liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 88
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Antonovic, Laura
    et al.
    Stockholm University.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Furusawa, Yoshiya
    National Institute of Radiological Sciences, Chiba, Japan.
    Toma-Dasu, Iuliana
    Stockholm University and Karolinska Institutet.
    Relative clinical effectiveness of carbon ion radiotherapy: theoretical modelling for H&N tumours2015In: Journal of radiation research, ISSN 0449-3060, E-ISSN 1349-9157, Vol. 56, no 4, p. 639-645Article in journal (Refereed)
    Abstract [en]

    Comparison of the efficiency of photon and carbon ion radiotherapy (RT) administered with the same number of fractions might be of limited clinical interest, since a wide range of fractionation patterns are used clinically today. Due to advanced photon treatment techniques, hypofractionation is becoming increasingly accepted for prostate and lung tumours, whereas patients with head and neck tumours still benefit from hyperfractionated treatments. In general, the number of fractions is considerably lower in carbon ion RT. A clinically relevant comparison would be between fractionation schedules that are optimal within each treatment modality category. In this in silico study, the relative clinical effectiveness (RCE) of carbon ions was investigated for human salivary gland tumours, assuming various radiation sensitivities related to their oxygenation. The results indicate that, for hypoxic tumours in the absence of reoxygenation, the RCE (defined as the ratio of D50 for photons to carbon ions) ranges from 3.5 to 5.7, corresponding to carbon ion treatments given in 36 and 3 fractions, respectively, and 30 fractions for photons. Assuming that interfraction local oxygenation changes take place, results for RCE are lower than that for an oxic tumour if only a few fractions of carbon ions are used. If the carbon ion treatment is given in more than 12 fractions, the RCE is larger for the hypoxic than for the well-oxygenated tumour. In conclusion, this study showed that in silico modelling enables the study of a wide range of factors in the clinical considerations and could be an important step towards individualisation of RT treatments.

  • 2.
    Antonovic, Laura
    et al.
    Stockholm University, Sweden.
    Lindblom, Emely
    Stockholm University, Sweden.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Bassler, Niels
    Aarhus University, Denmark.
    Furusawa, Yoshiya
    National Institute of Radiological Sciences, Chiba, Japan.
    Toma-Dasu, Iuliana
    Stockholm University and Karolinska Institutet, Stockholm, Sweden.
    Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes2014In: Journal of radiation research, ISSN 0449-3060, E-ISSN 1349-9157, Vol. 55, no 5, p. 902-911Article in journal (Refereed)
    Abstract [en]

    The effect of carbon ion radiotherapy on hypoxic tumors has recently been questioned because of low linear energy transfer (LET) values in the spread-out Bragg peak (SOBP). The aim of this study was to investigate the role of hypoxia and local oxygenation changes (LOCs) in fractionated carbon ion radiotherapy. Three-dimensional tumors with hypoxic subvolumes were simulated assuming interfraction LOCs. Different fractionations were applied using a clinically relevant treatment plan with a known LET distribution. The surviving fraction was calculated, taking oxygen tension, dose and LET into account, using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related to LOCs did not compensate for the increase in total dose required  for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high level of tumor control probability is achievable with a large range of fractionation schedules for tumors with hypoxic subvolumes, but both hyperfractionation and hypofractionation should be pursued with caution.

    Download full text (pdf)
    fulltext
  • 3.
    Ardenfors, Oscar
    et al.
    Stockholm University, Stockholm, Sweden.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. The Skandion Clinic, Uppsala, Sweden.
    Kopeć, Mariusz
    University of Science and Technology, Krakow, Poland.
    Gudowska, Irena
    Stockholm University, Stockholm, Sweden.
    Modelling of a proton spot scanning system using MCNP62017In: INTERNATIONAL NUCLEAR SCIENCE AND TECHNOLOGY CONFERENCE 2016, Institute of Physics (IOP), 2017, Vol. 860, article id 012025Conference paper (Refereed)
    Abstract [en]

    The aim of this work was to model the characteristics of a clinical proton spot scanning beam using Monte Carlo simulations with the code MCNP6. The proton beam was defined using parameters obtained from beam commissioning at the Skandion Clinic, Uppsala, Sweden. Simulations were evaluated against measurements for proton energies between 60 and 226 MeV with regard to range in water, lateral spot sizes in air and absorbed dose depth profiles in water. The model was also used to evaluate the experimental impact of lateral signal losses in an ionization chamber through simulations using different detector radii. Simulated and measured distal ranges agreed within 0.1 mm for R90 and R80, and within 0.2 mm for R50. The average absolute difference of all spot sizes was 0.1 mm. The average agreement of absorbed dose integrals and Bragg-peak heights was 0.9%. Lateral signal losses increased with incident proton energy with a maximum signal loss of 7% for 226 MeV protons. The good agreement between simulations and measurements supports the assumptions and parameters employed in the presented Monte Carlo model. The characteristics of the proton spot scanning beam were accurately reproduced and the model will prove useful in future studies on secondary neutrons.

    Download full text (pdf)
    fulltext
  • 4.
    Ardenfors, Oscar
    et al.
    Stockholm University, Sweden.
    Gudowska, Irena
    Stockholm University, Sweden.
    Flejmer, Anna M.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Dasu, Alexandru
    The Skandion Clinic, Sweden.
    Impact of irradiation setup in proton spot scanning brain therapy on organ doses from secondary radiation2018In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 180, no 1-4, p. 261-266Article in journal (Refereed)
    Abstract [en]

    A Monte Carlo model of a proton spot scanning pencil beam was used to simulate organ doses from secondary radiation produced from brain tumour treatments delivered with either a lateral field or a vertex field to one adult and one paediatric patient. Absorbed doses from secondary neutrons, photons and protons and neutron equivalent doses were higher for the vertex field in both patients, but the differences were low in absolute terms. Absorbed doses ranged between 0.1 and 43 μGy.Gy−1 in both patients with the paediatric patient receiving higher doses. The neutron equivalent doses to the organs ranged between 0.5 and 141 μSv.Gy−1 for the paediatric patient and between 0.2 and 134 μSv.Gy−1 for the adult. The highest neutron equivalent dose from the entire treatment was 7 mSv regardless of field setup and patient size. The results indicate that different field setups do not introduce large absolute variations in out-of-field doses produced in patients undergoing proton pencil beam scanning of centrally located brain tumours.

  • 5.
    Ardenfors, Oscar
    et al.
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Stockholm University.
    Josefsson, Dan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Are IMRT treatments in the head and neck region increasing the risk of secondary cancers?2014In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 53, no 8, p. 1041-1047Article in journal (Refereed)
    Abstract [en]

    Background: Intensity modulated radiation therapy (IMRT) has been increasingly employed for treating head and neck (H&N) tumours due to its ability to produce isodoses suitable for the complex anatomy of the region. The aim of this study was to assess possible differences between IMRT and conformal radiation therapy (CRT) with regard to risk of radiation-induced secondary malignancies for H&N tumours.

    Material and Methods: IMRT and CRT plans were made for 10 H&N adult patients and the resulting treatment planning data were used to calculate the risk of radiation-induced malignancies in four different tissues. Three risk models with biologically relevant parameters were used for calculations. The influence of scatter radiation and repeated imaging sessions has also been investigated.

    Results: The results showed that the total lifetime risks of developing radiation-induced secondary malignancies from the two treatment techniques, CRT and IMRT, were comparable and in the interval 0.9-2.5%. The risk contributions from the primary beam and scatter radiation were comparable, whereas the contribution from repeated diagnostic imaging was considerably smaller.

    Conclusion: The results indicated that the redistribution of the dose characteristic to IMRT leads to a redistribution of the risks in individual tissues. However, the total levels of risk were similar between the two irradiation techniques considered.

  • 6.
    Bennati, Paolo
    et al.
    KTH, Royal Institute of Technology, Stockholm, Sweden.
    Dasu, Alexandru
    The Skandion Clinic, Uppsala, Sweden.
    Colarieti-Tosti, Massimiliano
    KTH, Royal Institute of Technology, Stockholm, Sweden.
    Lönn, Gustaf
    KTH, Royal Institute of Technology, Stockholm, Sweden.
    Larsson, David
    KTH, Royal Institute of Technology, Stockholm, Sweden.
    Fabbri, Andrea
    INFN, National Institute for Nuclear Physics, Rome, Italy.
    Galasso, Matteo
    INFN, National Institute for Nuclear Physics, Rome, Italy.
    Cinti, Maria Nerina
    Sapienza University, Rome, Italy.
    Pellegrini, Rosanna
    Sapienza University, Rome, Italy.
    Pani, Roberto
    Sapienza University, Rome, Italy.
    Preliminary study of a new gamma imager for on-line proton range monitoring during proton radiotherapy2017In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, no 5, article id C05009Article in journal (Refereed)
    Abstract [en]

    We designed and tested new concept imaging devices, based on a thin scintillating crystal, aimed at the online monitoring of the range of protons in tissue during proton radiotherapy. The proposed crystal can guarantee better spatial resolution and lower sensitivity with respect to a thicker one, at the cost of a coarser energy resolution. Two different samples of thin crystals were coupled to a position sensitive photo multiplier tube read out by 64 independent channels electronics. The detector was equipped with a knife-edge Lead collimator that defined a reasonable field of view of about 10 cm in the target. Geant4 Monte Carlo simulations were used to optimize the design of the experimental setup and assess the accuracy of the results. Experimental measurements were carried out at the Skandion Clinic, the recently opened proton beam facility in Uppsala, Sweden. PMMA and water phantoms studies were performed with a first prototype based on a round 6.0 mm thick Cry019 crystal and with a second detector based on a thinner 5 × 5 cm2, 2.0 mm thick LFS crystal. Phantoms were irradiated with mono-energetic proton beams whose energy was in the range between 110 and 160 MeV. According with the simulations and the experimental data, the detector based on LFS crystal seems able to identify the peak of prompt-gamma radiation and its results are in fair agreement with the expected shift of the proton range as a function of energy. The count rate remains one of the most critical limitations of our system, which was able to cope with only about 20% of the clinical dose rate. Nevertheless, we are confident that our study might provide the basis for developing a new full-functional system.

  • 7.
    Dasu, Alexandru
    Norrlands University Hospital.
    Is the alpha/beta value for prostate tumours low enough to be safely used in clinical trials?2007In: Clinical Oncology, ISSN 0936-6555, E-ISSN 1433-2981, Vol. 19, no 5, p. 289-301Article, review/survey (Refereed)
    Abstract [en]

    There has been an intense debate over the past several years on the relevant alpha/beta value that could be used to describe the fractionation response of prostate tumours. Previously it has been assumed that prostate tumours have high alpha/beta values, similar to most other tumours and the early reacting normal tissues. However, the proliferation behaviour of the prostate tumours is more like that of the late reacting tissues, with slow doubling times and low alpha/beta values. The analyses of clinical results carried out in the past few years have indeed suggested that the alpha/beta value that characterises the fractionation response of the prostate is low, possibly even below the 3 Gy commonly assumed for most late complications, and hence that hypofractionation of the radiation treatment might improve the therapeutic ratio (better control at the same or lower complication rate). However, hypofractionation might also increase the complication rates in the surrounding late responding tissues and if their alpha/beta value is not larger that of prostate tumours it could even lead to a decrease in the therapeutic ratio. Therefore, the important question is whether the alpha/beta value for the prostate is lower than the alpha/beta values of the surrounding late responding tissues at risk. This paper reviews the clinical and experimental data regarding the radiobiological differential that might exist between prostate tumours and the late normal tissues around them. Several prospective hypofractionated trials that have been initiated recently in order to determine the alpha/beta value or the range of values that describe the fractionation response of prostate tumours are also reviewed. In spite of several confounding factors that interfere with the derivation of a precise value, it seems that most data support a trend towards lower alpha/beta values for prostate tumours than for rectum or bladder.

  • 8.
    Dasu, Alexandru
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Radiobiology of prostate cancer2012In: Robotic Radiosurgery. Treating Prostate Cancer and Related Genitourinary Applications / [ed] Ponsky LE, Fuller DB, Meier RM, Ma C-MC, Springer Berlin/Heidelberg, 2012, p. 79-101Chapter in book (Refereed)
    Abstract [en]

    The 1999 proposal of Brenner and Hall of an alpha/beta value of 1.5 Gy for prostate tumors has rekindled the interest in the traditional radiobiological aspects of time, dose, and fractionation as effective means of modulating the therapeutic window in radiation therapy. It is well established that, depending on the fractionation sensitivity of normal and tumor tissues, one could depart from the usual fractionation pattern and devise schedules that lead to the same tumor results with less complications, or better tumor control with the same level of complications. Nevertheless, radiobiology experience indicates that the success of any fractionation schedule depends on the temporal pattern of dose delivery. From this perspective, the present chapter aims to review the radiobiological aspects that may be relevant for the design of treatment schedules for prostate tumors.

  • 9.
    Dasu, Alexandru
    Norrlands University Hospital, Umeå.
    Treatment planning optimisation based on imaging tumour proliferation and cell density2008In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 47, no 7, p. 1221-1228Article in journal (Refereed)
    Abstract [en]

    Functional imaging could provide valuable information on the distribution of biological factors that influence the outcome of radiation therapy. Tumour proliferation and cell density in particular could be imaged with dedicated metabolic tracers and could thus be used for the biological optimisation of the treatment plans. The feasibility of individualising treatment planning using proliferation and density information has been investigated through simulations of heterogeneous tumours taking into account the cell density and proliferation rates. The predicted outcome was used to estimate the success of the individualisation of dose distributions. The results have shown that tumour control could be increased through the escalation of doses to proliferating foci with a relative reduction of doses to slowly proliferating regions of the tumour. This suggests that individualisation of treatment planning taking into account proliferation information creates the premises for further reduction of the doses to the surrounding regions which would consequently lead to an increased sparing of the normal tissues. Cell density has been shown to be another important factor that could be used for optimisation, albeit of a lower weight than proliferation. However, associated with proliferation it could lead to treatment failure if the trouble foci are underdosed. In conclusion, treatment optimisation based on imaged proliferation could improve both tumour control and normal tissue sparing.

  • 10.
    Dasu, Alexandru
    et al.
    The Skandion Clinic, Uppsala, Sweden.
    Flejmer, Anna M.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology. The Skandion Clinic, Uppsala, Sweden.
    Edvardsson, Anneli
    Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
    Witt Nyström, Petra
    The Skandion Clinic, Uppsala, Sweden.
    Normal tissue sparing potential of scanned proton beams with and without respiratory gating for the treatment of internal mammary nodes in breast cancer radiotherapy2018In: Physica medica (Testo stampato), ISSN 1120-1797, E-ISSN 1724-191X, Vol. 52, p. 81-85Article in journal (Refereed)
    Abstract [en]

    Proton therapy has shown potential for reducing doses to normal tissues in breast cancer radiotherapy. However data on the impact of protons when including internal mammary nodes (IMN) in the target for breast radiotherapy is comparatively scarce. This study aimed to evaluate normal tissue doses when including the IMN in regional RT with scanned proton beams, with and without respiratory gating. The study cohort was composed of ten left-sided breast patients CT-scanned during enhanced inspiration gating (EIG) and free-breathing (FB). Proton plans were designed for the target including or excluding the IMN. Targets and organs-at-risk were delineated according to RTOG guidelines. Comparison was performed between dosimetric parameters characterizing target coverage and OAR radiation burden. Statistical significance of differences was tested using a paired, two-tailed Student’s t-test. Inclusion of the IMN in the target volume led to a small increase of the cardiopulmonary burden. The largest differences were seen for the ipsilateral lung where the mean dose increased from 6.1 to 6.6 Gy (RBE) (P < 0.0001) in FB plans and from 6.9 to 7.4 Gy (RBE) (P = 0.003) in EIG plans. Target coverage parameters were very little affected by the inclusion of IMN into the treatment target. Radiotherapy with scanned proton beams has the potential of maintaining low cardiovascular burden when including the IMN into the target, irrespective of whether respiratory gating is used or not.

  • 11.
    Dasu, Alexandru
    et al.
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Toma-Dasu, Iuliana
    Stockholm University and Karolinska Institutet.
    Dose painting by numbers - do the practical limitations of the technique decrease or increase the probability of controlling tumours?2013In: IFMBE Proceedings / [ed] Long Mian, Springer, 2013, Vol. 39, p. 1731-1734Conference paper (Refereed)
    Abstract [en]

    One of the important questions regarding the feasibility of dose-painting-by-numbers approaches for treatment planning concerns the influence of the averaging of the imaging techniques used and the resolution of the planned and achieved dose distributions. This study investigates the impact of these aspects on the probability of controlling dynamic tumours. The effectiveness of dose painting approaches to target tumour hypoxia has been investigated in terms of the predicted tumour control probabilities (TCP) for tumours with dynamic oxygenations. Several levels of resolution for the resistance of the tumour or the planned dose distributions have been investigated. A very fine heterogeneous dose distribution ideally calculated at voxel level for a high target TCP would fail to control a tumour with dynamic oxygenation during the course of fractionated radiotherapy as mismatches between hotspots in the dose distribution and resistant hypoxic foci would lead to a significant loss in TCP. Only adaptive treatment would lead to reasonably high TCP. A coarse resolution for imaging or for dose distributions might compensate microscale mismatches in dynamic tumours, but the resulting tumour control could still be below the target levels. These results indicate that there is a complex relationship between the resolution of the dose-painting-by-numbers approaches and the dynamics of tumour oxygenation. Furthermore, the clinical success of hypoxia targeting strategies in the absence of adaptive approaches might be explained by changes in tumour radiation resistance through reoxygenation.

  • 12.
    Dasu, Alexandru
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Toma-Dasu, Iuliana
    Stockholm University, Sweden.
    Impact of increasing irradiation time on the treatment of prostate cancers2015In: World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada / [ed] Jaffray David A., Springer, 2015, Vol. 51, p. 490-493Conference paper (Refereed)
    Abstract [en]

    This study aimed to investigate the expected impact of intrafraction repair during increasing irradiation times for the treatment of prostate cancers. Lengthy sessions are indeed expected for some advanced irradiation techniques capable to deliver the large fractional doses required by the increased fractionation sensitivity of the prostates. For this purpose, clinically-derived parameters characterizing repair rates and dose response curves for prostate tumors have been used to calculate the expected loss of effectiveness when increasing the irradiation time. The results have shown that treatment sessions lasting more than about 20 to 40 minutes could reduce the probability of biochemical control of prostate tumors by more than 20 to 30 percentage points. These results are in agreement with some observed clinical results and therefore they suggest that treatment durations in prostate radiation therapy should be carefully recorded in order to explicitly account for intrafraction repair, especially when irradiation techniques make use of multiple beams and imaging sessions. Failure to do so might overestimate the expected effectiveness of the treatment and could lead to disappointing clinical results precisely from the demanding treatment modalities expected to increase the therapeutic gain in prostate radiotherapy.

  • 13.
    Dasu, Alexandru
    et al.
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Toma-Dasu, Iuliana
    Stockholm University and Karolinska Institutet.
    Impact of variable RBE on proton fractionation2013In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 40, no 1, p. Article ID 011705-Article in journal (Refereed)
    Abstract [en]

    Purpose: To explore the impact of variable proton RBE on dose fractionation for clinically-relevant situations. A generic RBE=1.1 is generally used for isoeffect calculations, while experimental studies showed that proton RBE varies with tissue type, dose and LET.

    Material and methods: An analytical expression for the LET and α/β dependence of the LQ model has been used for proton simulations in parallel with the assumption of a generic RBE=1.1. Calculations have been performed for ranges of LET values and fractionation sensitivities to describe clinically-relevant cases, like the treatment of H&N and prostate tumors. Isoeffect calculations were compared with predictions from a generic RBE value and reported clinical results.

    Results: The generic RBE=1.1 appears to be a reasonable estimate for the proton RBE of rapidly growing tissues irradiated with low LET radiation. However, the use of a variable RBE predicts larger differences for tissues with low α/β (both tumor and normal) and at low doses per fraction. In some situations these differences may appear in contrast to the findings from photon studies highlighting the importance of accurate accounting for the radiobiological effectiveness of protons. Furthermore, the use of variable RBE leads to closer predictions to clinical results.

    Conclusions: The LET dependence of the RBE has a strong impact on the predicted effectiveness of fractionated proton radiotherapy. The magnitude of the effect is modulated by the fractionation sensitivity and the fractional dose indicating the need for accurate analyses both in the target and around it. Care should therefore be employed for changing clinical fractionation patterns or when analyzing results from clinical studies for this type of radiation.

  • 14.
    Dasu, Alexandru
    et al.
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Toma-Dasu, Iuliana
    Stockholm University and Karolinska Institutet, Stockholm, Sweden.
    Long-term effects and secondary tumors2014In: Comprehensive Biomedical Physics, Volume 9: Radiation Therapy Physics and Treatment Optimization / [ed] Anders Brahme, Amsterdam: Elsevier, 2014, p. 223-233Chapter in book (Refereed)
    Abstract [en]

    The issue of secondary tumours as long-term effects of radiation therapy has gained increased importance as the life expectancy of cancer patients has increased due to improvements in detecting and treating their primary tumours. Current knowledge indicates that radiotherapy leads to a small but significant risk of inducing cancers which is often referred to as the price to pay for the effectiveness of this treatment modality. Nevertheless, the levels of incidence for the long-term effects of radiation therapy may be influenced by many factors that could be both treatment-related and patient-related and therefore proposals have been made to include risk estimations in the process of treatment optimisation. This chapter summarises the current knowledge concerning the induction of secondary cancers after radiotherapy and discusses their consequences for the therapeutic use of ionising radiation.

  • 15.
    Dasu, Alexandru
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. The Skandion Clinic, Uppsala, Sweden.
    Toma-Dasu, Iuliana
    Stockholm University, Sweden; Karolinska Institutet, Sweden .
    Models for the risk of secondary cancers from radiation therapy2017In: Physica medica (Testo stampato), ISSN 1120-1797, E-ISSN 1724-191X, Vol. 42, p. 232-238Article in journal (Refereed)
    Abstract [en]

    The interest in the induction of secondary tumours following radiotherapy has greatly increased as developments in detecting and treating the primary tumours have improved the life expectancy of cancer patients. However, most of the knowledge on the current levels of risk comes from patients treated many decades ago. As developments of irradiation techniques take place at a much faster pace than the progression of the carcinogenesis process, the earlier results could not be easily extrapolated to modern treatments. Indeed, the patterns of irradiation from historically-used orthovoltage radiotherapy and from contemporary techniques like conformal radiotherapy with megavoltage radiation, intensity modulated radiation therapy with photons or with particles are quite different. Furthermore, the increased interest in individualised treatment options raises the question of evaluating and ranking the different treatment plan options from the point of view of the risk for cancer induction, in parallel with the quantification of other long-term effects. It is therefore inevitable that models for risk assessment will have to be used to complement the knowledge from epidemiological studies and to make predictions for newer forms of treatment for which clinical evidence is not yet available. This work reviews the mathematical models that could be used to predict the risk of secondary cancers from radiotherapy-relevant dose levels, as well as the approaches and factors that have to be taken into account when including these models in the clinical evaluation process. These include the effects of heterogeneous irradiation, secondary particles production, imaging techniques, interpatient variability and other confounding factors.

  • 16.
    Dasu, Alexandru
    et al.
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Toma-Dasu, Iuliana
    Stockholm University and Karolinska Institutet.
    Prostate alpha/beta revisited – an analysis of clinical results from 14168 patients2012In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 51, no 8, p. 963-974Article, review/survey (Refereed)
    Abstract [en]

    Purpose: To determine the dose response parameters and the fractionation sensitivity of prostate tumours from clinical results of patients treated with external beam radiotherapy.

    Material and methods: The study was based on 5-year biochemical results from 14168 patients treated with external beam radiotherapy. Treatment data from 11330 patients treated with conventional fractionation have been corrected for overall treatment time and fitted with a logit equation. The results have been used to determine the optimum α/β values that minimise differences in predictions from 2838 patients treated with hypofractionated schedules.

    Results: Conventional fractionation data yielded logit dose response parameters for all risk groups and for all definitions of biochemical failures. The analysis of hypofractionation data led to very low α/β values (1-1.7 Gy) in all mentioned cases. Neglecting the correction for overall treatment time has little impact on the derivation of α/β values for prostate cancers.

    Conclusions: These results indicate that the high fractionation sensitivity is an intrinsic property of prostate carcinomas and they support the use of hypofractionation to increase the therapeutic gain for these tumours.

  • 17.
    Dasu, Alexandru
    et al.
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Toma-Dasu, Iuliana
    Stockholm University.
    Will intrafraction repair have negative consequences on extreme hypofractionation in prostate radiation therapy?2015In: British Journal of Radiology, ISSN 0007-1285, E-ISSN 1748-880X, Vol. 88, no 1056, p. Article ID 20150588-Article in journal (Refereed)
    Abstract [en]

    Objective: The aim of the present study was to investigate the impact of increasing fraction delivery time on the outcome of hypofractionated radiation therapy for prostate cancer.

    Methods: Monoexponential and biexponential repair models have been used for patients with prostate cancer to study the loss of biochemical control at 5 years for several clinically relevant irradiation times. The theoretical predictions were compared with newly reported clinical results from 4607 patients undergoing conventionally fractionated and hypofractionated prostate radiation therapy.

    Results: Time-demanding irradiation techniques appear to lead to biochemical control rates that sometimes are about 10–20 percentage points below predictions that neglect intrafraction repair. This difference appears to be of the same order of magnitude as that predicted by moderately slow to slow repair taking place during the irradiation time. The impact is largest for the patient risk groups receiving doses corresponding to the steepest part of the dose–response curve. By contrast, for treatment techniques requiring irradiation times shorter than about 20 min, the impact of intrafraction repair appears to be much smaller and probably difficult to be observed in the light of other sources of uncertainty in clinical data.

    Conclusion: Neglecting intrafraction repair might overestimate the effectiveness of some treatment schedules and could also influence any subsequent estimations of fractionation sensitivity for prostate tumours.

    Advances in knowledge: The effect of intrafraction repair for prostate cancer should be taken into account for long irradiation sessions as might be expected from scanned beams and/or from multiple intrafraction imaging sessions to check the positioning of the patient.

  • 18.
    Daşu, Alexandru
    et al.
    Umeå University.
    Denekamp, Juliana
    Umeå University.
    Inducible repair and intrinsic radiosensitivity: a complex but predictable relationship?2000In: Radiation Research, ISSN 0033-7587, E-ISSN 1938-5404, Vol. 153, no 3, p. 279-288Article in journal (Refereed)
    Abstract [en]

    Two groups have proposed a simple linear relationship between inducible radioresistance in a variety of mammalian cells and their intrinsic radiosensitivity at 2 Gy (Lambin et al., Int.J. Radiat. Biol. 69, 279-290, 1996; Alsbeih and Raaphorst, unpublished results, 1997). The inducible repair response (IRR) is quantified as a ratio, alpha(S)/alpha(R), i.e. the slope in the hypersensitive low-dose region, alpha(S), relative to the alpha(R) term of the classical linear-quadratic formula. These proposals imply that the intrinsic radiosensitivity at clinically relevant doses is directly linked to the cell's ability to mount an adaptive response as a result of exposure to very low doses of radiation. We have re-examined this correlation and found that the more extensive data set now available in the literature does not support the contention of a simple linear relationship. The two parameters are correlated, but by a much more complex relationship. A more logical fit is obtained with a log-linear equation. A series of log-linear curves are needed to describe the correlation between IRR and SF2, because of the spectrum of alpha/beta ratios among the cell lines and hence the confounding effect of the beta term at a dose of 2 Gy. The degree of repair competence before irradiation starts could also be a major factor in the apparent magnitude of the amount of repair induced. There appears to be a systematic difference in the data sets from different series of cell lines that have been obtained using flow cytometry techniques in the laboratory in Vancouver and using dynamic microscope imaging at the Gray Laboratory. We suggest that the use of a brief exposure to a laser beam in flow cytometry before the cells are irradiated might itself partially induce a stress response and change the DNA repair capacity of the cells. The clinical consequences of the relationship for predicting the benefits of altered fractionation schedules are discussed. [ru5]

  • 19.
    Daşu, Alexandru
    et al.
    Umeå University.
    Denekamp, Juliana
    Umeå University.
    New insights into factors influencing the clinically relevant oxygen enhancement ratio1998In: Radiotherapy and Oncology, ISSN 0167-8140, E-ISSN 1879-0887, Vol. 46, no 3, p. 269-277Article in journal (Refereed)
    Abstract [en]

    BACKGROUND AND PURPOSE: This paper deals with the variations in the oxygen enhancement ratios that could be observed (OER') when comparing oxic and hypoxic cells in different types of fractionated experiments as a consequence of the non-linearity of the underlying cell survival curves. Calculations have been made of the OER' that would be obtained for fractionated irradiations with a series of small doses to allow the comparison of isoeffective doses in oxic and hypoxic conditions. Two styles of fractionated experiment were modelled. In one, the dose per fraction was kept constant in the oxic and hypoxic arms of the experiment, necessitating more fractions in hypoxia to achieve the same level of cell kill. In the other the number of fractions was kept constant and the fraction size was varied to obtain equal levels of damage. The first is the relevant design for the clinic, whereas the second is the design most commonly used in animal studies.

    MATERIALS AND METHODS: Three models of the survival curve were used to simulate the response of cells to radiation injury, all based on the linear quadratic model, but with various added assumptions. A simple classical LQ model is compared with two models in which the concept of inducible repair is added. In one of these the induction dose for 'switching on' the more resistant response is assumed to be increased in hypoxia and in the other it is assumed to be independent of the oxygen tension.

    RESULTS: These calculations show a clear and previously unsuspected dependence of the measured OER' on the design of the fractionated experiment. The values obtained in the clinical and animal types of study differ considerably with all three models. The direction and magnitude of that difference depends critically on the assumptions about the fine structure of the survival curve shape. The authors suggest that the inducible repair version with an oxygen-dependent induction dose is probably the most relevant model. Using this, the measured OER' is reduced at doses around 2 Gy for the clinically relevant design of constant sized fractions to the oxic and hypoxic cells. It may even, in certain model assumptions, fall below unity resulting in an increased sensitivity, not resistance, from the hypoxia.

    CONCLUSIONS: These calculations indicate the urgent need for more knowledge about the fine structure of the low dose region of the survival curves for human tumour cells and especially for comparisons in the presence and absence of oxygen. The extent of the hypersensitivity at very low doses, the trigger dose needed to induce the repair and its oxygen modification may be dominant factors in determining the response of tumour cells to clinically relevant fractionation schedules.

  • 20.
    Daşu, Alexandru
    et al.
    Umeå University.
    Denekamp, Juliana
    Umeå University.
    Superfractionation as a potential hypoxic cell radiosensitizer: prediction of an optimum dose per fraction1999In: International Journal of Radiation Oncology, Biology, Physics, ISSN 0360-3016, E-ISSN 1879-355X, Vol. 43, no 5, p. 1083-1094Article in journal (Refereed)
    Abstract [en]

    PURPOSE: A dose "window of opportunity" has been identified in an earlier modeling study (1) if the inducible repair variant of the LQ model is adopted instead of the pure LQ model, and if all survival curve parameters are equally modified by the presence or absence of oxygen. In this paper we have extended the calculations to consider survival curve parameters from 15 sets of data obtained for cells tested at low doses using clonogenic assays.

    METHODS AND MATERIALS: A simple computer model has been used to simulate the response of each cell line to various doses per fraction in multifraction schedules, with oxic and hypoxic cells receiving the same fractional dose. We have then used pairs of simulated survival curves to estimate the effective hypoxic protection (OER') as a function of the dose per fraction.

    RESULTS: The resistance of hypoxic cells is reduced by using smaller doses per fraction than 2 Gy in all these fractionated clinical simulations, whether using a simple LQ model, or the more complex LQ/IR model. If there is no inducible repair, the optimum dose is infinitely low. If there is inducible repair, there is an optimum dose per fraction at which hypoxic protection is minimized. This is usually around 0.5 Gy. It depends on the dose needed to induce repair being higher in hypoxia than in oxygen. The OER' may even go below unity, i.e. hypoxic cells may be more sensitive than oxic cells.

    CONCLUSIONS: If oxic and hypoxic cells are repeatedly exposed to doses of the same magnitude, as occurs in clinical radiotherapy, the observed hypoxic protection varies with the fractional dose. The OER' is predicted to diminish at lower doses in all cell lines. The loss of hypoxic resistance with superfractionation is predicted to be proportional to the capacity of the cells to induce repair, i.e. their intrinsic radioresistance at a dose of 2 Gy.

  • 21.
    Daşu, Alexandru
    et al.
    Umeå University.
    Denekamp, Juliana
    Umeå University.
    The impact of tissue microenvironment on treatment simulation2003In: Advances in Experimental Medicine and Biology, ISSN 0065-2598, E-ISSN 2214-8019, Vol. 510, p. 63-67Article in journal (Refereed)
  • 22.
    Daşu, Alexandru
    et al.
    Umeå University.
    Fowler, Jack F
    University of Wisconsin Medical School, USA.
    Comments on "Comparison of in vitro and in vivo alpha/beta ratios for prostate cancer"2005In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 50, no 6, p. L1-4Article in journal (Refereed)
    Abstract [en]

    n/a

  • 23.
    Daşu, Alexandru
    et al.
    Umeå University.
    Löfroth, Per-Olov
    Umeå University.
    Wickman, Göran
    Umeå University.
    Liquid ionization chamber measurements of dose distributions in small 6 MV photon beams1998In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 43, no 1, p. 21-36Article in journal (Refereed)
    Abstract [en]

    A new liquid ionization chamber (LIC) design optimized for high spatial resolution was used for measurements of dose distributions in radiation fields intended for stereotactic radiosurgery (SRS). This work was mainly focused on the properties of this detector in radiation fields from linear accelerators for clinical radiotherapy (pulsed radiation with dose rates from approximately 0.5 to 5 Gy min-1 and beam diameters down to 8 mm). The narrow beams used in stereotactic radiosurgery require detectors with small sizes in order to provide a good spatial resolution. The LIC is investigated to see whether it can be used as a detector for dose measurements in beams currently used for stereotactic radiosurgery. Its properties are compared with those of silicon diodes. The comparisons include output factor (OF), depth dose and profile measurements in 6 MV photon fields of different sizes. For OF measurements, an NACP air ionization chamber was also used in the comparison. The dependence of the response on the detector orientation in the photon beam is also investigated for the diodes and the LIC. The results suggest that LICs can provide better properties than diodes for measuring dose distributions in narrow photon beams.

  • 24.
    Daşu, Alexandru
    et al.
    Umeå University.
    Toma-Daşu, Iuliana
    Umeå University.
    Dose-effect models for risk - relationship to cell survival parameters2005In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 44, no 8, p. 829-835Article in journal (Refereed)
    Abstract [en]

    There is an increased interest in estimating the induction of cancers following radiotherapy as the patients have nowadays a much longer life expectancy following the treatment. Clinical investigations have shown that the dose response relationship for cancer induction following radiotherapy has either of two main characteristics: an increase of the risk with dose to a maximum effect followed by a decrease or an increase followed by a levelling-off of the risk. While these behaviours have been described qualitatively, there is no mathematical model that can explain both of them on mechanistic terms. This paper investigates the relationship between the shape of the dose-effect curve and the cell survival parameters of a single risk model. Dose response relationships were described with a competition model which takes into account the probability to induce DNA mutations and the probability of cell survival after irradiation. The shape of the curves was analysed in relation to the parameters that have been used to obtain them. It was found that the two main appearances of clinical data for the induction of secondary cancer following radiotherapy could be the manifestations of the particular sets of parameters that describe the induction of mutations and cell kill for fractionated irradiations. Thus, the levelling off appearance of the dose response curve could be either a sign of moderate to high inducible repair effect in cell survival (but weak for DNA mutations) or the effect of heterogeneity, or both. The bell-shaped appearance encompasses all the other cases. The results also stress the importance of taking into account the details of the clinical delivery of dose in radiotherapy, mainly the fractionated character, as the findings of our study did not appear for single dose models. The results thus indicate that the shapes of clinically observed dose response curves for the induction of secondary cancers can be described by using one single competition model. It was also found that data for cancer induction may be linked to in vivo cell survival parameters that may be used for other modelling applications.

  • 25.
    Daşu, Alexandru
    et al.
    Umeå University.
    Toma-Daşu, Iuliana
    Stockholm University and Karolinska Institutet.
    In response to Dr. Karger et al.2008In: International Journal of Radiation Oncology, Biology, Physics, ISSN 0360-3016, E-ISSN 1879-355X, Vol. 70, no 5, p. 1614-1615Article in journal (Refereed)
    Abstract [en]

    n/a

  • 26.
    Daşu, Alexandru
    et al.
    Norrland University Hospital, Umeå.
    Toma-Daşu, Iuliana
    Stockholm University and Karolinska Institutet.
    The relationship between vascular oxygen distribution and tissue oxygenation2009In: Advances in Experimental Medicine and Biology, ISSN 0065-2598, E-ISSN 2214-8019, Vol. 645, p. 255-260Article in journal (Refereed)
    Abstract [en]

    Tumour oxygenation could be investigated through several methods that use various measuring principles and can therefore highlight its different aspects. The results have to be subsequently correlated, but this might not be straightforward due to intrinsic limitations of the measurement methods. This study describes an analysis of the relationship between vascular and tissue oxygenations that may help the interpretation of results. Simulations have been performed with a mathematical model that calculates the tissue oxygenation for complex vascular arrangements by taking into consideration the oxygen diffusion into the tissue and its consumption at the cells. The results showed that while vascular and tissue oxygenations are deterministically related, the relationship between them is not unequivocal and this could lead to uncertainties when attempting to correlate them. However, theoretical simulation could bridge the gap between the results obtained with various methods.

  • 27.
    Daşu, Alexandru
    et al.
    Umeå University.
    Toma-Daşu, Iuliana
    Umeå University.
    Theoretical simulation of tumour oxygenation--practical applications2006In: Advances in Experimental Medicine and Biology, ISSN 0065-2598, E-ISSN 2214-8019, Vol. 578, no 12, p. 357-362Article in journal (Refereed)
    Abstract [en]

    Theoretical simulation of tissue oxygenation is a robust method that can be used to quantify the tissue oxygenation for a variety of applications. However, it is necessary that the relevant input parameters are used for the model describing the tumour microenvironment. The results of the simulations presented in this article suggest that the accuracy of the simulations depends very much on the method of calculation of the effects of the temporal change of the hypoxic pattern due to the opening and the closure of blood vessels. Thus, the use of average oxygenations might lead to dangerous overestimations of the treatment response. This indicates that care should be taken when incorporating hypoxia information into the biological modelling of tumour response.

  • 28.
    Daşu, Alexandru
    et al.
    Norrland University Hospital.
    Toma-Daşu, Iuliana
    Stockholm University and Karolinska Institutet.
    Treatment modelling: the influence of micro-environmental conditions2008In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 47, no 5, p. 896-905Article in journal (Refereed)
    Abstract [en]

    The interest in theoretical modelling of radiation response has grown steadily from a fast method to estimate the gain of new treatment strategies to an individualisation tool that may be used as part of the treatment planning algorithms. While the advantages of biological optimisation of plans are obvious, accurate theoretical models and realistic information about the micro-environmental conditions in tissues are needed. This paper aimed to investigate the clinical implications of taking into consideration the details of the tumour microenvironmental conditions. The focus was on the availability of oxygen and other nutrients to tumour cells and the relationship between cellular energy reserves and DNA repair ability as this is thought to influence the response of the various hypoxic cells. The choice of the theoretical models for predicting the response (the linear quadratic model or the inducible repair model) was also addressed. The modelling performed in this project has shown that the postulated radiobiological differences between acute and chronic hypoxia have some important clinical implications which may help to understand the mechanism behind the current success rates of radiotherapy. The results also suggested that it is important to distinguish between the two types of hypoxia in predictive assays and other treatment simulations.

  • 29.
    Daşu, Alexandru
    et al.
    Norrland University Hospital.
    Toma-Daşu, Iuliana
    Stockholm University and Karolinska Institutet.
    Vascular oxygen content and the tissue oxygenation--a theoretical analysis2008In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 35, no 2, p. 539-545Article in journal (Refereed)
    Abstract [en]

    Several methods exist for evaluating tumor oxygenation as hypoxia is an important prognostic factor for cancer patients. They use different measuring principles that highlight various aspects of oxygenation. The results could be empirically correlated, but it has been suspected that there could be discordances in some cases. This study describes an analysis of the relationship between vascular and tissue oxygenations. Theoretical simulation has been employed to characterize tissue oxygenations for a broad range of distributions of intervessel distances and vascular oxygenations. The results were evaluated with respect to the implications for practical measurements of tissue oxygenations. The findings showed that although the tissue oxygenation is deterministically related to vascular oxygenation, the relationship between them is not unequivocal. Variability also exists between the fractions of values below the sensitivity thresholds of various measurement methods which in turn could be reflected in the power of correlations between results from different methods or in the selection of patients for prognostic studies. The study has also identified potential difficulties that may be encountered at the quantitative evaluation of the results from oxygenation measurements. These could improve the understanding of oxygenation measurements and the interpretation of comparisons between results from various measurement methods.

  • 30.
    Daşu, Alexandru
    et al.
    Norrland University Hospital, Umeå.
    Toma-Daşu, Iuliana
    Stockholm University and Karolinska Institutet.
    What is the clinically relevant relative biologic effectiveness? A warning for fractionated treatments with high linear energy transfer radiation2008In: International Journal of Radiation Oncology, Biology, Physics, ISSN 0360-3016, E-ISSN 1879-355X, Vol. 70, no 3, p. 867-874Article in journal (Refereed)
    Abstract [en]

    PURPOSE: To study the clinically relevant relative biologic effectiveness (RBE) of fractionated treatments with high linear energy transfer (LET) radiation and to identify the important factors that might influence the transfer of tolerance and curative levels from low LET radiation. These are important questions in the light of the growing interest for the therapeutic use of radiation with higher LET than electrons or photons.

    METHODS AND MATERIALS: The RBE of various fractionated schedules was analyzed with theoretical models for radiation effect, and the resulting predictions were compared with the published clinical and experimental data regarding fractionated irradiation with high LET radiation.

    RESULTS: The clinically relevant RBE increased for greater doses per fraction, in contrast to the predictions from single-dose experiments. Furthermore, the RBE for late-reacting tissues appeared to modify more quickly than that for early-reacting tissues. These aspects have quite important clinical implications, because the increased biologic effectiveness reported for this type of radiation would otherwise support the use of hypofractionation. Thus, the differential between acute and late-reacting tissues could put the late-reacting normal tissues at more risk from high LET irradiation; however, at the same time, it could increase the therapeutic window for slow-growing tumors.

    CONCLUSIONS: The modification of the RBE with the dose per fraction must be carefully taken into consideration when devising fractionated treatments with high LET radiation. Neglecting to do so might result in an avalanche of complications that could obscure the potential advantages of the therapeutic use of this type of radiation.

  • 31.
    Daşu, Alexandru
    et al.
    Umeå University.
    Toma-Daşu, Iuliana
    Umeå University.
    Fowler, Jack F.
    University of Wisconsin Hospital.
    Should single or distributed parameters be used to explain the steepness of tumour control probability curves?2003In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 48, no 3, p. 387-397Article in journal (Refereed)
    Abstract [en]

    Linear quadratic (LQ) modelling allows easy comparison of different fractionation schedules in radiotherapy. However, estimating the radiation effect of a single fractionated treatment introduces many questions with respect to the parameters to be used in the modelling process. Several studies have used tumour control probability (TCP) curves in order to derive the values for the LQ parameters that may be used further for the analysis and ranking of treatment plans. Unfortunately, little attention has been paid to the biological relevance of these derived parameters, either for the initial number of cells or their intrinsic radiosensitivity, or both. This paper investigates the relationship between single values for the TCP parameters and the resulting dose-response curve. The results of this modelling study show how clinical observations for the position and steepness of the TCP curve can be explained only by the choice of extreme values for the parameters, if they are single values. These extreme values are in contradiction with experimental observations. This contradiction suggests that single values for the parameters are not likely to explain reasonably the clinical observations and that some distributions of input parameters should be taken into consideration.

  • 32.
    Daşu, Alexandru
    et al.
    Umeå University.
    Toma-Daşu, Iuliana
    Stockholm University and Karolinska Institutet.
    Franzén, Lars
    Umeå University.
    Widmark, Anders
    Umeå University.
    Nilsson, Per
    Umeå University.
    Secondary malignancies from prostate cancer radiation treatment: a risk analysis of the influence of target margins and fractionation patterns2011In: International journal of radiation oncology, biology, physics, ISSN 1879-355X, Vol. 79, no 3, p. 738-746Article in journal (Refereed)
    Abstract [en]

    PURPOSE: This study explores the implications for cancer induction of treatment details such as fractionation, planning target volume (PTV) definition, and interpatient variations, which are relevant for the radiation treatment of prostate carcinomas.

    METHODS AND MATERIALS: Treatment planning data from 100 patients have been analyzed with a risk model based on the United Nations Scientific Committee on the Effects of Atomic Radiation competition model. The risk model can account for dose heterogeneity and fractionation effects characteristic for modern radiotherapy. Biologically relevant parameters from clinical and experimental data have been used with the model.

    RESULTS: The results suggested that changes in prescribed dose could lead to a modification of the risks for individual organs surrounding the clinical target volume (CTV) but that the total risk appears to be less affected by changes in the target dose. Larger differences are observed for modifications of the margins between the CTV and the PTV because these have direct impact onto the dose level and dose heterogeneity in the healthy tissues surrounding the CTV. Interpatient anatomic variations also have to be taken into consideration for studies of the risk for cancer induction from radiotherapy.

    CONCLUSIONS: The results have shown the complex interplay between the risk for secondary malignancies, the details of the treatment delivery, and the patient heterogeneity that may influence comparisons between the long-term effects of various treatment techniques. Nevertheless, absolute risk levels seem very small and comparable to mortality risks from surgical interventions, thus supporting the robustness of radiation therapy as a successful treatment modality for prostate carcinomas.

  • 33.
    Daşu, Alexandru
    et al.
    Umeå University.
    Toma-Daşu, Iuliana
    Stockholm University and Karolinska Institutet.
    Franzén, Lars
    Umeå University.
    Widmark, Anders
    Umeå University.
    Nilsson, Per
    Umeå University.
    The risk for secondary cancers in patients treated for prostate carcinoma – an analysis with the competition dose response model2009In: IFMBE Proceedings, Vol. 25/III, p. 237-240Article in journal (Refereed)
    Abstract [en]

    The risk for radiation-induced cancers has become increasingly important as patient survival following radiotherapy has increased due to the advent of new methods for early detection and advanced treatment. Attempts have been made to quantify the risk of cancer that may be associated with various treatment approaches, but the accuracy of predictions is rather low due to the influence of many confounding factors. It is the aim of this paper to investigate the impact of dose heterogeneity and inter-patient anatomical heterogeneity that may be encountered in a population of patients undergoing radiotherapy and are thought to influence risk predictions. Dose volume histograms from patients treated with radiation for the carcinoma of the prostate have been used to calculate the risk for secondary malignancies using a competition dose-response model previously developed. Biologically-relevant parameters derived from clinical and experimental data have been used for the model. The results suggested that dose heterogeneity plays an important role in predicting the risk for secondary cancer and that it should be taken into account through the use of dose volume histograms. Consequently, dose-response relationships derived for uniform relationships should be used with care to predict the risk for secondary malignancies in heterogeneously irradiated tissues. Inter-patient differences could lead to considerable uncertainties in the shape of the relationship between predicted risk and average tissue dose, as seen in epidemiological studies. They also lead to rather weak correlations between the risk for secondary malignancies and target volumes. The results stress the importance of taking into account the details of the clinical delivery of dose in radiotherapy for treatment plan evaluation or for retrospective analyses of the induction of secondary cancers. Nevertheless, the levels of risks are generally low and they could be regarded as the price of success for the advances in the radiotherapy of the prostate.

  • 34.
    Daşu, Alexandru
    et al.
    Umeå University.
    Toma-Daşu, Iuliana
    Umeå University.
    Karlsson, Mikael
    Umeå University.
    The effects of hypoxia on the theoretical modelling of tumour control probability2005In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 44, no 6, p. 563-571Article in journal (Refereed)
    Abstract [en]

    Theoretical modelling of tumour response is increasingly used for the prediction of treatment result and has even been proposed as ranking criteria in some algorithms for treatment planning. Tumour response to radiation is greatly influenced by the details of tumour microenvironment, especially hypoxia, that unfortunately are not always taken into consideration for these simulations. This paper intends to investigate the effects of various assumptions regarding hypoxia distribution in tumours on the predictions of treatment outcome. A previously developed model for simulating theoretically the oxygenation in biologically relevant tissues, including results from oxygen diffusion, consumption and perfusion limitations in tumours, was used to investigate the effects of the different aspects of hypoxia on the predictions of treatment outcome. Thus, both the continuous distribution of values and the temporal variation of hypoxia patterns were taken into consideration and were compared with a 'black-and-white' simplification with a fully hypoxic compartment and a fully oxic one. It was found that the full distribution of oxygenation in the tissue is needed for accurate results. The 'black-and-white' simplification, while showing the same general trends for the predictions of radiation response, could lead to serious over-estimations of the tumour control probability. It was also found that the presence of some hypoxia for every treatment fraction leads to a decrease in the predicted local control, regardless of the change of the hypoxic pattern throughout the duration of the whole treatment. The results thus suggest that the assumptions regarding tumour hypoxia influence very much the predictions of treatment outcome and therefore they have to be very carefully incorporated into the theoretical modelling.

  • 35.
    Daşu, Alexandru
    et al.
    Umeå University.
    Toma-Daşu, Iuliana
    Umeå University.
    Karlsson, Mikael
    Umeå University.
    Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia2003In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 48, no 17, p. 2829-2842Article in journal (Refereed)
    Abstract [en]

    The tumour microenvironment is considered to be responsible for the outcome of cancer treatment and therefore it is extremely important to characterize and quantify it. Unfortunately, most of the experimental techniques available now are invasive and generally it is not known how this influences the results. Non-invasive methods on the other hand have a geometrical resolution that is not always suited for the modelling of the tumour response. Theoretical simulation of the microenvironment may be an alternative method that can provide quantitative data for accurately describing tumour tissues. This paper presents a computerized model that allows the simulation of the tumour oxygenation. The model simulates numerically the fundamental physical processes of oxygen diffusion and consumption in a two-dimensional geometry in order to study the influence of the different parameters describing the tissue geometry. The paper also presents a novel method to simulate the effects of diffusion-limited (chronic) hypoxia and perfusion-limited (acute) hypoxia. The results show that all the parameters describing tissue vasculature are important for describing tissue oxygenation. Assuming that vascular structure is described by a distribution of inter-vessel distances, both the average and the width of the distribution are needed in order to fully characterize the tissue oxygenation. Incomplete data, such as distributions measured in a non-representative region of the tissue, may not give relevant tissue oxygenation. Theoretical modelling of tumour oxygenation also allows the separation between acutely and chronically hypoxic cells, a distinction that cannot always be seen with other methods. It was observed that the fraction of acutely hypoxic cells depends not only on the fraction of collapsed blood vessels at any particular moment, but also on the distribution of vessels in space as well. All these suggest that theoretical modelling of tissue oxygenation starting from the basic principles is a robust method that can be used to quantify the tissue oxygenation and to provide input parameters for other simulations.

  • 36.
    Daşu, Alexandru
    et al.
    Umeå University.
    Toma-Daşu, Iuliana
    Umeå University.
    Olofsson, Jörgen
    Umeå University.
    Karlsson, Mikael
    Umeå University.
    The use of risk estimation models for the induction of secondary cancers following radiotherapy2005In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 44, no 4, p. 339-347Article in journal (Refereed)
    Abstract [en]

    Theoretical predictions of cancer risk from radiotherapy may be used as a complementary criterion for the selection of successful treatment plans together with the classical approach of estimating the possible deterministic effects. However, any such attempts must take into consideration the specific features of radiation treatment. This paper explores several possible methods for estimating the risk of cancer following radiotherapy in order to investigate the influences of the fractionation and the non-uniformity of the dose to the irradiated organ. The results indicate that dose inhomogeneity plays an important role in predicting the risk for secondary cancer and therefore for predictive purposes it must be taken into account through the use of the dose volume histograms. They also suggest that the competition between cell killing and the induction of carcinogenic mutations has to be taken into consideration for more realistic risk estimations. Furthermore, more realistic parameters could be obtained if this competition is also included in analyses of epidemiological data from radiotherapy applications.

  • 37.
    Daşu, Iuliana Livia
    et al.
    Umeå University.
    Daşu, Alexandru
    Umeå University.
    Denekamp, Juliana
    Umeå University.
    Fowler, Jack F
    University of Wisconsin Hospital, USA.
    Comments on 'Standard effective doses for proliferative tumours'2000In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 45, no 10, p. L45-L50Article in journal (Refereed)
    Abstract [en]

    n/a

  • 38.
    de las Heras Gala, Hugo
    et al.
    Helmholtz Zentrum München, Munich, Germany.
    Torresin, Alberto
    ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. The Skandion Clinic, Uppsala, Sweden.
    Rampado, Osvaldo
    A.O.U. Città della Salute e della Scienza, Torino, Italy.
    Delis, Harry
    International Atomic Energy Agency, Vienna, Austria.
    Hernández Girón, Irene
    Leiden University Medical Center, Leiden, The Netherlands.
    Theodorakou, Chrysoula
    The Christie NHS Foundation Trust, Manchester, UK.
    Andersson, Jonas
    University of Umeå, Umeå, Sweden.
    Holroyd, John
    Dental X-ray Protection Services, PHE, UK.
    Nilsson, Mats
    Skane University Hospital, Malmö, Sweden.
    Edyvean, Sue
    Public Health England (PHE), Chilton, Didcot, Oxfordshire, UK.
    Gershan, Vesna
    Faculty of Natural Sciences and Mathematics, Skopje, Macedonia.
    Hadid-Beurrier, Lama
    Hôpital Jean-Verdier, Paris, France.
    Hoog, Christopher
    Centre Antoine Lacassagne, Nice, France.
    Delpon, Gregory
    Centre René Gauducheau, Nantes, France.
    Sancho Kolster, Ismael
    Institut Català d’Oncologia, L’Hospitalet de Llobregat, Spain.
    Peterlin, Primož
    Institute of Oncology Ljubljana, Slovenia.
    Garayoa Roca, Julia
    Fundación Jiménez Díaz, Madrid, Spain.
    Caprile, Paola
    Pontificia Universidad Católica de Chile, Santiago, Chile.
    Zervides, Costas
    University of Nicosia, Medical School, Nicosia, Cyprus.
    Quality control in cone-beam computed tomography (CBCT): EFOMP-ESTRO-IAEA protocol2017Report (Refereed)
    Abstract [en]

    Quality control of cone-beam computed tomography (CBCT) systems is an essential part of quality assurance to periodically check that quality requirements are met, reduce uncertainties and errors and reduce the likelihood of accidents and incidents. Radiation exposure levels must be measured to ensure that patient doses associated with CBCT examinations are kept as low as reasonably achievable consistent with the required diagnostic information. The main purpose of this document is to present procedures for quality control of CBCT systems used for dental, radiotherapy, interventional radiology and guided surgery applications.

    The ‘Quality control in cone-beam computed tomography’ is the second of the series on quality control protocols. The European Federation of Organizations for Medical Physics (EFOMP) published the first document on ‘Quality Controls in digital mammography’ in 2015. These books are freely available online at efomp.org and can be used as both, in-depth working guides to everyday practice and an up-to-date reference sources for medical physicists engaged in quality control of medical imaging systems.

    This book is the result of the experience and knowledge of an international group of leading medical physics experts and an excellent illustration of the synergy that can be achieved when every team member works at their best and collaboratively follows the whole process through its completion.

  • 39.
    de las Heras Gala, Hugo
    et al.
    Helmholtz Zentrum München, Munich, Germany.
    Torresin, Alberto
    ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. The Skandion Clinic, Uppsala, Sweden.
    Rampado, Osvaldo
    A.O.U. Città della Salute e della Scienza, Torino, Italy.
    Delis, Harry
    International Atomic Energy Agency, Vienna, Austria.
    Hernández Girón, Irene
    Leiden University Medical Center, Leiden, The Netherlands.
    Theodorakou, Chrysoula
    The Christie NHS Foundation Trust, Manchester, UK.
    Andersson, Jonas
    University of Umeå, Umeå, Sweden.
    Holroyd, John
    Dental X-ray Protection Services, PHE, UK.
    Nilsson, Mats
    Skane University Hospital, Malmö, Sweden.
    Edyvean, Sue
    Public Health England (PHE), Chilton, Didcot, Oxfordshire, UK.
    Gershan, Vesna
    Faculty of Natural Sciences and Mathematics, Skopje, Macedonia.
    Hadid-Beurrier, Lama
    Hôpital Jean-Verdier, Paris, France.
    Hoog, Christopher
    Centre Antoine Lacassagne, Nice, France.
    Delpon, Gregory
    Centre René Gauducheau, Nantes, France.
    Sancho Kolster, Ismael
    Institut Català d’Oncologia, L’Hospitalet de Llobregat, Spain.
    Peterlin, Primož
    Institute of Oncology Ljubljana, Slovenia.
    Garayoa Roca, Julia
    Fundación Jiménez Díaz, Madrid, Spain.
    Caprile, Paola
    Pontificia Universidad Católica de Chile, Santiago, Chile.
    Zervides, Costas
    University of Nicosia, Medical School, Nicosia, Cyprus.
    Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report)2017In: Physica medica (Testo stampato), ISSN 1120-1797, E-ISSN 1724-191X, Vol. 39, p. 67-72Article in journal (Refereed)
    Abstract [en]

    The aim of the guideline presented in this article is to unify the test parameters for image quality evaluation and radiation output in all types of cone-beam computed tomography (CBCT) systems. The applications of CBCT spread over dental and interventional radiology, guided surgery and radiotherapy. The chosen tests provide the means to objectively evaluate the performance and monitor the constancy of the imaging chain. Experience from all involved associations has been collected to achieve a consensus that is rigorous and helpful for the practice.

    The guideline recommends to assess image quality in terms of uniformity, geometrical precision, voxel density values (or Hounsfield units where available), noise, low contrast resolution and spatial resolution measurements. These tests usually require the use of a phantom and evaluation software. Radiation output can be determined with a kerma-area product meter attached to the tube case. Alternatively, a solid state dosimeter attached to the flat panel and a simple geometric relationship can be used to calculate the dose to the isocentre. Summary tables including action levels and recommended frequencies for each test, as well as relevant references, are provided.

    If the radiation output or image quality deviates from expected values, or exceeds documented action levels for a given system, a more in depth system analysis (using conventional tests) and corrective maintenance work may be required.

  • 40.
    Denekamp, Juliana
    et al.
    University Hospital, Umeå.
    Daşu, Alexandru
    Umeå University.
    Inducible repair and the two forms of tumour hypoxia--time for a paradigm shift1999In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 38, no 7, p. 903-918Article in journal (Refereed)
    Abstract [en]

    Clinical experience shows that there is a therapeutic window between 60 and 70 Gy where many tumours are eradicated, but the function of the adjacent normal tissues is preserved. This implies much more cell kill in the tumour than is acceptable in the normal tissue. An SF2 of 0.5 or lower is needed to account for the eradication of all tumour cells, while an SF2 of 0.8 or higher is needed to explain why these doses are tolerated by normal tissues. No such systematic difference is known between the intrinsic sensitivity of well-oxygenated normal and tumour cells. The presence of radioresistant hypoxic cells in tumours makes it even more difficult to understand the clinical success. However, there is experimental evidence that starved cells lose their repair competence as a result of the depletion of cellular energy charge. MRS studies have shown that low ATP levels are a characteristic feature of solid tumours in rodents and man. In this paper we incorporate the concept of repair incompetence in starving, chronically hypoxic cells. The increased sensitivity of such cells has been derived from an analysis of mammalian cell lines showing inducible repair. It is proportional to the SF2 and highest in resistant cells. The distinction between acutely hypoxic radioresistant cells and chronically hypoxic radiosensitive cells provides the key to the realistic modelling of successful radiotherapy. It also opens new conceptual approaches to radiotherapy. We conclude that it is essential to distinguish between these two kinds of hypoxic cells in predictive assays and models.

  • 41.
    Denekamp, Juliana
    et al.
    Umeå University.
    Daşu, Alexandru
    Umeå University.
    Waites, Anthony
    Umeå University.
    Vasculature and microenvironmental gradients: the missing links in novel approaches to cancer therapy?1998In: Advances in Enzyme Regulation, ISSN 0065-2571, E-ISSN 1873-2437, Vol. 38, no 1, p. 281-299Article in journal (Refereed)
    Abstract [en]

    This paper illustrates how the concept of the malignant cell per se as the prime and only target in cancer therapy may be erroneous. The micro-vasculature evoked to satisfy nutritional requirements of solid tumors, and the inadequacy of this nutrition for all tumor cells, provide novel targeting concepts. The vascular architecture and the microenvironmental gradients (VAMP) will differ from one tumor to another and may determine whether current therapies succeed or fail. Many agents have a different toxicity or mode of action at the pathophysiological oxygen tensions that prevail in solid tumors. This warrants more attention. The hypoxic cell or the immature proliferating endothelial cell may provide tumor specificity that is more general than, and greater than, that conferred by the process of malignant transformation. The poor vasculature of solid tumors is often regarded as a problem by the oncologist. It limits the access of cytotoxic drugs, monoclonal antibodies, cytokines, etc. It also leads to hypoxic radioresistance because of diffusion limited chronic hypoxia and perfusion limited intermittent hypoxia, resulting from transient vessel closure. However, it can also be seen as a potential target, since prolonged vessel occlusion can lead to an avalanche of cell death. Strategies to prevent further expansion of the vascular network (anti-angiogenesis) should stabilize tumors and prevent further growth. Vascular targeting, aiming to damage the microvascular function and cause occlusion, can lead to extensive cell death. The target may relate to the excessive proliferation of endothelial cells in tumors or to abnormal functional aspects, such as altered cell shape (influencing permeability) adhesiveness to leukocytes or steps in the coagulation cascade. These microvascular features and microenvironmental gradients, and the phenotypic consequences of them, have been relatively neglected. The altered milieu and inadequate neovasculature is a common feature of all types of solid tumor, whereas the genetic changes that can give rise to a malignancy are very variable, from tumor site to site and even within a site from individual to individual. It seems, therefore, that therapies that could be of widespread general applicability might more easily be found from the micro-environmental or anti-vascular approaches than from gene therapy targeted at specific oncogenes. This approach will require cross fertilisation between scientists from quite disparate backgrounds, whose paths seldom cross, and who may not read, or even scan, each other's literature. If the endothelium or the low oxygen tension in subsets of tumor cells are the key to successful cancer treatment in mice, there are considerable implications for screening methods in vitro and for predictive and prognostic tests made on homogenized tumor samples.

  • 42.
    Denekamp, Juliana
    et al.
    Umeå University.
    Daşu, Alexandru
    Umeå University.
    Waites, Anthony
    Umeå University.
    Littbrand, Bo
    Umeå University.
    Hyperfractionation as an effective way of overcoming radioresistance1998In: International Journal of Radiation Oncology, Biology, Physics, ISSN 0360-3016, E-ISSN 1879-355X, Vol. 42, no 4, p. 705-709Article in journal (Refereed)
    Abstract [en]

    PURPOSE: To model the influence of hypoxic radioprotection in fractionated treatments over a range of fraction sizes. To determine whether there is a "therapeutic window" of dose per fraction where hypoxic radioresistance could be reduced, and if so, where it occurs in different cell lines.

    MATERIALS AND METHODS: A mathematical model has been used to simulate the response of cells to low doses of radiation, in the region of clinical interest. We have used the inducible repair variant of the linear quadratic (LQ) equation, with a hypersensitive region (alphaS) at low doses that gradually transforms to the accepted "resistance" in the shoulder region (alphaR). It contains two new parameters, the ratio alphaS/alphaR, and D(C). We have accepted that the "induction dose" D(C) is modified by anoxia to the same extent as the other parameters. We have initially modeled using theoretical parameters and then checked the conclusions with 14 sets of published experimental data for cell lines investigated for inducible repair.

    RESULTS: We have computed the clinical hypoxic protection (OER') as a function of dose per fraction in simulations of clinical fractionated schedules. We have identified a therapeutic window in terms of dose per fraction at about 0.5 Gy, where the OER' is minimized, regardless of the precise cell survival curve parameters. The minimum OER' varies from one cell line to another, falling to about 1.0 if alphaS/alphaR = 6-10 and even far below 1.0 if alphaS/alphaR > or = 20.

    DISCUSSION: Hyperfractionation using 0.5 Gy fractions may therefore be more effective than oxygen mimetic chemical sensitizers, since it could even make some tumor cells more sensitive than oxic normal tissues. The tumor lines that benefit most from this type of sensitization are those with the highest intrinsic oxic radioresistance, i.e. those with high SF2 values.

  • 43.
    Droog Tesselaar, Erik
    et al.
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Flejmer, Anna M.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. The Skandion Clinic, Uppsala, Sweden.
    Changes in skin microcirculation during radiation therapy for breast cancer2017In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 56, no 8, p. 1072-1080Article in journal (Refereed)
    Abstract [en]

    Abstract:

    Background: The majority of breast cancer patients who receive radiation treatment are affected by acute radiation-induced skin changes. The assessment of these changes is usually done by subjective methods, which complicates the comparison between different treatments or patient groups. This study investigates the feasibility of new robust methods for monitoring skin microcirculation to objectively assess and quantify acute skin reactions during radiation treatment.

    Material and methods: Laser Doppler flowmetry, laser speckle contrast imaging, and polarized light spectroscopy imaging were used to measure radiation-induced changes in microvascular perfusion and red blood cell concentration (RBC) in the skin of 15 patients undergoing adjuvant radiation therapy for breast cancer. Measurements were made before treatment, once a week during treatment, and directly after the last fraction.

    Results: In the treated breast, perfusion and RBC concentration were increased after 1–5 fractions (2.66–13.3 Gy) compared to baseline. The largest effects were seen in the areola and the medial area. No changes in perfusion and RBC concentration were seen in the untreated breast. In contrast, Radiation Therapy Oncology Group (RTOG) scores were increased only after 2 weeks of treatment, which demonstrates the potential of the proposed methods for early assessment of skin changes. Also, there was a moderate to good correlation between the perfusion (r = 0.52) and RBC concentration (r = 0.59) and the RTOG score given a week later.

    Conclusion: We conclude that radiation-induced microvascular changes in the skin can be objectively measured using novel camera-based techniques before visual changes in the skin are apparent. Objective measurement of microvascular changes in the skin may be valuable in the comparison of skin reactions between different radiation treatments and possibly in predicting acute skin effects at an earlier stage.

  • 44.
    Flejmer, Anna M.
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Chehrazi, Behnaz
    Department of Physics, Stockholm University, Stockholm, Sweden.
    Josefsson, Dan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Toma-Dasu, Iuliana
    Medical Radiation Physics, Stockholm University and Karolinska Institutet, Stockholm, Sweden.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. The Skandion Clinic, Uppsala, Sweden .
    Impact of physiological breathing motion for breast cancer radiotherapy with proton beam scanning: An in silico study2017In: Physica medica (Testo stampato), ISSN 1120-1797, E-ISSN 1724-191X, Vol. 39, p. 88-94Article in journal (Refereed)
    Abstract [en]

    This study investigates the impact of breathing motion on proton breast treatment plans. Twelve patients with CT datasets acquired during breath-hold-at-inhalation (BHI), breath-hold-at-exhalation (BHE) and in free-breathing (FB) were included in the study. Proton plans were designed for the left breast for BHI and subsequently recalculated for BHE or designed for FB and recalculated for the extreme breath-hold phases. The plans were compared from the point of view of their target coverage and doses to organs-at-risk. The median amplitude of breathing motion determined from the positions of the sternum was 4.7 mm (range 0.5-14.6 mm). Breathing motion led to a degradation of the dose coverage of the target (heterogeneity index increased from 4-7% to 8-11%), but the degraded values of the dosimetric parameters of interest fulfilled the clinical criteria for plan acceptance. Exhalation decreased the lung burden [average dose 3.1-4.5 Gy (RBE)], while inhalation increased it [average dose 5.8-6.8 Gy (RBE)]. The individual values depended on the field arrangement. Smaller differences were seen for the heart [average dose 0.1-0.2 Gy (RBE)] and the LAD [1.9-4.6 Gy (RBE)]. Weak correlations were generally found between changes in dosimetric parameters and respiratory motion. The differences between dosimetric parameters for various breathing phases were small and their expected clinical impact is consequently quite small. The results indicated that the dosimetric parameters of the plans corresponding to the extreme breathing phases are little affected by breathing motion, thus suggesting that this motion might have little impact for the chosen beam orientations with scanned proton beams.

  • 45.
    Flejmer, Anna M.
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Dohlmar, Frida
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Nilsson, Mats
    Futurum - Academy for Health and Care, Jönköping.
    Stenmarker, Margaretha
    Futurum - Academy for Health and Care, Jönköping.
    Dasu, Alexandru
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Analytical Anisotropic Algorithm versus Pencil Beam Convolution for treatment planning of breast cancer: implications for target coverage and radiation burden of normal tissue2015In: Anticancer Research, ISSN 0250-7005, E-ISSN 1791-7530, Vol. 35, no 5, p. 2841-2848Article in journal (Refereed)
    Abstract [en]

    Aim: The present study aimed to investigate the implications of using the analytical anisotropic algorithm (AAA) for calculation of target coverage and radiation burden of normal tissues. Most model parameters, recommendations and planning guidelines associated with a certain outcome are from the era of pencil beam convolution (PBC) calculations on relatively simple assumptions of energy transport in media. Their relevance for AAA calculations that predict more realistic dose distributions needs to be evaluated. Patients and Methods: Forty patients with left-sided breast cancer receiving 3D conformal radiation therapy were planned using PBC with a standard protocol with 50 Gy in 25 fractions according to existing re-commendations. The plans were subsequently recalculated with the AAA and relevant dose parameters were determined and compared to their PBC equivalents. Results: The majority of the AAA-based plans had a significantly worse coverage of the planning target volume and also a higher maximum dose in hotspots near sensitive structures, suggesting that these criteria could be relaxed for AAA-calculated plans. Furthermore, the AAA predicts higher volumes of the ipsilateral lung will receive doses below 25 Gy and smaller volume doses above 25 Gy. These results indicate that lung tolerance criteria might also have to be relaxed for AAA planning in order to maintain the level of normal tissue toxicity. The AAA also predicts lower doses to the heart, thus indicating that this organ might be more sensitive to radiation than thought from PBC-based calculations. Conclusion: The AAA should be preferred over the PBC algorithm for breast cancer radiotherapy as it gives more realistic dose distributions. Guidelines for plan acceptance might have to be re-evaluated to account for differences in dose predictions in order to maintain the current levels of control and complication rates. The results also suggest an increased radiosensitivity of the heart, thus indicating that a revision of the current models for cardiovascular complications may be needed.

  • 46.
    Flejmer, Anna M.
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Edvardsson, Anneli
    Lund University, Sweden.
    Dohlmar, Frida
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Josefsson, Dan
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Nilsson, Mats
    Futurum - Academy for Health and Care, Jönköping, Sweden.
    Witt Nyström, Petra
    Uppsala University Hospital, Sweden.
    Dasu, Alexandru
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Respiratory gating for proton beam scanning versus photon 3D-CRT for breast cancer radiotherapy2016In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 55, no 5, p. 577-583Article in journal (Refereed)
    Abstract [en]

    Background Respiratory gating and proton therapy have both been proposed to reduce the cardiopulmonary burden in breast cancer radiotherapy. This study aims to investigate the additional benefit of proton radiotherapy for breast cancer with and without respiratory gating.

    Material and methods Twenty left-sided patients were planned on computed tomography (CT)-datasets acquired during enhanced inspiration gating (EIG) and free-breathing (FB), using photon three-dimensional conformal radiation therapy (3D-CRT) and scanned proton beams. Ten patients received treatment to the whole breast only (WBO) and 10 were treated to the breast and the regional lymph nodes (BRN). Dosimetric parameters characterizing the coverage of target volumes and the cardiopulmonary burden were compared using a paired, two-tailed Student’s t-test.

    Results Protons ensured comparable or better target coverage than photons in all patients during both EIG and FB. The heterogeneity index decreased from 12% with photons to about 5% with protons. The mean dose to the ipsilateral lung was reduced in BRN patients from 12 Gy to 7 Gy (RBE) in EIG and from 14 Gy to 6-7 Gy (RBE) in FB, while for WBO patients all values were about 5-6 Gy (RBE). The mean dose to heart decreased by a factor of four in WBO patients [from 1.1 Gy to 0.3 Gy (RBE) in EIG and from 2.1 Gy to 0.5 Gy (RBE) in FB] and 10 in BRN patients [from 2.1 Gy to 0.2 Gy (RBE) in EIG and from 3.4 Gy to 0.3 Gy (RBE) in FB]. Similarly, the mean and the near maximum dose to left anterior descending artery (LAD) were significantly lower (p<0.05) with protons in comparison with photons.

    Conclusion Proton spot scanning has a high potential to reduce the irradiation of organs at risk and other normal tissues for most patients, beyond what could be achieved with EIG and photon therapy. The largest dose sparing has been seen for BRN patients, both in terms of cardiopulmonary burden and integral dose.

  • 47.
    Flejmer, Anna M.
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Josefsson, Dan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Nilsson, Mats
    Futurum - Academy for Health and Care, Jönköping.
    Stenmarker, Margaretha
    Futurum - Academy for Health and Care, Jönköping.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Clinical implications of the ISC technique for breast cancer radiotherapy and comparison with clinical recommendations2014In: Anticancer Research, ISSN 0250-7005, E-ISSN 1791-7530, Vol. 34, no 7, p. 3563-3568Article in journal (Refereed)
    Abstract [en]

    Purpose: The project studied the implications of using the irregular surface compensator (ISC) technique in comparison to three-dimensional conformal radiation therapy (3D-CRT) for breast cancer treatment. ISC is an electronic compensation algorithm that modulates the fluence across the radiation fields to compensate for irregularly shaped surfaces and deliver a homogeneous dose to a compensation plane. Methods: Ten breast cancer patients (five left- and five right-sided) were planned with both techniques. The planning was done for 50 Gy in 25 fractions with 2 Gy per fraction in all patients. Physical parameters such as doses to the clinical target volume (CTV-T) and the planned target volume (PTV), heterogeneity index and doses to lung and heart were determined and compared for the treatment plans. Results: The ISC technique led to significantly better coverage of the CTV-T and PTV in almost all patients with statistically significant better homogeneity of the dose distribution. The contralateral lung and the heart receive the same doses with both ISC and 3D-CRT plans. However, ISC showed a trend towards decreasing the volumes of the ipsilateral lung irradiated with high doses. Consequently this led to better compliance with the national recommendations for breast radiotherapy. Conclusion: The ISC technique leads to an improvement of the target coverage and the radiation burden of the ipsilateral lung thus allowing better compliance with the national recommendations and increasing the potential for improved quality of life for breast cancer patients. It should therefore be preferred over 3D-CRT for breast cases with difficult dose homogeneity to the PTV or CTV-T.

    Download full text (pdf)
    fulltext
  • 48.
    Flejmer, Anna M.
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Witt Nyström, Petra
    Uppsala University Hospital.
    Dohlmar, Frida
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Josefsson, Dan
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Dasu, Alexandru
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Potential benefit of scanned proton beam versus photons as adjuvant radiation therapy in breast cancer2015In: International Journal of Particle Therapy, ISSN 2331-5180, Vol. 1, no 4, p. 845-855Article in journal (Refereed)
    Abstract [en]

    Purpose: To investigate the feasibility of using scanned proton beams as adjuvant radiation therapy for breast cancer. Long-term cardiopulmonary complications may worsen the quality of life and reduce the positive contribution of radiation therapy, which has been known to improve long-term control of locoregional disease as well as the long-term survival for these patients.

    Materials and Methods: Ten patients with stage I-III cancer (either after mastectomy or lumpectomy, left- or right-sided) were included in the study. The patients were identified from a larger group where dose heterogeneity in the target and/or hotspots in the normal tissues qualified them for irregular surface compensator planning with photons. The patients underwent planning with 2 scanned proton beam planning techniques, single-field uniform dose and intensity-modulated proton therapy, and the results were compared with those from irregular surface compensator. All volumes of interest were delineated and reviewed by experienced radio-oncologists. The patients were prescribed 50 GyRBE in 25 fractions. Dosimetric parameters of interest were compared with a paired, 2-tailed Student t test.

    Results: The proton plans showed comparable or better target coverage than the original photon plans. There were also large reductions with protons in mean doses to the heart (0.2 versus 1.3 GyRBE), left anterior descending artery (1.4 versus 6.4 GyRBE), and the ipsilateral lung (6.3 versus 7.7 GyRBE). This reduction is important from the point of view of the quality of life of the patients after radiation therapy. No significant differences were found between single-field uniform dose and intensity-modulated proton therapy plans.

    Conclusion: Spot scanning technique with protons may improve target dose homogeneity and further reduce doses to the organs at risk compared with advanced photon techniques. The results from this study indicate a potential for protons as adjuvant radiation therapy in breast cancer and a further step toward the individualization of treatment based on anatomic and comorbidity characteristics.

  • 49.
    Fowler, Jack F.
    et al.
    University of Wisconsin Medical School, Madison, WI, USA.
    Dasu, Alexandru
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Toma-Dasu, Iuliana
    Stockholm University and Karolinska Institutet.
    Optimum overall treatment time in radiation oncology2015Book (Refereed)
    Abstract [en]

    John "Jack" Fowler has been a busy radiation biology researcher and teacher. He has written 581 papers over the last 65 plus years. He has also received nearly every honor the medical physics field can bestow. But Jack is not done. He says it is time he wrote a book. Jack's new book, Optimum overall treatment time in radiation oncology, sums up the key concepts relating to optimum fractionation in radiation therapy that have interested him all these years.

  • 50.
    Fowler, Jack F.
    et al.
    University of Wisconsin Medical School, Madison, WI, USA.
    Toma-Dasu, Iuliana
    Stockholm University and Karolinska Institutet, Stockholm, Sweden .
    Dasu, Alexandru
    Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Is the α/β ratio for prostate tumours really low and does it vary with the level of risk at diagnosis?2013In: Anticancer Research, ISSN 0250-7005, E-ISSN 1791-7530, Vol. 33, no 3, p. 1009-1011Article in journal (Refereed)
    Abstract [en]

    Aim: To answer the questions: Is the α/β ratio (radiosensitivity to size of dose-per-fraction) really low enough to justify using a few large dose fractions instead of the traditional many small doses? Does this parameter vary with prognostic risk factors? Methods and Materials: Three large statistical overviews are critiqued, with results for 5,000, 6,000 and 14,000 patients with prostate carcinoma, respectively. Results: These major analyses agree in finding the average α/β ratio to be less than 2 Gy: 1.55 (95% confidence interval=0.46-4.52), 1.4 (0.9-2.2), and the third analysis 1.7 (1.4-2.2) by ASTRO and 1.6 (1.2-2.2) by Phoenix criteria. All agree that α/β values do not vary significantly with the low, intermediate, high and “all included” risk factors. Conclusion: The high sensitivity to dose-per-fraction is an intrinsic property of prostate carcinomas and this supports the use of hypofractionation to increase the therapeutic gain for these tumours with dose-volume modelling to reduce the risk of late complications in rectum and bladder.

12 1 - 50 of 88
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf