liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Campos, Alexandre
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Danielsson, Gabriela
    Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
    Farinha, Ana Paula
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Kuruvilla, Jacob
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Warholm, Per
    Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
    Cristobal, Susana
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Linköping University.
    Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic Sea microcosm2016In: Journal of Proteomics, ISSN 1874-3919, E-ISSN 1876-7737, Vol. 137, p. 97-106Article in journal (Refereed)
    Abstract [en]

    Pharmaceuticals, among them the β-adrenoreceptor blocker propranolol, are an important group of environmental contaminants reported in European waters. Laboratory exposure to pharmaceuticals on marine species has been performed without considering the input of the ecosystem flow. To unravel the ecosystem response to long-term exposure to propranolol we have performed long-term exposure to propranolol and low salinity in microcosms. We applied shotgun proteomic analysis to gills of Mytilus edulis from those Baltic Sea microcosms and identified 2071 proteins with a proteogenomic strategy. The proteome profiling patterns from the 587 highly reproductive proteins among groups define salinity as a key factor in the mussel´s response to propranolol. Exposure at low salinity drives molecular mechanisms of adaptation based on a decrease in the abundance of several cytoskeletal proteins, signalling and intracellular membrane trafficking pathway combined with a response towards the maintenance of transcription and translation. The exposure to propranolol combined with low salinity modulates the expression of structural proteins including cilia functions and decrease the expression membrane protein transporters. This study reinforces the environment concerns of the impact of low salinity in combination with anthropogenic pollutants and anticipate critical physiological conditions for the survival of the blue mussel in the northern areas.

  • 2.
    Kuruvilla, Jacob
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Farinha, Ana Paula
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Bayat, Narges
    Department of Biochemistry and Biophysics, Arrhenius laboratories, Stockholm University, Stockholm, Sweden.
    Cristobal, Susana
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Dentristy, University of the Basque Country, Leioa, Spain.
    Surface proteomics on nanoparticles, a step to simplify the rapid prototyping of nanoparticles2017In: Nanoscale Horizons, ISSN 2055-6756, no 1, p. 55-64Article in journal (Refereed)
    Abstract [en]

    Engineered nanoparticles for biomedical applications requireincreasing effectiveness in targeting specific cells while preservingnon-target cell’s safety. We developed a surface proteomicsmethod for a rapid and systematic analysis of the interphasebetween the nanoparticle protein corona and the targeting cellsthat could implement the rapid prototyping of nanomedicines.Native nanoparticles entering in a protein-rich liquid mediaquickly form a macromolecular structure called protein corona.This protein structure defines the physical interaction betweennanoparticles and target cells. The surface proteins compose thefirst line of interaction between this macromolecular structureand the cell surface of a target cell. We demonstrated that SUSTU(SUrface proteomics, Safety, Targeting, Uptake) provides aqualitative and quantitative analysis from the protein coronasurface. With SUSTU, the spatial dynamics of the protein coronasurface can be studied. Data from SUSTU would ascertain thenanoparticle functionalized groups exposed at destiny that couldcircumvent preliminary in vitro experiments. Therefore thismethod could implement the analysis of nanoparticle targetingand uptake capability and could be integrated into a rapidprototyping strategy which is a major challenge in nanomaterialscience. Data are available via ProteomeXchange with identifierPXD004636.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf