liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jonson, Maria
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Carlback, Marcus
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Michno, Wojciech
    Univ Gothenburg, Sweden.
    Hanrieder, Jorg
    Univ Gothenburg, Sweden; UCL, England.
    Starkenberg, Annika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Peter, K.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Thor, Stefan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Hematopoiesis and Developmental Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Amyloid fibril polymorphism and cell-specific toxicity in vivo2019In: Amyloid: Journal of Protein Folding Disorders, ISSN 1350-6129, E-ISSN 1744-2818, Vol. 26, no sup1, p. 136-137Article in journal (Refereed)
    Abstract [en]

    n/a

  • 2.
    Jonsson, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Carlback, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Michno, Wojciech
    Univ Gothenburg, Sweden.
    Hanrieder, Jorg
    Univ Gothenburg, Sweden; UCL, England.
    Starkenberg, Annika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Thor, Stefan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Aggregated A beta 1-42 Is Selectively Toxic for Neurons, Whereas Glial Cells Produce Mature Fibrils with Low Toxicity in Drosophila2018In: Cell Chemical Biology, ISSN 2451-9456, E-ISSN 2451-9448, Vol. 25, no 5, p. 595-610Article in journal (Refereed)
    Abstract [en]

    The basis for selective vulnerability of certain cell types for misfolded proteins (MPs) in neurodegenerative diseases is largely unknown. This knowledge is crucial for understanding disease progression in relation to MPs spreading in the CNS. We assessed this issue in Drosophila by cell-specific expression of human A beta 1-42 associated with Alzheimers disease. Expression of A beta 1-42 in various neurons resulted in concentration-dependent severe neurodegenerative phenotypes, and intraneuronal ringtangle-like aggregates with immature fibril properties when analyzed by aggregate-specific ligands. Unexpectedly, expression of A beta 1-42 from a pan-glial driver produced a mild phenotype despite massive brain load of A beta 1-42 aggregates, even higher than in the strongest neuronal driver. Glial cells formed more mature fibrous aggregates, morphologically distinct from aggregates found in neurons, and was mainly extracellular. Our findings implicate that A beta 1-42 cytotoxicity is both cell and aggregate morphotype dependent.

  • 3. Order onlineBuy this publication >>
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Polymorphic protein aggregation in tauopathies2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Alzheimer’s disease(s) comprises one of the most common and costly neurodegenerative diseases. With a larger population and an increasing life expectancy, amyloid diseases (with age as one of the most prominent risk factors) will generate an even larger burden on healthcare. We know that protein misfolding is involved in the disease process but lack a complete understanding of the mechanism behind these diseases, both the sporadic and hereditary variants. It is not always known whether it is a gain-of-toxic function or loss‐of‐function that causes the neurodegeneration. To determine the correct diagnosis is a major challenge. If diagnosed, only a few amyloid diseases can be treated today.

    Amyloids are highly ordered filamentous protein aggregates with a β‐sheet structure. From identical or similar amino acid sequences, a large variety of structures can be formed by different secondary and tertiary structures and by different packing of the individual filaments. This is known as fibril polymorphism.

    This work focuses on characterization on two proteins involved in Alzheimer’s disease and other neurodegenerative diseases, namely Amyloid‐β (Aβ) and microtubule associated protein tau (tau). In order to investigate the properties of these proteins in vitro it is important to have protocols for production of recombinant protein that enables characterization of these aggregation prone proteins. We present protocols for recombinant expression, purification and non‐denaturing fibrillation assays used in our lab to produce and analyze Aβ, tau and the prion protein.

    Development of new ligands for characterization of fibrils is an important way of investigating different fibrillary structures and characterizing and distinguishing between the different polymorphs of aggregates. We showed that the central benzene ring of the amyloid ligand X‐34 can be exchanged for other heterocyclic motifs and still retain targeting of the “Congo red” binding site. The compounds do not compete with the Pittsburgh compound B (PiB) binding site on recombinant Aβ fibrils.

    We also characterized tau fibrils formed from seeding with tau aggregates from patients diagnosed with different neurodegenerative tauopathies. We use aggregation kinetics to test the seeding activity on two different sequence isoforms of tau, 0N3R and 0N4R. Fibrillation kinetics, an array of recently developed ligands (including the X‐34 analogs) and electron microscopy were used to characterize different polymorphs of the tau aggregates formed by seeded templating from patient derived seeds. Our data showed that brains contain seeds with different morphologies even with in patients diagnosed with the same disease.

    Investigations of the rare tau mutant G273R found in a patient with a presumed tauopathy also highlights the problem with proper diagnostics. Our results reveal that in vitro this mutation change the binding properties of 0N4R tau to the cytoskeletal proteins microtubule and F‐actin. Furthermore, we could show that when seeded, the fibril formation seeding activity followed a sequence similarity dependent manner. In fibrils formed during heparin-induced aggregation we can be distinguished between wild type and mutant tau as they form fibrils with different thickness. Our in vitro biophysical data support that the G237R mutant is causing a 4R tauopathy.

    The work in this thesis increase our knowledge in the field of tau aggregation and tau fibril polymorphism.

    List of papers
    1. Purification and Fibrillation of Recombinant Human Amyloid-ß, Prion Protein, and Tau Under Native Conditions
    Open this publication in new window or tab >>Purification and Fibrillation of Recombinant Human Amyloid-ß, Prion Protein, and Tau Under Native Conditions
    2018 (English)In: Amyloid Proteins: Methods and Protocols / [ed] Einar M. Sigurdsson, Miguel Calero and María Gasset, Humana Press, 2018, Vol. 1779, p. 147-166Chapter in book (Refereed)
    Abstract [en]

    Protein misfolding, aggregation, and amyloid formation is involved in a large number of diseases. Recombinantly expressed proteins to study the amyloid fibril formation process are important for mechanistic studies. We here report protocols for production, purification, and fibrillation of three different proteins commonly found in cerebral amyloid; Aß and Tau found in Alzheimers disease, Chronic traumatic brain injury, Corticobasal degeneration, and Progressive Supranuclear Palsy and human prion protein found in Creutzfeldt-Jakobs disease. The three protocols have in common that the protein is in a pH-neutral phosphate saline buffer during fibrillation to mimic their endogenous near physiological environment.

    Place, publisher, year, edition, pages
    Humana Press, 2018
    Series
    Methods in Molecular Biology, E-ISSN 1940-6029 ; 1779
    Keywords
    Amyloid; Aß; Fibrillation; Neurodegenerative disease; Prion protein; Purification; Recombinant; Tau
    National Category
    Clinical Laboratory Medicine
    Identifiers
    urn:nbn:se:liu:diva-152517 (URN)10.1007/978-1-4939-7816-8_10 (DOI)29886532 (PubMedID)9781493978151 (ISBN)9781493978168 (ISBN)
    Available from: 2019-03-28 Created: 2019-03-28 Last updated: 2019-11-08
    2. Detection and Imaging of A beta 1-42 and Tau Fibrils by Redesigned Fluorescent X-34 Analogues
    Open this publication in new window or tab >>Detection and Imaging of A beta 1-42 and Tau Fibrils by Redesigned Fluorescent X-34 Analogues
    Show others...
    2018 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, no 28, p. 7210-7216Article in journal (Refereed) Published
    Abstract [en]

    We revisited the Congo red analogue 2,5-bis(4-hydroxy-3-carboxy-styryl)benzene (X-34) to develop this highly fluorescent amyloid dye for imaging Alzheimers disease (AD) pathology comprising A beta and Tau fibrils. A selection of ligands with distinct optical properties were synthesized by replacing the central benzene unit of X-34, with other heterocyclic moieties. Full photophysical characterization was performed, including recording absorbance and fluorescence spectra, Stokes shift, quantum yield and fluorescence lifetimes. All ligands displayed high affinity towards recombinant amyloid fibrils of A beta 1-42 (13-300nmK(d)) and Tau (16-200nmK(d)) as well as selectivity towards the corresponding disease-associated protein aggregates in AD tissue. We observed that these ligands efficiently displaced X-34, but not Pittsburgh compound B (PiB) from recombinant A beta 1-42 amyloid fibrils, arguing for retained targeting of the Congo red type binding site. We foresee that the X-34 scaffold offers the possibility to develop novel high-affinity ligands for A pathology found in human AD brain in a different mode compared with PiB, potentially recognizing different polymorphs of A fibrils.

    Place, publisher, year, edition, pages
    WILEY-V C H VERLAG GMBH, 2018
    Keywords
    Alzheimers disease; amyloid ligands; dyes/pigments; fluorescence; microscopy
    National Category
    Organic Chemistry
    Identifiers
    urn:nbn:se:liu:diva-148653 (URN)10.1002/chem.201800501 (DOI)000434074800013 ()29543355 (PubMedID)
    Note

    Funding Agencies|China Scholarship Council; Swedish Research Council [2015-04521]; Goran Gustafsson Foundation; Swedish Alzheimer Foundation; Swedish Brain foundation; Linkoping University (LiU-Neuro); NIH/NINDS [R21 NS080576]

    Available from: 2018-06-18 Created: 2018-06-18 Last updated: 2019-11-08
  • 4.
    Sandberg, Alexander
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Purification and Fibrillation of Recombinant Human Amyloid-ß, Prion Protein, and Tau Under Native Conditions2018In: Amyloid Proteins: Methods and Protocols / [ed] Einar M. Sigurdsson, Miguel Calero and María Gasset, Humana Press, 2018, Vol. 1779, p. 147-166Chapter in book (Refereed)
    Abstract [en]

    Protein misfolding, aggregation, and amyloid formation is involved in a large number of diseases. Recombinantly expressed proteins to study the amyloid fibril formation process are important for mechanistic studies. We here report protocols for production, purification, and fibrillation of three different proteins commonly found in cerebral amyloid; Aß and Tau found in Alzheimers disease, Chronic traumatic brain injury, Corticobasal degeneration, and Progressive Supranuclear Palsy and human prion protein found in Creutzfeldt-Jakobs disease. The three protocols have in common that the protein is in a pH-neutral phosphate saline buffer during fibrillation to mimic their endogenous near physiological environment.

  • 5.
    Zhang, Jun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Konsmo, Audun
    Norwegian Univ Sci and Technol, Norway.
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Wu, Xiongyu
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Obermuller, Ulrike
    Univ Tubingen, Germany; DZNE German Ctr Neurodegenerat Dis, Germany.
    Wegenast-Braun, Bettina M.
    Univ Tubingen, Germany; DZNE German Ctr Neurodegenerat Dis, Germany.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Lindgren, Mikael
    Norwegian Univ Sci and Technol, Norway.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Phenolic Bis-styrylbenzo[c]-1,2,5-thiadiazoles as Probes for Fluorescence Microscopy Mapping of A beta Plaque Heterogeneity2019In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 62, no 4, p. 2038-2048Article in journal (Refereed)
    Abstract [en]

    A fluorescent bis-styryl-benzothiadiazole (BTD) with carboxylic acid functional groups (X-34/Congo red analogue) showed lower binding affinity toward A beta 1-42 and A beta 1-40 fibrils than its neutral analogue. Hence, variable patterns of neutral OH-substituted bis-styryl-BTDs were generated. All bis-styryl-BTDs showed higher binding affinity to A beta 1-42 fibrils than to A beta 1-40 fibrils. The para-OH on the phenyl rings was beneficial for binding affinity while a meta-OH decreased the affinity. Differential staining of transgenic mouse A beta amyloid plaque cores compared to peripheral coronas using neutral compared to anionic bis-styryl ligands indicate differential recognition of amyloid polymorphs. Hyperspectral imaging of transgenic mouse A beta plaque stained with uncharged para-hydroxyl substituted bis-styryl-BTD implicated differences in binding site polarity of polymorphic amyloid plaque. Most properties of the corresponding bis-styryl-BTD were retained with a rigid alkyne linker rendering a probe insensitive to cis trans isomerization. These new BTDbased ligands are promising probes for spectral imaging of different A beta fibril polymorphs.

  • 6.
    Zhang, Jun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Konsmo, Audun
    Norwegian Univ Sci and Technol, Norway.
    Wu, Xiongyu
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    LeVine, Harry III
    Univ Kentucky, KY 40536 USA.
    Lindgren, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Norwegian Univ Sci and Technol, Norway.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Detection and Imaging of A beta 1-42 and Tau Fibrils by Redesigned Fluorescent X-34 Analogues2018In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, no 28, p. 7210-7216Article in journal (Refereed)
    Abstract [en]

    We revisited the Congo red analogue 2,5-bis(4-hydroxy-3-carboxy-styryl)benzene (X-34) to develop this highly fluorescent amyloid dye for imaging Alzheimers disease (AD) pathology comprising A beta and Tau fibrils. A selection of ligands with distinct optical properties were synthesized by replacing the central benzene unit of X-34, with other heterocyclic moieties. Full photophysical characterization was performed, including recording absorbance and fluorescence spectra, Stokes shift, quantum yield and fluorescence lifetimes. All ligands displayed high affinity towards recombinant amyloid fibrils of A beta 1-42 (13-300nmK(d)) and Tau (16-200nmK(d)) as well as selectivity towards the corresponding disease-associated protein aggregates in AD tissue. We observed that these ligands efficiently displaced X-34, but not Pittsburgh compound B (PiB) from recombinant A beta 1-42 amyloid fibrils, arguing for retained targeting of the Congo red type binding site. We foresee that the X-34 scaffold offers the possibility to develop novel high-affinity ligands for A pathology found in human AD brain in a different mode compared with PiB, potentially recognizing different polymorphs of A fibrils.

  • 7.
    Zhang, Jun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Wu, Xiongyu
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Lindgren, Mikael
    Department of Physics, The Norwegian University of Science and Technology, Trondheim, Norway.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    trans-Stilbenoids with Extended Fluorescence Lifetimes for the Characterization of Amyloid Fibrils2017In: ACS Omega, ISSN 2470-1343, Vol. 2, no 8, p. 4693-4704Article in journal (Refereed)
    Abstract [en]

    It was previously reported that two naphthyl-based trans-stilbene probes, (E)-4-(2-(naphthalen-1-yl)vinyl)benzene-1,2-diol (1) and (E)-4-(2-(naphthalen-2-yl)vinyl)benzene-1,2-diol (3), can bind to both native transthyretin (TTR) and misfolded protofibrillar TTR at physiological concentrations, displaying distinct emission maxima bound to the different conformational states (>100 nm difference). To further explore this amyloid probe scaffold to obtain extended fluorescence lifetimes, two new analogues with expanded aromatic ring systems (anthracene and pyrene), (E)-4-(2-(anthracen-2-yl)vinyl)benzene-1,2-diol (4) and (E)-4-(2-(pyren-2-yl)vinyl)benzene-1,2-diol (5), were synthesized employing the palladium-catalyzed Mizoroki–Heck reaction. (E)-4-Styrylbenzene-1,2-diol (2), 3, 4, and 5 were investigated with respect to their photophysical properties in methanol and when bound to insulin, lysozyme, and Aβ1-42 fibrils, including time-resolved fluorescence measurements. In conclusion, 4 and 5 can bind to both native and fibrillar TTR, becoming highly fluorescent. Compounds 2–5 bind specifically to insulin, lysozyme, and Aβ1-42 fibrils with an apparent fluorescence intensity increase and moderate binding affinities. The average fluorescence lifetimes of the probes bound to Aβ1-42 fibrils are 1.3 ns (2), 1.5 ns (3), 5.7 ns (4), and 29.8 ns (5). In summary, the variable aromatic moieties of the para-positioned trans-stilbenoid vinyl-benzene-1,2-diol with benzene, naphthalene, anthracene, and pyrene showed that the extended conjugated systems retained the amyloid targeting properties of the probes. Furthermore, both the anthracene and pyrene moieties extensively enhanced the fluorescence intensity and prolonged lifetimes. These attractive probe properties should improve amyloid detection and characterization by fluorescence-based techniques.

  • 8.
    Zhang, Jun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Wang, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering.
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Wu, Xiongyu
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    LeVine, Harry III
    Sanders-Brown Center on Aging, University of Kentucky, KY 40536-0230, Lexington, USA..
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Durbeej, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering.
    Lindgren, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Department of Physics, Norwegian University of Science and Technology, 7491, Trondheim, Norway..
    Intramolecular Proton and Charge Transfer of Pyrene-based trans-Stilbene Salicylic Acids Applied to Detection of Aggregated Proteins.2018In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 19, no 22, p. 3001-3009Article in journal (Refereed)
    Abstract [en]

    Two analogues to the fluorescent amyloid probe 2,5-bis(4'-hydroxy-3'-carboxy-styryl)benzene (X-34) were synthesized based on the trans-stilbene pyrene scaffold (Py1SA and Py2SA). The compounds show strikingly different emission spectra when bound to preformed Aβ1-42 fibrils. This remarkable emission difference is retained when bound to amyloid fibrils of four distinct proteins, suggesting a common binding configuration for each molecule. Density functional theory calculations show that Py1SA is twisted, while Py2SA is more planar. Still, an analysis of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) of the two compounds indicates that the degree of electronic coupling between the pyrene and salicylic acid (SA) moieties is larger in Py1SA than in Py2SA. Excited state intramolecular proton transfer (ESIPT) coupled-charge transfer (ICT) was observed for the anionic form in polar solvents. We conclude that ICT properties of trans-stilbene derivatives can be utilized for amyloid probe design with large changes in emission spectra and decay times from analogous chemical structures depending on the detailed physical nature of the binding site.less thanbr /greater than (© 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim.)

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf