density, is the outstanding columbic efficiency (100%), which ensures excellent cyclic stability and is highly desirable for practical applications.

    Fulltekst (pdf)
    fulltext
  • 10.
    El-Ghazaly, Ahmed
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Ahmed, Bilal
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Etman, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materialdesign. Linköpings universitet, Tekniska fakulteten.
    Exploring the electrochemical behavior of Mo1.33CTz MXene in aqueous sulfates electrolytes: Effect of intercalating cations on the stored charge2022Inngår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 531, artikkel-id 231302Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    MXenes have been introduced as a high energy and power density electrochemical supercapacitor material owing to their high specific capacitance and electrochemical stability. The operating potential window and, in turn, energy density of MXene based symmetric and asymmetric supercapacitors can be effectively enhanced by the proper choice of aqueous electrolyte. Herein, we investigate the electrochemical behavior of vacancy-containing 𝑖-MXene (Mo1.33CTz) in sulfate based aqueous electrolytes with univalent (Li+, Na+, or K+) or divalent (Mg2+, Mn2+, or Zn2+) cations. The results show that the Mo1.33CTz MXene electrodes can be operated in a potential window higher than 1 V without degradation in these sulfate electrolytes. The Mo1.33CTz MXene electrodes deliver a high volumetric capacitance up to ~677 F cm-3 as measured in 1.0 M MnSO4 solution. Furthermore, symmetric (Mo1.33CTz//Mo1.33CTz) and asymmetric (Mo1.33CTz//nitrogen-doped activated carbon (NAC)) devices in 0.5 M K2SO4 solution can be operated with a cell voltage of about 1.1 V and 1.8 V, respectively. The asymmetric devices retain about 97% of their initial capacitance after 5000 charge/discharge cycles. Overall, the results reveal that the choice of the intercalating cations is a viable route to boost the performance of Mo1.33CTz MXene and to construct energy storage devices.

    Fulltekst (pdf)
    fulltext
  • 11.
    Etman, Ahmed S.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Alexandria Univ, Egypt.
    Wang, Zhaohui
    Uppsala Univ, Sweden.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Sun, Junliang
    Peking Univ, Peoples R China.
    Nyholm, Leif
    Uppsala Univ, Sweden.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Flexible Freestanding MoO3-x-Carbon Nanotubes-Nanocellulose Paper Electrodes for Charge-Storage Applications2019Inngår i: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 12, nr 23, s. 5157-5163Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Herein, a one-step synthesis protocol was developed for synthesizing freestanding/flexible paper electrodes composed of nanostructured molybdenum oxide (MoO3-x) embedded in a carbon nanotube (CNT) and Cladophora cellulose (CC) matrix. The preparation method involved sonication of the precursors, nanostructured MoO3-x, CNTs, and CC with weight ratios of 7:2:1, in a water/ethanol mixture, followed by vacuum filtration. The electrodes were straightforward to handle and possessed a thickness of approximately 12 mu m and a mass loading of MoO3-x-CNTs of approximately 0.9 mg cm(-2). The elemental mapping showed that the nanostructured MoO3-x was uniformly embedded inside the CNTs-CC matrix. The MoO3-x-CNTs-CC paper electrodes featured a capacity of 30 C g(-1), normalized to the mass of MoO3-x-CNTs, at a current density of 78 A g(-1) (corresponding to a rate of approximately 210 C based on the MoO3 content, assuming a theoretical capacity of 1339 C g(-1)), and exhibited a capacity retention of 91 % over 30 000 cycles. This study paves the way for the manufacturing of flexible/freestanding nanostructured MoO3-x-based electrodes for use in charge-storage devices at high charge/discharge rates.

    Fulltekst (pdf)
    fulltext
  • 12.
    Kim, Jung Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Jimma Univ, Ethiopia.
    Nagamani, Selvakumaran
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Lianlian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Solin, Niclas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    A DNA and Self-Doped Conjugated Polyelectrolyte Assembled for Organic Optoelectronics and Bioelectronics2020Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 21, nr 3, s. 1214-1221Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Deoxyribonucleic acid (DNA) and a self-doped conjugated polyelectrolyte, poly(4-(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid (PEDOT-S), are assembled for organic optoelectronics and bioelectronics. The DNAs helix-coil phase transition in water is studied as a function of composition by thermo-optical analysis. DNA and PEDOT-S are functionalized by using a surfactant, cetyltrimethylammonium chloride (CTMA), and DNA:CTMA, PEDOT-S:CTMA, and DNA:CTMA:PEDOT-S:CTMA complexes were characterized regarding thermal, optical, morphological, and structural properties. Finally, DNA and DNA:PEDOT-S mixtures are processed in water for fabricating organized films through brushing. The electrical properties of these films are characterized using an interdigitated electrode. The films show an electronic conductivity of similar to 10(-6)-10(-5) S/cm in a range of semiconductors.

  • 13.
    Liu, Yanfeng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Tao, Quanzheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Jin, Yingzhi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Li, Zaifang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Jiaxing Univ, Peoples R China.
    Luo, Jie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Guangdong Univ Technol, Peoples R China.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Jinan Univ, Peoples R China.
    Mo1.33C MXene-Assisted PEDOT:PSS Hole Transport Layer for High-Performance Bulk-Heterojunction Polymer Solar Cells2020Inngår i: ACS APPLIED ELECTRONIC MATERIALS, ISSN 2637-6113, Vol. 2, nr 1, s. 163-169Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Here, we report the usage of two-dimensional MXene, Mo1.33C-assisted poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as an efficient hole transport layer (HTL) to construct high-efficiency polymer solar cells. The composite HTLs are prepared by mixing Mo1.33C and PEDOT:PSS aqueous solution. The conventional devices based on Mo1.33C:PEDOT:PSS exhibit an average power conversion efficiency (PCE) of 9.2%, which shows a 13% enhancement compared to the reference devices. According to the results from hole mobilities, charge extraction probabilities, steady-state photoluminescence, and atomic force microscopy, the enhanced PCE can be ascribed to the improved charge transport and extraction properties of the HTL, along with the morphological improvement of the active layer on top. This work clearly demonstrates the feasibility to combine advantages of Mo1.33C MXene and PEDOT:PSS as the promising HTL in organic photovoltaics.

  • 14.
    Meshkian, Rahele
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Lind, Hans
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Thörnberg, Jimmy
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Tao, Quanzheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Dahlqvist, Martin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Palisaitis, Justinas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Theoretical Analysis, Synthesis, and Characterization of 2D W1.33C (MXene) with Ordered Vacancies2019Inngår i: ACS APPLIED NANO MATERIALS, ISSN 2574-0970, Vol. 2, nr 10, s. 6209-6219Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Synthesis of delaminated 2D W1.33C (MXene) has been performed by selectively etching Al as well as Sc/Y from the recently discovered nanolaminated i-MAX phases (W2/3Sc1/3)(2)AlC and (W2/3Y1/3)(2)AlC. Both quaternary phases produce MXenes with similar flake morphology and with a skeletal structure due to formation of ordered vacancies. The measured O, OH, and F terminations, however, differ in amount as well as in relative ratios, depending on parent material, evident from X-ray photoelectron spectroscopy. These findings are correlated to theoretical simulations based on first-principles, investigating the W1.33C, and the effect of termination configurations on structure, formation energy, stability, and electronic structure. The theoretical results indicate a favored F-rich surface composition, though with a system going from insulating/semiconducting to metallic for different termination configurations, suggesting a high tuning potential of these materials. Additionally, free-standing W1.33C films of 2-4 mu m thickness and with up to 10 wt % polymer (PEDOT:PSS) were tested as electrodes in supercapacitors, showing capacitances up to 600 F cm(-3) in 1 M H2SO4 and high capacitance retention for at least 10000 cycles at 10 A g(-1). This is highly promising results compared to other W-based materials to date.

    Fulltekst (pdf)
    fulltext
  • 15.
    Persson, Ingemar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Tao, Quanzheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Kota, Sankalp
    Drexel Univ, PA 19104 USA.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Palisaitis, Justinas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Barsoum, Michel W.
    Drexel Univ, PA 19104 USA.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Tailoring Structure, Composition, and Energy Storage Properties of MXenes from Selective Etching of In-Plane, Chemically Ordered MAX Phases2018Inngår i: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 14, nr 17, artikkel-id 1703676Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The exploration of 2D solids is one of our times generators of materials discoveries. A recent addition to the 2D world is MXenes that possses a rich chemistry due to the large parent family of MAX phases. Recently, a new type of atomic laminated phases (coined i-MAX) is reported, in which two different transition metal atoms are ordered in the basal planes. Herein, these i-MAX phases are used in a new route for tailoriong the MXene structure and composition. By employing different etching protocols to the parent i-MAX phase (Mo2/3Y1/3)(2)AlC, the resulting MXene can be either: i) (Mo2/3Y1/3)(2)C with in-plane elemental order through selective removal of Al atoms or ii) Mo1.33C with ordered vacancies through selective removal of both Al and Y atoms. When (Mo2/3Y1/3)(2)C (ideal stoichiometry) is used as an electrode in a supercapacitor-with KOH electrolytea volumetric capacitance exceeding 1500 F cm(-3) is obtained, which is 40% higher than that of its Mo1.33C counterpart. With H2SO4, the trend is reversed, with the latter exhibiting the higher capacitance (approximate to 1200 F cm(-3)). This additional ability for structural tailoring will indubitably prove to be a powerful tool in property-tailoring of 2D materials, as exemplified here for supercapacitors.

  • 16.
    Qin, Leiqiang
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Tao, Quanzheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Fernandez-Rodriguez, Julia
    University of Gothenburg, Sweden.
    Persson, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    High-Performance Ultrathin Flexible Solid-State Supercapacitors Based on Solution Processable Mo1.33C MXene and PEDOT:PSS2018Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, nr 2, artikkel-id 1703808Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    MXenes, a young family of 2D transition metal carbides/nitrides, show great potential in electrochemical energy storage applications. Herein, a high performance ultrathin flexible solid-state supercapacitor is demonstrated based on a Mo1.33C MXene with vacancy ordering in an aligned layer structure MXene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) composite film posttreated with concentrated H2SO4. The flexible solid-state supercapacitor delivers a maximum capacitance of 568 F cm-3, an ultrahigh energy density of 33.2 mWh cm-3 and a power density of 19 470 mW cm-3. The Mo1.33C MXene/PEDOT:PSS composite film shows a reduction in resistance upon H2SO4 treatment, a higher capacitance (1310 F cm-3) and improved rate capabilities than both pristine Mo1.33C MXene and the nontreated Mo1.33C/PEDOT:PSS composite films. The enhanced capacitance and stability are attributed to the synergistic effect of increased interlayer spacing between Mo1.33C MXene layers due to insertion of conductive PEDOT, and surface redox processes of the PEDOT and the MXene.

    Fulltekst (pdf)
    fulltext
  • 17.
    Shokeir, Mohamed
    et al.
    Amer Univ Cairo, Egypt; AUC Ave, Egypt.
    El Moghazi, Sandy
    Amer Univ Cairo, Egypt; AUC Ave, Egypt.
    Omara, Ahmed F.
    Amer Univ Cairo, Egypt; AUC Ave, Egypt.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Emara, Mohamed M.
    CIC, Egypt.
    Salem, Hanadi G.
    Amer Univ Cairo, Egypt; AUC Ave, Egypt.
    Influence of Graphene, SiCnp, and G/SiCnp Hybrid Fillers on the Strengthening Mechanisms of Al-Matrix2020Inngår i: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 51, nr 6, s. 3280-3298Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    AA2124 reinforced with graphene (G), silicon carbide nanoparticles (SiCnp), and graphene-coated SiCnp (GCSiC(np)) were fabricated and characterized. GCSiC(np) reinforcement was fabricated by ball milling, followed by mixing and milling the reinforcements with AA2124 powders. Consolidation was achieved by cold compaction and hot extrusion (HE). The powders morphology and structural evolution were characterized with XRD and SEM. Microhardness and tensile properties were also characterized. Increasing the fillers content beyond 5 wt pct deteriorated the composites mechanical properties due to the agglomeration of the fillers. Adding 5 wt pct GCSiC(np) increased the hardness, specific strength, and modulus of the composite and decreased ductility. Furthermore, 5 wt pct SiCnp induced severe lattice strain by intra-granular dispersion strengthening. The GCSiC(np) filler strengthened the Al-matrix via the strong interfacial bonding of the intercalated inter-granular lamination of the hybrid particles within the Al-matrix and the intra-granular dispersion strengthening associated with the individual SiCnp. Adding 5 wt pct G lowered the HE composites density and hardness significantly, while the sliding of G-intercalated layers coating the Al-grains facilitated plastic flow along the extrusion direction and enhanced the strength and ductility of the composite compared to that containing 5 wt pct GCSiC(np).

  • 18.
    Zheng, Wei
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Etman, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Tseng, Eric Nestor
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Barsoum, Michel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Drexel Univ, PA 19104 USA.
    Flexible Free-Standing MoO3/Ti3C2Tz MXene Composite Films with High Gravimetric and Volumetric Capacities2021Inngår i: Advanced Science, E-ISSN 2198-3844, Vol. 8, artikkel-id 2003656Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Enhancing both the energy storage and power capabilities of electrochemical capacitors remains a challenge. Herein, Ti3C2Tz MXene is mixed with MoO3 nanobelts in various mass ratios and the mixture is used to vacuum filter binder free, open, flexible, and free-standing films. The conductive Ti3C2Tz flakes bridge the nanobelts, facilitating electron transfer; the randomly oriented, and interconnected, MoO3 nanobelts, in turn, prevent the restacking of the Ti3C2Tz nanosheets. Benefitting from these advantages, a MoO3/Ti3C2Tz film with a 8:2 mass ratio exhibits high gravimetric/volumetric capacities with good cyclability, namely, 837 C g(-1) and 1836 C cm(-3) at 1 A g(-1) for an approximate to 10 mu m thick film; and 767 C g(-1) and 1664 C cm(-3) at 1 A g(-1) for approximate to 50 mu m thick film. To further increase the energy density, hybrid capacitors are fabricated with MoO3/Ti3C2Tz films as the negative electrodes and nitrogen-doped activated carbon as the positive electrodes. This device delivers maximum gravimetric/volumetric energy densities of 31.2 Wh kg(-1) and 39.2 Wh L-1, respectively. The cycling stability of 94.2% retention ratio after 10 000 continuous charge/discharge cycles is also noteworthy. The high energy density achieved in this work can pave the way for practical applications of MXene-containing materials in energy storage devices.

    Fulltekst (pdf)
    fulltext
  • 19.
    Zheng, Wei
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Halim, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Etman, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    El Ghazaly, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Barsoum, Michel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Drexel Univ, PA 19104 USA.
    Boosting the volumetric capacitance of MoO3-x free-standing films with Ti3C2 MXene2021Inngår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 370, artikkel-id 137665Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The high theoretical capacitance of molybdenum trioxide (MoO3) renders it an attractive supercapacitor electrode material. However, its low electronic conductivity restricts charge transfer and slows its reaction kinetics. Herein, we vacuum filtered porous, free-standing, flexible and highly conductive films comprised of oxygen vacancy-rich MoO3-x nanobelts and delaminated Ti3C2 MXene in a mass ratio of 80:20, respectively. When tested as supercapacitor electrodes, in a 5 M LiCl electrolyte, volumetric capacitances of 631 F cm(-3) at 1 A g(-1), and 474 F cm(-3) at 10 A g(-1) were obtained. To increase the energy density, asymmetric supercapacitors, wherein the anodes were MoO3-based and the cathodes were nitrogen-doped activated carbon were assembled and tested. The resulting volumetric energy density was 48.6 Wh L-1. After 20,000 continuous charge/discharge cycles at 20 A g(-1), 96.3 % of the initial charge remained. These values are outstanding for free-standing supercapacitor electrodes, especially in aqueous electrolytes. (C) 2020 ElsevierLtd. Allrights reserved.

    Fulltekst (pdf)
    fulltext
1 - 19 of 19
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf