liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Forsberg, Mathias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Serban, Alexandra
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Junaid, Muhammad
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Near band gap luminescence in hybrid organic-inorganic structures based on sputtered GaN nanorods2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 1170Article in journal (Refereed)
    Abstract [en]

    Novel hybrid organic-inorganic nanostructures fabricated to utilize non-radiative resonant energy transfer mechanism are considered to be extremely attractive for a variety of light emitters for down converting of ultaviolet light and for photovoltaic applications since they can be much more efficient compared to devices grown with common design. Organic-inorganic hybrid structures based on green polyfluorene (F8BT) and GaN (0001) nanorods grown by magnetron sputtering on Si (111) substrates are studied. In such nanorods, stacking faults can form periodic polymorphic quantum wells characterized by bright luminescence. In difference to GaN exciton emission, the recombination rate for the stacking fault related emission increases in the presence of polyfluorene film, which can be understood in terms of Forster interaction mechanism. From comparison of dynamic properties of the stacking fault related luminescence in the hybrid structures and in the bare GaN nanorods, the pumping efficiency of non-radiative resonant energy transfer in hybrids was estimated to be as high as 35% at low temperatures.

  • 2.
    Forsberg, Mathias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Serban, Alexandra
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Poenaru, Iuliana
    Fraunhofer ISC, Project Group Materials Recycling and Resource Strategy IWKS, Hanau, Germany.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Junaid, Mohammad
    RWTH Aachen University, Aachen, Germany.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Stacking fault related luminescence in GaN nanorods2015In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528Article in journal (Refereed)
    Abstract [en]

    Optical and structural properties are presented for GaN nanorods grown in the [0001]direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy.Transmission electron microscopy reveals clusters of dense stacking faults (SFs) regularlydistributed along the c-axis. A strong emission at ~3.42 eV associated with basal plane SFsdemonstrates thermal stability up to room temperatures together with a relatively shortrecombination time suggesting carrier localization in the system similar to multiple quantumwells.

  • 3.
    Hsiao, Ching-Lien
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Junaid, Muhammad
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Serban, Alexandra
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Nucleation and core-shell formation mechanism of self-induced InxAl1−xN core-shell nanorods grown on sapphire substrates by magnetron sputter epitaxy2016In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 131, p. 39-43Article in journal (Refereed)
    Abstract [en]

    Nucleation of self-induced nanorod and core-shell structure formation by surface-induced phase separation have been studied at the initial growth stage. The growth of well-separated core shell nanorods is only found in a transition temperature region (600 degrees C amp;lt;= T amp;lt;= 800 degrees C) in contrast to the result of thin film growth outside this region (T amp;lt; 600 degrees C or T amp;gt; 800 degrees C). Formation of multiple compositional domains, due to phase separation, after similar to 20 nm InxAl1-xN epilayer growth from sapphire substrate promotes the core-shell nanorod growth, showing a modified Stranski-Krastanov growth mode. The use of VN seed layer makes the initial growth of the nanorods directly at the substrate interface, revealing a Volmer-Weber growth mode. Different compositional domains are found on VN template surface to support that the phase separation takes place at the initial nucleation process and forms by a self-patterning effect. The nanorods were grown from In-rich domains and initiated the formation of core-shell nanorods due to spinodal decomposition of the InxAl1-xN alloy with a composition in the miscibility gap.

  • 4.
    Kuo, Yu-Hung
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Serban, Alexandra
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Influence of InAiN Nanospiral Structures on the Behavior of Reflected Light Polarization2018In: NANOMATERIALS, ISSN 2079-4991, Vol. 8, no 3, article id 157Article in journal (Refereed)
    Abstract [en]

    The influence of structural configurations of indium aluminum nitride (InA1N) nanospirals, grown by reactive magnetron sputter epitaxy, on the transformation of light polarization are investigated in terms of varying structural chirality, growth temperatures, titanium nitride (TiN) seed (buffer) layer thickness, nanospiral thickness, and pitch. The handedness of reflected circularly polarized light in the ultraviolet-visible region corresponding to the chirality of nanospirals is demonstrated. A high degree of circular polarization (P-c) value of 0.75 is obtained from a sample consisting of 1.2 mu m InA1N nanospirals grown at 650 degrees C. A film-like structure is formed at temperatures lower than 450 degrees C. At growth temperatures higher than 750 degrees C, less than 0.1 In-content is incorporated into the InA1N nanospirals. Both cases reveal very low P-c-A red shift of wavelength at P-c peak is found with increasing nanospiral pitch in the range of 200-300 nm. The P-c decreases to 0.37 for two-turn nanospirals with total length of 0.7 mu m, attributed to insufficient constructive interference. A branch-like structure appears on the surface when the nanospirals are grown longer than 1.2 mu m, which yields a low P-c around 0.5, caused by the excessive scattering of incident light.

  • 5.
    Pozina, Galia
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Forsberg, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Serban, Alexandra
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Junaid, Muhammad
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kaliteevski, M. A.
    St Petersburg Academic University, Russia; ITMO University, Russia.
    Polarization of stacking fault related luminescence in GaN nanorods2017In: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 7, no 1, article id 015303Article in journal (Refereed)
    Abstract [en]

    Linear polarization properties of light emission are presented for GaN nanorods (NRs) grown along [0001] direction on Si(111) substrates by direct-current magnetron sputter epitaxy. The near band gap photoluminescence (PL) measured at low temperature for a single NR demonstrated an excitonic line at similar to 3.48 eV and the stacking faults (SFs) related transition at similar to 3.43 eV. The SF related emission is linear polarized in direction perpendicular to the NR growth axis in contrast to a non-polarized excitonic PL. The results are explained in the frame of the model describing basal plane SFs as polymorphic heterostructure of type II, where anisotropy of chemical bonds at the interfaces between zinc blende and wurtzite GaN subjected to in-built electric field is responsible for linear polarization parallel to the interface planes. (C) 2017 Author(s).

  • 6. Order onlineBuy this publication >>
    Serban, Alexandra
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnetron Sputter Epitaxy of Group III-Nitride Semiconductor Nanorods2017Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The III-nitride semiconductors family includes gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), and related ternary and quaternary alloys. The research interest on this group of materials is sparked by the direct bandgaps, and excellent physical and chemical properties. Moreover, the ternary alloys (InGaN, InAlN and AlGaN) present the advantage of bandgap tuning, giving access to the whole visible spectrum, from near infrared into deep ultraviolet wavelengths. The intrinsic properties of III-nitride materials can be combined with characteristical features of nanodimension and geometry in nanorod structures. Moreover, nanorods offer the advantage of avoiding problems arising from the lack of native substrates, like lattice and thermal expansion, film – substrate mismatch.

    The growth and characterization of group III-nitride semiconductos nanorods, namely InAlN and GaN nanorods, is presented in this thesis. All the nanostructures were grown by employing direct-current reactive magnetron sputter epitaxy. InxAl1−xN self-assembled, core-shell nanorods on Si(111) substrates were demonstrated. A comprehensive study of temperature effect upon the morphology and composition of the nanorods was realized. The radial nanorod heterostructure consists of In-rich cores surrounded by Al-rich shells with different thicknesses. The spontaneous formation of core-shell nanorods is suggested to originate from phase separation due to spinodal decomposition. As the growth temperature increase, In desorption is favored, resulting in thicker Al-rich shells and larger nanorod diameters.

    Both self-assembled and selective-area grown GaN nanorods are presented. Self-assembled growth of GaN nanorods on cost-effective substrates offers a cheaper alternative and simplifies device processing. Successful growth of high- quality GaN (exhibiting strong bandedge emission and high crystalline quality) on conductive templates/substrates such as Si, SiC, TiN/Si, ZrB2/Si, ZrB2/SiC, Mo, and Ti is supported by the possibility to be used as electrodes when integrated in optoelectronic devices.

    The self-assembled growth leads to mainly random nucleation, resulting in nanorods with large varieties of diameters, heights and densities within a single growth run. This translates into non-uniform properties and complicates device processing. These problems can be circumvented by employing selective-area growth. Pre-patterned substrates by nano-sphere lithography resulted in GaN nanorods with controlled length, diameter, shape, and density. Well-faceted c-axis oriented GaN nanorods were grown directly onto the native SiOx layer inside nano-opening areas, exhibiting strong bandedge emission at room- temperature and single-mode lasing. Our studies on the growth mechanism revealed a different growth behavior when compared with selective-area grown GaN nanorods by MBE and MOCVD. The time-dependent growth series helped define a comprehensive growth mechanism from the initial thin wetting layer formed inside the openings, to the well-defined, uniform, hexagonal NRs resulted from the coalescence of multiple initial nuclei.

    List of papers
    1. Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy
    Open this publication in new window or tab >>Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy
    Show others...
    2015 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 26, no 21, p. 215602-Article in journal (Refereed) Published
    Abstract [en]

    Catalystless growth of InxAl1-xN core-shell nanorods have been realized by reactive magnetron sputter epitaxy onto Si(111) substrates. The samples were characterized by scanning electron microscopy, x-ray diffraction, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. The composition and morphology of InxAl1-xN nanorods are found to be strongly influenced by the growth temperature. At lower temperatures, the grown materials form well-separated and uniform core-shell nanorods with high In-content cores, while a deposition at higher temperature leads to the formation of an Al-rich InxAl1-xN film with vertical domains of low In-content as a result of merging Al-rich shells. The thickness and In content of the cores (domains) increase with decreasing growth temperature. The growth of the InxAl1-xN is traced to the initial stage, showing that the formation of the core-shell nanostructures starts very close to the interface. Phase separation due to spinodal decomposition is suggested as the origin of the resultant structures. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber textured to an epitaxial growth with an epitaxial relationship of InxAl1-xN[0001]//Si[111] and InxAl1-xN[11 (2) over bar0]//Si[1 (1) over bar0] by removing the native SiOx layer from the substrate.

    Place, publisher, year, edition, pages
    IOP Publishing: Hybrid Open Access, 2015
    Keywords
    InAlN; core-shell; nanorods; sputtering; MSE; STEM; EDX
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-118979 (URN)10.1088/0957-4484/26/21/215602 (DOI)000354598800010 ()25944838 (PubMedID)
    Note

    Funding Agencies|Swedish Research Council (VR) [621-2012-4420]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program; Knut and Alice Wallenberg Foundation

    Available from: 2015-06-08 Created: 2015-06-05 Last updated: 2018-05-03
    2. Magnetron Sputter Epitaxy of High-Quality GaN Nanorods on Functional and Cost-Effective Templates/Substrates
    Open this publication in new window or tab >>Magnetron Sputter Epitaxy of High-Quality GaN Nanorods on Functional and Cost-Effective Templates/Substrates
    Show others...
    2017 (English)In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 9, article id 1322Article in journal (Refereed) Published
    Abstract [en]

    We demonstrate the versatility of magnetron sputter epitaxy by achieving high-quality GaN nanorods on different substrate/template combinations, specifically Si, SiC, TiN/Si, ZrB2/Si, ZrB2/SiC, Mo, and Ti. Growth temperature was optimized on Si, TiN/Si, and ZrB2/Si, resulting in increased nanorod aspect ratio with temperature. All nanorods exhibit high purity and quality, proved by the strong bandedge emission recorded with cathodoluminescence spectroscopy at room temperature as well as transmission electron microscopy. These substrates/templates are affordable compared to many conventional substrates, and the direct deposition onto them eliminates cumbersome post-processing steps in device fabrication. Thus, magnetron sputter epitaxy offers an attractive alternative for simple and affordable fabrication in optoelectronic device technology.

    Place, publisher, year, edition, pages
    Basel, Switzerland: MDPI AG, 2017
    Keywords
    GaN, nanorods, Si, SiC, Ti, Mo, TiN and ZrB2 templates, magnetron sputtering, epitaxy
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-141597 (URN)10.3390/en10091322 (DOI)000411225200078 ()2-s2.0-85029362447 (Scopus ID)
    Note

    Funding agencies: Swedish Research Council (VR) [621-2012-4420, 621-2013-5360, 2016-04412]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program; Swedish Foundation for Strategic Research (SSF) through the Resea

    Available from: 2017-10-02 Created: 2017-10-02 Last updated: 2018-05-03Bibliographically approved
  • 7.
    Serban, Alexandra
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Junaid, Muhammad
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tengdelius, Lina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per Ola Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnetron Sputter Epitaxy of High-Quality GaN Nanorods on Functional and Cost-Effective Templates/Substrates2017In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 9, article id 1322Article in journal (Refereed)
    Abstract [en]

    We demonstrate the versatility of magnetron sputter epitaxy by achieving high-quality GaN nanorods on different substrate/template combinations, specifically Si, SiC, TiN/Si, ZrB2/Si, ZrB2/SiC, Mo, and Ti. Growth temperature was optimized on Si, TiN/Si, and ZrB2/Si, resulting in increased nanorod aspect ratio with temperature. All nanorods exhibit high purity and quality, proved by the strong bandedge emission recorded with cathodoluminescence spectroscopy at room temperature as well as transmission electron microscopy. These substrates/templates are affordable compared to many conventional substrates, and the direct deposition onto them eliminates cumbersome post-processing steps in device fabrication. Thus, magnetron sputter epitaxy offers an attractive alternative for simple and affordable fabrication in optoelectronic device technology.

  • 8.
    Serban, Alexandra
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Yeh, Chia-Cheng
    National Cheng Kung University, Taiwan.
    Hsu, Hsu-Cheng
    National Cheng Kung University, Taiwan.
    Tsai, Yu-Lin
    National Chiao Tung University, Taiwan.
    Kuo, Hao-Chung
    National Chiao Tung University, Taiwan.
    Junaid, Muhammad
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Selective-area growth of single-crystal wurtzite GaN nanorods on SiOx/Si(001) substrates by reactive magnetron sputter epitaxy exhibiting single-mode lasing2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 12701Article in journal (Refereed)
    Abstract [en]

    Selective-area growth (SAG) of single-crystal wurtzite GaN nanorods (NRs) directly onto Si(001) substrates with un-etched native SiOx amorphous layer, assisted by a patterning TiNx mask fabricated by nanosphere lithography (NSL), has been realized by reactive magnetron sputter epitaxy (MSE). The GaN NRs were grown vertically to the substrate surface with the growth direction along c-axis in the well-defined nano-opening areas. A 5-step structural and morphological evolution of the SAG NRs observed at different sputtering times depicts a comprehensive growth model, listed in sequence as: formation of a polycrystalline wetting layer, predominating c-axis oriented nucleation, coarsening and coalescence of multi-islands, single NR evolution, and finally quasi-equilibrium crystal shape formation. Room-temperature cathodoluminescence spectroscopy shows a strong GaN bandedge emission with a uniform luminescence across the NRs, indicating that the SAG NRs are grown with high quality and purity. In addition, single-longitudinal-mode lasing, attributed to well-faceted NR geometry forming a Fabry-Perot cavity, was achieved by optical pumping, paving a way for fabricating high-performance laser optoelectronics using MSE.

  • 9.
    Serban, Alexandra
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Poenaru, Iuliana
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Junaid, Junaid
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy2015In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 26, no 21, p. 215602-Article in journal (Refereed)
    Abstract [en]

    Catalystless growth of InxAl1-xN core-shell nanorods have been realized by reactive magnetron sputter epitaxy onto Si(111) substrates. The samples were characterized by scanning electron microscopy, x-ray diffraction, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. The composition and morphology of InxAl1-xN nanorods are found to be strongly influenced by the growth temperature. At lower temperatures, the grown materials form well-separated and uniform core-shell nanorods with high In-content cores, while a deposition at higher temperature leads to the formation of an Al-rich InxAl1-xN film with vertical domains of low In-content as a result of merging Al-rich shells. The thickness and In content of the cores (domains) increase with decreasing growth temperature. The growth of the InxAl1-xN is traced to the initial stage, showing that the formation of the core-shell nanostructures starts very close to the interface. Phase separation due to spinodal decomposition is suggested as the origin of the resultant structures. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber textured to an epitaxial growth with an epitaxial relationship of InxAl1-xN[0001]//Si[111] and InxAl1-xN[11 (2) over bar0]//Si[1 (1) over bar0] by removing the native SiOx layer from the substrate.

  • 10.
    Serban, Elena Alexandra
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Self-Assembled and Selective-Area Growth of Group III-Nitride Semiconductor Nanorods by Magnetron Sputter Epitaxy2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The III-nitride semiconductor family includes gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), and the related ternary and quaternary alloys. The research interest on this group of materials is sparked by the direct bandgaps, and excellent physical and chemical properties. Moreover, the ternary alloys (InGaN, InAlN and AlGaN) present the advantage of bandgap tuning, giving access to the whole visible spectrum, from near infrared into deep ultraviolet wavelengths. The intrinsic properties of III-nitride materials can be combined with characteristic features of nanodimension and geometry in nanorod structures. Moreover, nanorods offer the advantage of avoiding problems arising from the lack of native substrates with film/substrate lattice and thermal expansion mismatch.

    The growth and characterization of group III-nitride semiconductor nanorods, namely InAlN and GaN nanorods, is presented in this Thesis. All the nanostructures were grown by employing direct-current reactive magnetron sputter epitaxy. The results include the growth and study of both self-assembled and site-controlled grown nanorods.

    InxAl1−xN self-assembled, core-shell nanorods on Si(111) substrates were demonstrated. A comprehensive study of temperature effect upon the morphology and composition of the nanorods was realized. The radial nanorod heterostructure consists of In-rich cores surrounded by Al-rich shells with different thicknesses. The spontaneous formation of core-shell nanorods is suggested to originate from phase separation due to spinodal decomposition. As the growth temperature increases, In desorption is favored, resulting in thicker Al-rich shells and larger nanorod diameters. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber-textured to an epitaxial growth by removing the native SiOx layer from the substrate.

    Self-assembled growth of GaN nanorods on cost-effective substrates offers a cheaper alternative and simplifies device processing. Successful growth of high-quality GaN (exhibiting strong bandedge emission and high crystalline quality) on conductive templates/substrates such as Si, SiC, TiN/Si, ZrB2/Si, ZrB2/SiC, Mo, and Ti is supported by the possibility to be used as electrodes when integrated in optoelectronic devices. The influence of growth temperature upon the resulting size and optical properties of the nanorods was investigated. By applying a kinetic model, average diffusion length was calculated in correlation with growth temperature in order to explain the nanorods’ morphology evolution.

    The self-assembled growth leads to random nucleation, resulting in nanorods with large varieties of diameters, heights and densities within a single growth run. This translates into non-uniform properties and complicates device processing. These problems can be circumvented by employing selective-area growth. Pre-patterned substrates by nanosphere lithography resulted in GaN nanorods with controlled length, diameter, shape, and density. Well-faceted caxis oriented GaN nanorods were grown directly onto the native SiOx layer inside opening areas exhibiting strong bandedge emission at room-temperature and single-mode lasing. The time-dependent growth series helped define a comprehensive growth mechanism from the initial thin wetting layer formed inside the openings, to the well-defined, uniform, hexagonal nanorods resulted from the coalescence of multiple initial nuclei.

    Although nanosphere lithography is a fast and cheap patterning method, it does not offer the control on the size, position or density. The growth parameters were transferred onto focused ion beam lithography - patterned substrates which offers more control on the design. Focused ion beam lithography optimization included tailoring of the milling current (2-50 pA) and milling time (5-50 s). The patterning process optimisation enabled the minimization of mask and substrate damage, the key to attain uniform, welldefined, single, and straight nanorods. Destruction of the mask results in selective-area growth failure, while damage of the substrate surface promotes inclined nanorods grown into the openings, owning to random oriented nucleation. At lower growth temperatures (950 °C) nanostructures resulted from the coalescence of multiple, tilted, and irregular nanorods are observed. The tilting of the nanorods is reduced when increasing the growth temperature to 980 °C resulting in single and straight nanorods. The partial pressure of the Ar/N2 working gas was also varied for achieving selectivity and single nanorods, and study the growth behaviour. By increasing the amount of Ar in the working gas from 0 to 50%, we observe a transition of the target from a nitridized to metallic-state, affecting the sputtering conditions of the GaN nanorods. The change in the sputtering and deposition conditions influences the growth selectivity, coalescence, and growth rates. By balancing these effects, the selective growth of faceted, single nanorods was achieved.

    List of papers
    1. Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy
    Open this publication in new window or tab >>Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy
    Show others...
    2015 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 26, no 21, p. 215602-Article in journal (Refereed) Published
    Abstract [en]

    Catalystless growth of InxAl1-xN core-shell nanorods have been realized by reactive magnetron sputter epitaxy onto Si(111) substrates. The samples were characterized by scanning electron microscopy, x-ray diffraction, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. The composition and morphology of InxAl1-xN nanorods are found to be strongly influenced by the growth temperature. At lower temperatures, the grown materials form well-separated and uniform core-shell nanorods with high In-content cores, while a deposition at higher temperature leads to the formation of an Al-rich InxAl1-xN film with vertical domains of low In-content as a result of merging Al-rich shells. The thickness and In content of the cores (domains) increase with decreasing growth temperature. The growth of the InxAl1-xN is traced to the initial stage, showing that the formation of the core-shell nanostructures starts very close to the interface. Phase separation due to spinodal decomposition is suggested as the origin of the resultant structures. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber textured to an epitaxial growth with an epitaxial relationship of InxAl1-xN[0001]//Si[111] and InxAl1-xN[11 (2) over bar0]//Si[1 (1) over bar0] by removing the native SiOx layer from the substrate.

    Place, publisher, year, edition, pages
    IOP Publishing: Hybrid Open Access, 2015
    Keywords
    InAlN; core-shell; nanorods; sputtering; MSE; STEM; EDX
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-118979 (URN)10.1088/0957-4484/26/21/215602 (DOI)000354598800010 ()25944838 (PubMedID)
    Note

    Funding Agencies|Swedish Research Council (VR) [621-2012-4420]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program; Knut and Alice Wallenberg Foundation

    Available from: 2015-06-08 Created: 2015-06-05 Last updated: 2018-05-03
    2. Magnetron Sputter Epitaxy of High-Quality GaN Nanorods on Functional and Cost-Effective Templates/Substrates
    Open this publication in new window or tab >>Magnetron Sputter Epitaxy of High-Quality GaN Nanorods on Functional and Cost-Effective Templates/Substrates
    Show others...
    2017 (English)In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 9, article id 1322Article in journal (Refereed) Published
    Abstract [en]

    We demonstrate the versatility of magnetron sputter epitaxy by achieving high-quality GaN nanorods on different substrate/template combinations, specifically Si, SiC, TiN/Si, ZrB2/Si, ZrB2/SiC, Mo, and Ti. Growth temperature was optimized on Si, TiN/Si, and ZrB2/Si, resulting in increased nanorod aspect ratio with temperature. All nanorods exhibit high purity and quality, proved by the strong bandedge emission recorded with cathodoluminescence spectroscopy at room temperature as well as transmission electron microscopy. These substrates/templates are affordable compared to many conventional substrates, and the direct deposition onto them eliminates cumbersome post-processing steps in device fabrication. Thus, magnetron sputter epitaxy offers an attractive alternative for simple and affordable fabrication in optoelectronic device technology.

    Place, publisher, year, edition, pages
    Basel, Switzerland: MDPI AG, 2017
    Keywords
    GaN, nanorods, Si, SiC, Ti, Mo, TiN and ZrB2 templates, magnetron sputtering, epitaxy
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-141597 (URN)10.3390/en10091322 (DOI)000411225200078 ()2-s2.0-85029362447 (Scopus ID)
    Note

    Funding agencies: Swedish Research Council (VR) [621-2012-4420, 621-2013-5360, 2016-04412]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program; Swedish Foundation for Strategic Research (SSF) through the Resea

    Available from: 2017-10-02 Created: 2017-10-02 Last updated: 2018-05-03Bibliographically approved
    3. Selective-area growth of single-crystal wurtzite GaN nanorods on SiOx/Si(001) substrates by reactive magnetron sputter epitaxy exhibiting single-mode lasing
    Open this publication in new window or tab >>Selective-area growth of single-crystal wurtzite GaN nanorods on SiOx/Si(001) substrates by reactive magnetron sputter epitaxy exhibiting single-mode lasing
    Show others...
    2017 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 12701Article in journal (Refereed) Published
    Abstract [en]

    Selective-area growth (SAG) of single-crystal wurtzite GaN nanorods (NRs) directly onto Si(001) substrates with un-etched native SiOx amorphous layer, assisted by a patterning TiNx mask fabricated by nanosphere lithography (NSL), has been realized by reactive magnetron sputter epitaxy (MSE). The GaN NRs were grown vertically to the substrate surface with the growth direction along c-axis in the well-defined nano-opening areas. A 5-step structural and morphological evolution of the SAG NRs observed at different sputtering times depicts a comprehensive growth model, listed in sequence as: formation of a polycrystalline wetting layer, predominating c-axis oriented nucleation, coarsening and coalescence of multi-islands, single NR evolution, and finally quasi-equilibrium crystal shape formation. Room-temperature cathodoluminescence spectroscopy shows a strong GaN bandedge emission with a uniform luminescence across the NRs, indicating that the SAG NRs are grown with high quality and purity. In addition, single-longitudinal-mode lasing, attributed to well-faceted NR geometry forming a Fabry-Perot cavity, was achieved by optical pumping, paving a way for fabricating high-performance laser optoelectronics using MSE.

    Place, publisher, year, edition, pages
    NATURE PUBLISHING GROUP, 2017
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-142426 (URN)10.1038/s41598-017-12702-y (DOI)000412358000007 ()28983102 (PubMedID)
    Note

    Funding Agencies|Swedish Research Council (VR) [621-2012-4420, 621-2013- 5360]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 2009-00971]; Swedish Foundation for Strategic Research (SSF) through the Research Infrastructure Fellow [RIF 14-0074]; Knut and Alice Wallenberg Foundation; Myfab National Access program at MC2 NanoFabrication Laboratory, Chalmers University of Technology; Ministry of Science and Technology (MOST) of Taiwan [MOST 105-2112-M-006-004-MY3]

    Available from: 2017-10-31 Created: 2017-10-31 Last updated: 2018-05-03
    4. Site-controlled growth of GaN nanorod arrays by magnetron sputter epitaxy
    Open this publication in new window or tab >>Site-controlled growth of GaN nanorod arrays by magnetron sputter epitaxy
    Show others...
    2018 (English)In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 660, p. 950-955Article in journal (Refereed) Published
    Abstract [en]

    Catalyst-free GaN nanorod regular arrays have been realized by reactive magnetron sputter epitaxy. Two nanolithographic methods, nanosphere lithography (NSL) and focused ion beam lithography (FIBL), were applied to pattern Si substrates with TiNx masks. The growth temperature was optimized for achieving selectivity and well-faceted nanorods grown onto the NSL-patterned substrates. With increasing temperature from 875 to 985 °C, we observe different growth behaviors and associate them with selective insensitive, diffusion-dominated, and desorption-dominated zones. To further achieve site-specific and diameter control, these growth parameters were transferred onto FIBL-patterned substrates. Further investigation into the FIBL process through tailoring of milling current and time in combination with varying nanorod growth temperature, suggests that minimization of mask and substrate damage is the key to attain uniform, well-defined, single, and straight nanorods. Destruction of the mask results in selective area growth failure, while damage of the substrate surface promotes inclined nanorods grown into the openings, owning to random oriented nucleation.

    Place, publisher, year, edition, pages
    Elsevier, 2018
    Keywords
    Gallium nitride, Magnetron sputter epitaxy, Selective-area growth, Nanorods, Lithography, Focused ion beam, Nanosphere
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-147648 (URN)10.1016/j.tsf.2018.01.050 (DOI)000441177500138 ()2-s2.0-85041572645 (Scopus ID)
    Note

    Funding agencies: Swedish Research Council (VR) [621-2012-4420, 621-2013-5360, 2016-04412]; Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VINNMER international qualification program; Swedish Foundation for Strategic Research (SSF) [RIF 14-0074]; Sw

    Available from: 2018-05-03 Created: 2018-05-03 Last updated: 2018-09-03Bibliographically approved
  • 11.
    Serban, Elena Alexandra
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per Ola Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Site-controlled growth of GaN nanorod arrays by magnetron sputter epitaxy2018In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 660, p. 950-955Article in journal (Refereed)
    Abstract [en]

    Catalyst-free GaN nanorod regular arrays have been realized by reactive magnetron sputter epitaxy. Two nanolithographic methods, nanosphere lithography (NSL) and focused ion beam lithography (FIBL), were applied to pattern Si substrates with TiNx masks. The growth temperature was optimized for achieving selectivity and well-faceted nanorods grown onto the NSL-patterned substrates. With increasing temperature from 875 to 985 °C, we observe different growth behaviors and associate them with selective insensitive, diffusion-dominated, and desorption-dominated zones. To further achieve site-specific and diameter control, these growth parameters were transferred onto FIBL-patterned substrates. Further investigation into the FIBL process through tailoring of milling current and time in combination with varying nanorod growth temperature, suggests that minimization of mask and substrate damage is the key to attain uniform, well-defined, single, and straight nanorods. Destruction of the mask results in selective area growth failure, while damage of the substrate surface promotes inclined nanorods grown into the openings, owning to random oriented nucleation.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf