liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Beyer, Franziska
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hemmingsson, Carl
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Pedersen, Henrik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Deep levels in tungsten doped n-type 3C-SiC2011In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 98, no 15, p. 152104-Article in journal (Refereed)
    Abstract [en]

    Tungsten was incorporated in SiC and W related defects were investigated using deep level transient spectroscopy. In agreement with literature, two levels related to W were detected in 4H-SiC, whereas only the deeper level was observed in 6H-SiC. The predicted energy level for W in 3C-SiC was observed (E-C-0.47 eV). Tungsten serves as a common reference level in SiC. The detected intrinsic levels align as well: E1 (E-C-0.57 eV) in 3C-SiC is proposed to have the same origin, likely V-C, as EH6/7 in 4H-SiC and E7 in 6H-SiC, respectively.

  • 2.
    Beyer, Franziska
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hemmingsson, Carl
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lin, Y.-C.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gällström, Henrik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Deep levels in iron doped n- and p-type 4H-SiC2011In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 110, p. 123701-1-123701-5Article in journal (Refereed)
    Abstract [en]

    Deep levels were detected in Fe-doped n- and p-type 4H-SiC using deep level transient spectroscopy (DLTS). One defect level (EC 0.39 eV) was detected in n-type material. DLTS spectra of p-type 4H-SiC show two dominant peaks (EV + 0.98 eV and EV + 1.46 eV). Secondary ion mass spectrometry measurements confirm the presence of Fe in both n- and p-type 4H-SiC epitaxial layers. The majority capture process for all the three Fe-related peaks is multi-phonon assisted. Similar defect behavior in Si indicates that the observed DLTS peaks are likely related to Fe and Fe-B pairs.

  • 3.
    Gali, Adam
    et al.
    Department of Atomic Physics, Budapest Univ. of Technol./Economics, Budafoki út 8, H-1111 Budapest, Hungary.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Son, Nguyen Tien
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Theory of neutral divacancy in SiC: a defect for spintronics2010In: Materials Science Forum, Vols. 645-648, Trans Tech Publications , 2010, p. 395-397Conference paper (Refereed)
  • 4.
    Gueorguiev Ivanov, Ivan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kordina, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Tien Son, Nguyen
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ivády, Viktor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Gali, Adam
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Optical properties of the niobium centre in 4H, 6H, and 15R SiC2013In: SILICON CARBIDE AND RELATED MATERIALS 2012, Trans Tech Publications , 2013, Vol. 740-742, p. 405-408Conference paper (Refereed)
    Abstract [en]

    A set of lines in the photoluminescence spectra of 4H-, 6H-, and 15R-SiC in the near-infrared are attributed to Nb-related defects on the ground of doping experiments conducted with 4H-SiC. A model based on a an exciton bound at the Nb-centre in an asymmetric split vacancy configuration at a hexagonal site is proposed, which explains the structure of the luminescence spectrum and the observed Zeeman splitting of the lines.

  • 5.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Optical Characterization of Deep Level Defects in SiC2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Silicon Carbide (SiC) has long been considered a promising semiconductor material for high power devices, and has also recently found to be one of the emergent materials for quantum computing. Important for these applications are both the quality and purity of the crystal. In order to be able to engineer components (be it power devices or components for quantum computing), it is necessary to study and understand the behavior of various defects in the crystal.

    Deep level defects can greatly influence the semiconducting properties, since they can act as recombination centers by interacting with both holes from the valence band and electrons from the conduction band. Because of this, they may be used to control the charge carrier life time. Besides influencing the electric properties of the materials, deep level defects are also of interest in the field of quantum computing. In this application, the deep level defects can be used as basic units for quantum information – so called qubits.

    Deep level defects may also be classified based on their origin, i.e. impurity or intrinsic. An impurity consists of one or more foreign atoms, which means neither carbon nor silicon in the case of SiC. Impurities can be incorporated in the crystal during growth, or through implantation or diffusion. A defect is intrinsic when it does not involve foreign atoms, but instead imperfections in the perfect crystal structure, for example a vacancy, an anti-site or a combinations of these. Intrinsic defects can be created during growth or artificially, using for example electron irradiation.

    This thesis is focused on characterization of several deep level defects in SiC using different optical techniques. The optical transitions investigated are in the near-infrared region.

    Paper 1 focuses on the possibility to control the concentration of intrinsic defects through the cooling down procedure after high temperature annealing. The temperature of 2300°C is close to the bulk crystal growth temperature. It is shown that it is possible to control the concentration of the silicon vacancy (VSi) and UD-2 (later identified as the divacancy (VCVSi)) by the cooling  sequence. Both these defects have later been shown to be promising candidates as qubits and single photon emitters.

    Paper 2 gives insight into the electronic structure of the unidentified deep level defect UD-4, which is believed to be of intrinsic origin. The defect is investigated in the polytypes 4H-, 6H-, and 15R-SiC, and the number of optical centers associated with UD-4 follows neither the number of inequivalent sites nor the possible configurations for pair-defects. There are two optical centers in 4H- and 6H-SiC, and three optical centers in 15R-SiC.

    Paper 3 investigates several transition metals incorporated in SiC and the formation energies for different possible configurations. This is of importance since several impurity related deep level defects cannot be explained as purely substitutional defects, based on the fact that the number of optical centers does not follow the number of inequivalent sites. This is investigated in detail, and explained using an asymmetric split vacancy (ASV) model. It was found that the formation energy for some transition metals in ASV are lower than the transition metal in a substitutional configuration. Further on, it was shown that the formation energies for transition metals in ASV configurations depend strongly on what kinds of inequivalent sites the ASV can be described by and the lowest formation energy that is found for transition metals in ASV occupying two hexagonal sites.

    In paper 4, the optical identification and electronic configuration of the commonly observed deep level defect tungsten (formerly known as UD-1) are reported. The electronic levels involved in the optical transitions of tungsten are deduced and described using group theory techniques.

    Paper 5 shows that the above mentioned ASV model can be used to describe the properties of niobium in SiC. In the paper, the optical identification and properties are analyzed and investigated experimentally using photoluminescence, photoluminescence excitation spectroscopy and Zeeman spectroscopy.

    In paper 6 the identification of molybdenum (formerly known as I-1) is reported including its electronic configuration. Molybdenum can be well described using the ASV model, and in this paper its local vibrational modes are also investigated in detail. It is shown that using the polarization dependence of local vibration replicas and a simplified defect molecule model, the estimated position of Mo in the ASV is in agreement with the theoretically predicted position reported in paper 3. The usefulness for molybdenum in SiC as a qubit is also investigated.

    In paper 7, two different intrinsic nearest pair-neighbor defects are reported: UD-2 (VCVSi) and UD-0 (tentatively assigned as the VCCSi). Their optical properties are analyzed together with their creation and annihilation properties.

    List of papers
    1. Influence of Cooling Rate after High Temperature Annealing on Deep Levels in High-Purity Semi-Insulating 4H-SiC
    Open this publication in new window or tab >>Influence of Cooling Rate after High Temperature Annealing on Deep Levels in High-Purity Semi-Insulating 4H-SiC
    Show others...
    2007 (English)In: Materials Science Forum, vol. 556-557, Trans Tech Publications , 2007, p. 371-Conference paper, Published paper (Refereed)
    Abstract [en]

    The influence of different cooling rates on deep levels in 4H-SiC after high temperature annealing has been investigated. The samples were heated from room temperature to 2300°C, followed by a 20 minutes anneal at this temperature. Different subsequent cooling sequences down to 1100°C were used. The samples have been investigated using photoluminescence (PL) and IV characteristics. The PL intensities of the silicon vacancy (VSi) and UD-2, were found to increase with a faster cooling rate.

    Place, publisher, year, edition, pages
    Trans Tech Publications, 2007
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-38676 (URN)10.4028/www.scientific.net/MSF.556-557.371 (DOI)45293 (Local ID)45293 (Archive number)45293 (OAI)
    Conference
    ECSCRM 2006
    Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2015-05-19
    2. The Electronic Structure of the UD-4 defect in 4H, 6H and 15R SiC
    Open this publication in new window or tab >>The Electronic Structure of the UD-4 defect in 4H, 6H and 15R SiC
    Show others...
    2009 (English)In: Materials Science Forum, Vols. 600-603, Trans Tech Publications , 2009, p. 397-400Conference paper, Published paper (Refereed)
    Abstract [en]

    The photoluminescence (PL) of the UD-4 defect is observed in semi-insulating bulk 4H, 6H and 15R SiC. In 4H and 6H SiC the UD-4 defect consists of two families of no-phonon (NP) lines, Ua and Ub, and in 15R SiC it consists of three families, Ua, Ub and U15R. The Ua family in 4H, 6H and 15R all show similar temperature behavior with higher energy NP lines becomming observable at higher temperatures. In the case of the Ub and U15R families, a luminescence line with lower energy than the prominent luminescence line appears at higher temperatures. The polarization and Zeeman measurements suggest that the defect has C3v symmetry.

    Place, publisher, year, edition, pages
    Trans Tech Publications, 2009
    Series
    Materials Science Forum, ISSN 1662-9752 ; 600-603
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-41968 (URN)10.4028/www.scientific.net/MSF.600-603.397 (DOI)59428 (Local ID)59428 (Archive number)59428 (OAI)
    Conference
    ICSCRM 2007, Otsu, Japan October 14-19, 2007
    Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2015-05-19
    3. Asymmetric Split-Vacancy Defects in SiC Polytypes: A Combined Theoretical and Electron Spin Resonance Study
    Open this publication in new window or tab >>Asymmetric Split-Vacancy Defects in SiC Polytypes: A Combined Theoretical and Electron Spin Resonance Study
    Show others...
    2011 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 107, no 19, p. 195501-Article in journal (Refereed) Published
    Abstract [en]

    Transition metal defects were studied in different polytypes of silicon carbide (SiC) by ab initio supercell calculations. We found asymmetric split-vacancy (ASV) complexes for these defects that preferentially form at only one site in hexagonal polytypes, and they may not be detectable at all in cubic polytype. Electron spin resonance study demonstrates the existence of ASV complex in niobium doped 4H polytype of SiC.

    Place, publisher, year, edition, pages
    American Physical Society, 2011
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-72653 (URN)10.1103/PhysRevLett.107.195501 (DOI)000297006100005 ()
    Note
    Funding Agencies|Swedish Foundation for Strategic Research||Swedish Research Council||Swedish Energy Agency||Swedish National Infrastructure for Computing|SNIC 011/04-8SNIC001-10-223|Knut and Alice Wallenberg Foundation||Available from: 2011-12-02 Created: 2011-12-02 Last updated: 2017-12-08
    4. Optical identification and electronic configuration of tungsten in 4H-and 6H-SiC
    Open this publication in new window or tab >>Optical identification and electronic configuration of tungsten in 4H-and 6H-SiC
    Show others...
    2012 (English)In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 407, no 10, p. 1462-1466Article in journal (Refereed) Published
    Abstract [en]

    Several optically observed deep level defects in SiC are still unidentified and little is published on their behavior. One of the commonly observed deep level defects in semi-insulating SiC is UD-1. less thanbrgreater than less thanbrgreater thanThis report suggests that UD-1 is Tungsten related, based on a doping study and previously reported deep level transient spectroscopy data, as well as photo-induced absorption measurements. The electronic levels involved in the optical transitions of UD-1 are also deduced. The transitions observed in the photoluminescence of UD-1 are from a Gamma(C3v)(4), to two different final states, which transform according to Gamma(C3v)(5)circle plus Gamma(C3v)(6) and Gamma(C3v)(4), respectively.

    Place, publisher, year, edition, pages
    Elsevier, 2012
    Keywords
    Deep level defect, PL, Transition metal
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-77521 (URN)10.1016/j.physb.2011.09.062 (DOI)000303149600003 ()
    Available from: 2012-05-28 Created: 2012-05-22 Last updated: 2017-12-07
    5. Optical properties and Zeeman spectroscopy of niobium in silicon carbide
    Open this publication in new window or tab >>Optical properties and Zeeman spectroscopy of niobium in silicon carbide
    Show others...
    2015 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 7, p. 1-14, article id 075207Article in journal (Refereed) Published
    Abstract [en]

    The optical signature of niobium in the low-temperature photoluminescence spectra of three common polytypes of SiC (4H, 6H, and 15R) is observed and confirms the previously suggested concept that Nb occupies preferably the Si-C divacancy with both Si and C at hexagonal sites. Using this concept we propose a model considering a Nb-bound exciton, the recombination of which is responsible for the observed luminescence. The exciton energy is estimated using first-principles calculation and the result is in very good agreement with the experimentally observed photon energy in 4H SiC at low temperature. The appearance of six Nb-related lines in the spectra of the hexagonal 4H and 6H polytypes at higher temperatures is tentatively explained on the grounds of the proposed model and the concept that the Nb center can exist in both C1h and C3v symmetries. The Zeeman splitting of the photoluminescence lines is also recorded in two different experimental geometries and the results are compared with theory based on phenomenological Hamiltonians. Our results show that Nb occupying the divacancy at the hexagonal site in the studied SiC polytypes behaves like a deep acceptor.

    Place, publisher, year, edition, pages
    American Physical Society, 2015
    National Category
    Theoretical Chemistry Other Physics Topics
    Identifiers
    urn:nbn:se:liu:diva-117972 (URN)10.1103/PhysRevB.92.075207 (DOI)000362204100001 ()
    Note

    At the time for thesis presentation publication was in status: Manuscript

    Funding Agencies|Knut and Alice Wallenberg Foundation; Lendulet program of the Hungarian Academy of Sciences; Hungarian OTKA Project [K101819]; Ministry of Education and Science of the Russian Federation [14.Y26.31.0005]; Tomsk State University Academic D. I. Mendeleev Fund Program [8.1.18.2015]

    Available from: 2015-05-19 Created: 2015-05-19 Last updated: 2017-12-04Bibliographically approved
    6. A defect center for quantum computing: Mo in SiC
    Open this publication in new window or tab >>A defect center for quantum computing: Mo in SiC
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    The electronic structure and vibrational properties of molybdenum (Mo) in SiC are analyzed and investigated in detail. Mo is considered as occupying the silicon-carbon divacancy in the so-called asymmetric split vacancy (ASV) configuration. Group-theoretical considerations within this model are used to explain the experimental results (optical properties and behavior in magnetic field). The vibrational properties of the defect are studied using simple the “defect molecule” model with parameters determined phenomenologically from the experimental data. The position of Mo in the ASV configuration deduced from this model is shown to be in good agreement with the earlier reported data from ab initio supercell calculations. The usefulness of molybdenum in SiC in quantum computing is investigated, and it shown that Mo is a highly promising candidate for quantum computing.

    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-117973 (URN)
    Available from: 2015-05-19 Created: 2015-05-19 Last updated: 2015-05-19Bibliographically approved
    7. Optical identification of intrinsic nearest-neighbor defects in SiC
    Open this publication in new window or tab >>Optical identification of intrinsic nearest-neighbor defects in SiC
    Show others...
    2015 (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    The optical signature of two types of intrinsic nearest-neighbor defects in SiC is observed in 4H- and 6H-SiC. The first optical signature belong to a defect previously known as UD-2 and identified as the divacancy pair, and the second – to a defect referred to here as UD-0, an unidentified defect. In both these defects, the number of optical centers is equal to the number of possible configurations for nearest-neighbor pairs in the unit cells of these polytypes. The polarization of all optical transitions is investigated. The formation of the two defects by means of electron irradiation and subsequent annealing in samples with different Fermi levels is studied, too. The observed transitions are investigated using group-theoretical analysis and UD-0 is tentatively assigned to the carbon-vacancy carbonantisite pair, based on energy positions of the lines and spin configuration.

    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-117974 (URN)
    Available from: 2015-05-19 Created: 2015-05-19 Last updated: 2015-05-19Bibliographically approved
  • 6.
    Gällström, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Magnusson, Björn
    Norstel AB, Norrköping, Sweden.
    Beyer, Franziska
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gali, Adam
    Budapest University of Technology and Economics and Hungarian Academy of Science, Budapest, Hungary .
    Son, Nguyen Tien
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ivanov, Ivan G.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hemmingsson, Carl
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Electronic Configuration of Tungsten in 4H-, 6H-, and 15R-SiC2012In: Materials Science Forum Vols 717 - 720, Trans Tech Publications Inc., 2012, Vol. 717-720, p. 211-216Conference paper (Refereed)
    Abstract [en]

    A commonly observed unidentified photoluminescence center in SiC is UD-1. In this report, the UD-1 center is identified to be tungsten related. The identification is based on (i) a W-doping study, the confirmation of W in the samples was made using deep level transient spectroscopy (DLTS), (ii) the optical activation energy of the absorption of UD-1 in weakly n-type samples corresponds to the activation energy of the deep tungsten center observed using DLTS. The tungsten-related optical centers are reported in 4H-, 6H-, and 15R-SiC. Further, a crystal field model for a tungsten atom occupying a Si-site is suggested. This crystal field model is in agreement with the experimental data available: polarization, temperature dependence and magnetic field splitting.

  • 7.
    Gällström, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Magnusson, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Beyer, Franziska
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gali, Adam
    Budapest University of Technology and Economics, Hungary.
    Son Tien, Nguyen
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hemmingsson, Carl
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Optical identification and electronic configuration of tungsten in 4H-and 6H-SiC2012In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 407, no 10, p. 1462-1466Article in journal (Refereed)
    Abstract [en]

    Several optically observed deep level defects in SiC are still unidentified and little is published on their behavior. One of the commonly observed deep level defects in semi-insulating SiC is UD-1. less thanbrgreater than less thanbrgreater thanThis report suggests that UD-1 is Tungsten related, based on a doping study and previously reported deep level transient spectroscopy data, as well as photo-induced absorption measurements. The electronic levels involved in the optical transitions of UD-1 are also deduced. The transitions observed in the photoluminescence of UD-1 are from a Gamma(C3v)(4), to two different final states, which transform according to Gamma(C3v)(5)circle plus Gamma(C3v)(6) and Gamma(C3v)(4), respectively.

  • 8.
    Gällström, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Magnusson, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Carlsson, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Nguyen, Son Tien
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Beyer, Franziska
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Influence of Cooling Rate after High Temperature Annealing on Deep Levels in High-Purity Semi-Insulating 4H-SiC2007In: Materials Science Forum, vol. 556-557, Trans Tech Publications , 2007, p. 371-Conference paper (Refereed)
    Abstract [en]

    The influence of different cooling rates on deep levels in 4H-SiC after high temperature annealing has been investigated. The samples were heated from room temperature to 2300°C, followed by a 20 minutes anneal at this temperature. Different subsequent cooling sequences down to 1100°C were used. The samples have been investigated using photoluminescence (PL) and IV characteristics. The PL intensities of the silicon vacancy (VSi) and UD-2, were found to increase with a faster cooling rate.

  • 9.
    Gällström, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Magnusson, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ellison, A.
    Gali, Adam
    Wigner Research Center for Physics, Hungarian Academy of Sciences / Department of Atomic Physics, Budapest University of Technology and Economics, Hungary.
    Ivanov, Ivan G.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    A defect center for quantum computing: Mo in SiCManuscript (preprint) (Other academic)
    Abstract [en]

    The electronic structure and vibrational properties of molybdenum (Mo) in SiC are analyzed and investigated in detail. Mo is considered as occupying the silicon-carbon divacancy in the so-called asymmetric split vacancy (ASV) configuration. Group-theoretical considerations within this model are used to explain the experimental results (optical properties and behavior in magnetic field). The vibrational properties of the defect are studied using simple the “defect molecule” model with parameters determined phenomenologically from the experimental data. The position of Mo in the ASV configuration deduced from this model is shown to be in good agreement with the earlier reported data from ab initio supercell calculations. The usefulness of molybdenum in SiC in quantum computing is investigated, and it shown that Mo is a highly promising candidate for quantum computing.

  • 10.
    Gällström, Andreas
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Optical identification of Mo related deep level defect in 4H and 6H SiC2009In: Materials Science Forum Vols. 615-617, Trans Tech Publications , 2009, p. 405-408Conference paper (Refereed)
    Abstract [en]

    The photoluminescence (PL) from the I 1 centre is observed in p-, n-type as well as in compensated samples, using above band gap excitation. The PL from I 1 in the two polytypes 4H and 6H is very similar, the difference being the position of the main peak, in 4H 1.1521 eV and 1.1057 eV in 6H. We here suggest I-1 to be Mo related based on intentional doping, SIMS results and comparison with earlier reports of Mo in SiC using magnetic resonance techniques. From PL measurements, we analyze the electron structure of the defect, and suggest it be the neutral Mo (4d2) residing on a Si site, the luminescence coming from the transition between the 3A2 multiplet of the first excited electronic configuration and the ground state 3A2.

  • 11.
    Gällström, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Magnusson, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Kordina, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Son, Nguyen Tien
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Ivády, Viktor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Wigner Research Center for Physics, Hungarian Academy of Sciences, Hungary.
    Gali, Adam
    Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest Hungary; Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary.
    Abrikosov, Igor A.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Materials Modeling and Development Laboratory, NUST “MISIS,” Moscow, Russia; LACOMAS Laboratory, Tomsk State University, Tomsk, Russia.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Ivanov, Ivan G.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Optical properties and Zeeman spectroscopy of niobium in silicon carbide2015In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 7, p. 1-14, article id 075207Article in journal (Refereed)
    Abstract [en]

    The optical signature of niobium in the low-temperature photoluminescence spectra of three common polytypes of SiC (4H, 6H, and 15R) is observed and confirms the previously suggested concept that Nb occupies preferably the Si-C divacancy with both Si and C at hexagonal sites. Using this concept we propose a model considering a Nb-bound exciton, the recombination of which is responsible for the observed luminescence. The exciton energy is estimated using first-principles calculation and the result is in very good agreement with the experimentally observed photon energy in 4H SiC at low temperature. The appearance of six Nb-related lines in the spectra of the hexagonal 4H and 6H polytypes at higher temperatures is tentatively explained on the grounds of the proposed model and the concept that the Nb center can exist in both C1h and C3v symmetries. The Zeeman splitting of the photoluminescence lines is also recorded in two different experimental geometries and the results are compared with theory based on phenomenological Hamiltonians. Our results show that Nb occupying the divacancy at the hexagonal site in the studied SiC polytypes behaves like a deep acceptor.

  • 12.
    Gällström, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Magnusson, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Thuaire, A.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Paskov, Plamen
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    The Electronic Structure of the UD-4 defect in 4H, 6H and 15R SiC2009In: Materials Science Forum, Vols. 600-603, Trans Tech Publications , 2009, p. 397-400Conference paper (Refereed)
    Abstract [en]

    The photoluminescence (PL) of the UD-4 defect is observed in semi-insulating bulk 4H, 6H and 15R SiC. In 4H and 6H SiC the UD-4 defect consists of two families of no-phonon (NP) lines, Ua and Ub, and in 15R SiC it consists of three families, Ua, Ub and U15R. The Ua family in 4H, 6H and 15R all show similar temperature behavior with higher energy NP lines becomming observable at higher temperatures. In the case of the Ub and U15R families, a luminescence line with lower energy than the prominent luminescence line appears at higher temperatures. The polarization and Zeeman measurements suggest that the defect has C3v symmetry.

  • 13.
    Gällström, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Magnusson, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Tien Son, Nguyen
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ivanov, Ivan G.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Optical identification of intrinsic nearest-neighbor defects in SiC2015Manuscript (preprint) (Other academic)
    Abstract [en]

    The optical signature of two types of intrinsic nearest-neighbor defects in SiC is observed in 4H- and 6H-SiC. The first optical signature belong to a defect previously known as UD-2 and identified as the divacancy pair, and the second – to a defect referred to here as UD-0, an unidentified defect. In both these defects, the number of optical centers is equal to the number of possible configurations for nearest-neighbor pairs in the unit cells of these polytypes. The polarization of all optical transitions is investigated. The formation of the two defects by means of electron irradiation and subsequent annealing in samples with different Fermi levels is studied, too. The observed transitions are investigated using group-theoretical analysis and UD-0 is tentatively assigned to the carbon-vacancy carbonantisite pair, based on energy positions of the lines and spin configuration.

  • 14. Hahn, S.
    et al.
    Beyer, Franziska
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Gällström, Andreas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Carlsson, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Henry, Anne
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Niklas, J.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Contact-Less Electrical Defect Characterization of Semi-Insulating 6H-SiC Bulk Material2009In: Materials Science Forum Vols. 600-603, Trans Tech Publications , 2009, p. 405-408Conference paper (Refereed)
    Abstract [en]

    The novel technique microwave detected photo induced current transient spectroscopy (MD-PICTS) was applied to semi-insulating 6H-SiC in order to investigate the properties of inherent defect levels. Defect spectra can be obtained in the similar way to conventional PICTS and DLTS. However, there is no need for contacting the samples, which allows for non-destructive and spatially resolved electrical characterization. This work is focused on the investigation of semi-insulating 6H-SiC grown under different C/Si-ratios. In the corresponding MD-PICTS spectra several shallow defect levels appear in the low temperature range. However the peak assignment needs further investigation. Additionally different trap reemission dynamics are obtained for higher temperatures, which are supposed to be due to different compensation effects.

  • 15. Hsiao, C.L.
    et al.
    Liu, T.W.
    Wu, C.T.
    Hsu, H.C.
    Hsu, G.M.
    Chen, L.C.
    Shiao, W.Y.
    Yang, C.C.
    Gällström, Andreas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Holtz, Per-Olof
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Chen, C.C.
    Chen, K.H.
    High-phase-purity zinc-blende InN on r -plane sapphire substrate with controlled nitridation pretreatment2008In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 92, no 11Article in journal (Refereed)
    Abstract [en]

    High-phase-purity zinc-blende (zb) InN thin film has been grown by plasma-assisted molecular-beam epitaxy on r -plane sapphire substrate pretreated with nitridation. X-ray diffraction analysis shows that the phase of the InN films changes from wurtzite (w) InN to a mixture of w-InN and zb-InN, to zb-InN with increasing nitridation time. High-resolution transmission electron microscopy reveals an ultrathin crystallized interlayer produced by substrate nitridation, which plays an important role in controlling the InN phase. Photoluminescence emission of zb-InN measured at 20 K shows a peak at a very low energy, 0.636 eV, and an absorption edge at ∼0.62 eV is observed at 2 K, which is the lowest bandgap reported to date among the III-nitride semiconductors. © 2008 American Institute of Physics.

  • 16.
    Ivady, V.
    et al.
    Hungarian Academic Science, Hungary .
    Somogyi, B.
    Budapest University of Technology and Economics, Hungary .
    Zolyomi, V.
    Hungarian Academic Science, Hungary .
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Son, Nguyen Tien
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gali, Adam
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Transition Metal Defects in Cubic and Hexagonal Polytypes of SiC: Site Selection, Magnetic and Optical Properties from ab initio Calculations2012In: Materials Science Forum Vol 717 - 720, Trans Tech Publications Inc., 2012, Vol. 717-720, p. 205-210Conference paper (Refereed)
    Abstract [en]

    Relatively little is known about the transition metal defects in silicon carbide (SiC). In this study we applied highly convergent and sophisticated density functional theory (DFT) based methods to investigate important transition metal impurities including titanium (Ti), vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo) and tungsten (W) in cubic 3C and hexagonal 4H and 6H polytypes of SiC. We found two classes among the considered transition metal impurities: Ti, V and Cr clearly prefer the Si-substituting configuration while W, Nb, and Mo may form a complex with a carbon vacancy in hexagonal SiC even under thermal equilibrium with similar concentration. If the metal impurity is implanted into SiC or when many carbon impurities exist during the growth of SiC then complex formation between the Si-substituting metal impurity and the carbon vacancy should be considered. This complex pair configuration exclusively prefers the hexagonal-hexagonal sites in hexagonal polytypes and may be absent in the cubic polytype. We also studied transition metal doped nano 3C-SiC crystals in order to check the effect of the crystal field on the d-orbitals of the metal impurity.

  • 17.
    Ivady, Viktor
    et al.
    Hungarian Academy of Science.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Son Tien, Nguyen
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gali, Adam
    Hungarian Academy of Science.
    Asymmetric Split-Vacancy Defects in SiC Polytypes: A Combined Theoretical and Electron Spin Resonance Study2011In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 107, no 19, p. 195501-Article in journal (Refereed)
    Abstract [en]

    Transition metal defects were studied in different polytypes of silicon carbide (SiC) by ab initio supercell calculations. We found asymmetric split-vacancy (ASV) complexes for these defects that preferentially form at only one site in hexagonal polytypes, and they may not be detectable at all in cubic polytype. Electron spin resonance study demonstrates the existence of ASV complex in niobium doped 4H polytype of SiC.

  • 18.
    Ivanov, I. G.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gällström, A
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Coble, R.
    University of Pittsburgh, USA.
    Devaty, R. P.
    University of Pittsburgh, USA.
    Choyke, W. J.
    University of Pittsburgh, USA.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Investigation of intrinsic carbon-related defects in 4H-SiC by selective-excitation photoluminescence spectroscopy2012In: Materials Science Forum Vols 717 - 720, Trans Tech Publications Inc., 2012, Vol. 717-720, p. 259-262Conference paper (Refereed)
    Abstract [en]

    Emission of carbon-related defects is investigated by means of selectively-excited photoluminescence in high purity 4H-SiC electron-irradiated with very low dose. Two new centers with clearly associated phonon replicas are observed, one of which is tentatively assigned to the carbon split interstitial at the hexagonal site. The temperature dependence of the spectrum is also studied and indicates that at least some of the observed luminescence lines arise from recombination of excitons bound to isoelectronic centers.

  • 19.
    Janzén, Erik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Gali, Adam
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Carlsson, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Gällström, Andreas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Son, Nguyen Tien
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    The Silicon vacancy in SiC2009In: / [ed] Amador Pérez-Tomás, Philippe Godignon, Miquel Vellvehí and Pierre Brosselard, Trans Tech Publications Inc., 2009, Vol. 615-617, p. 347-352Conference paper (Refereed)
    Abstract [en]

     A model is presented for the silicon vacancy in SiC. The previously reported photoluminescence spectra in 4H and 6H SiC attributed to the silicon vacancy are in this model due to internal transitions in the negative charge state of the silicon vacancy. The magnetic resonance signals observed are due to the initial and final states of these transitions.

  • 20.
    Janzén, Erik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gali, Adam
    Budapest University Technology and Econ, Department Atom Phys, H-1111 Budapest, Hungary .
    Carlsson, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Magnusson, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Son, Nguyen Tien
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    The silicon vacancy in SiC2009In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 404, no 22, p. 4354-4358Article in journal (Refereed)
    Abstract [en]

    The isolated silicon vacancy is one of the basic intrinsic defects in SiC. We present new experimental data as well as new calculations on the silicon vacancy defect levels and a new model that explains the optical transitions and the magnetic resonance signals observed as occurring in the singly negative charge state of the silicon vacancy in 4H and 6H SiC.

  • 21.
    Nguyen, Son Tien
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Carlsson, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Gällström, Andreas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Deep levels and carrier compensation in V-doped semi-insulating 4H-SiC2007In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 91, no 20Article in journal (Refereed)
    Abstract [en]

    Electron paramagnetic resonance was used to study semi-insulating (SI) 4H-SiC substrates doped with vanadium (V) in the range of 5.5× 1015 -1.1× 1017 cm-3. Our results show that the electrical activation of V is low and hence only in heavily V-doped 4H-SiC, vanadium is responsible for the SI behavior, whereas in moderately V-doped substrates, the SI properties are thermally unstable and determined by intrinsic defects. We show that the commonly observed thermal activation energy Ea ∼1.1 eV in V-doped 4H-SiC may be related to deep levels of the carbon vacancy. © 2007 American Institute of Physics.

  • 22.
    Nguyen, Son Tien
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Carlsson, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Gällström, Andreas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Deep Levels Responsible for Semi-insulating Behaviour in Vanadium-doped 4H-SiC Substrates2009In: Materials Science Forum, Vols. 600-603, Trans Tech Publications , 2009, p. 401-404Conference paper (Refereed)
    Abstract [en]

    Semi-insulating (SI) 4H-SiC substrates doped with vanadium (V) in the range 5.5×1015 –1.1×1017 cm–3 were studied by electron paramagnetic resonance. We show that only in heavily V-doped 4H-SiC vanadium is responsible for the SI behavior, whereas in moderate V-doped substrates with the V concentration comparable or slightly higher than that of the shallow N donor or B acceptor, the SI properties are thermally unstable and determined by intrinsic defects. The results show that the commonly observed thermal activation energy Ea~1.1 eV in V-doped 4H-SiC, which was previously assigned to the single acceptor V4+/3+ level, may be related to deep levels of the carbon vacancy. Carrier compensation processes involving deep levels of V and intrinsic defects are discussed and possible thermal activation energies are suggested.

  • 23.
    Nguyen, Son Tien
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Carlsson, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Gällström, Andreas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Magnusson, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Prominent defects in semi-insulating SiC substrates2007In: Physica B, Vol. 401-402, Elsevier , 2007, p. 67-Conference paper (Refereed)
    Abstract [en]

      

  • 24.
    Pedersen, Henrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Carlsson, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Very high crystalline quality of thick 4H-SiC epilayers grown from methyltrichlorosilane (MTS)2008In: Physica status solidi (RRL) - Rapid Research Letters, ISSN 1862-6254, Vol. 2, no 4, p. 188-190Article in journal (Refereed)
    Abstract [en]

    200 µm thick 4H-SiC epilayers have been grown by chloride-based chemical-vapor deposition using methyltrichlorosilane (MTS) as single precursor. The very high crystalline quality of the grown epilayer is demonstrated by high resolution X-Ray Diffraction rocking curve with a full-width-half-maximum value of only 9 arcsec. The high quality of the epilayer is further shown by low temperature photoluminescence showing strong free exciton and nitrogen bound exciton lines. The very high crystalline quality achieved for the thick epilayer grown in just two hours at 1600 °C suggests that MTS is a suitable precursor molecule for SiC bulk growth.

  • 25.
    Son, Nguyen Tien
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ivady, V.
    Hungarian Academy of Sciences, Budapest, Hungary.
    Gali, Adam
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kordina, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Identification of Niobium in 4H-SiC by EPR and ab Initio Studies2012In: Materials Science Forum Vols 717 - 720, Trans Tech Publications Inc., 2012, Vol. 717-720, p. 217-220Conference paper (Refereed)
    Abstract [en]

    In unintentionally Nb-doped 4H-SiC grown by high-temperature chemical vapor deposition (HTCVD), an electron paramagnetic resonance (EPR) center with C-lh symmetry and an electron spin S=1/2 was observed. The spectrum shows a hyperfine structure consisting of ten equal-intensity hyperfine (hf) lines which is identified as due to the hf interaction between the electron spin and the nuclear spin of Nb-93. An additional hf structure due to the interaction with two equivalent Si neighbors was also observed. Ab initio supercell calculations of Nb in 4H-SiC suggest that Nb may form a complex with a C-vacancy (V-C) resulting in an asymmetric split-vacancy (ASV) defect, Nb-Si-V-C. Combining results from EPR and supercell calculations, we assign the observed Nb-related EPR center to the hexagonal-hexagonal configuration of the AVS defect in the neutral charge state, (Nb-Si-V-C)(0).

  • 26.
    Son Tien, Nguyen
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Trinh, Xuan Thang
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kordina, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Szasz, Krisztian
    Hungarian Academic Science, Hungary .
    Ivady, Viktor
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Gali, Adam
    Hungarian Academic Science, Hungary Budapest University of Technology and Econ, Hungary .
    Electron paramagnetic resonance and theoretical studies of Nb in 4H- and 6H-SiC2012In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 112, no 8, p. 083711-Article in journal (Refereed)
    Abstract [en]

    High purity silicon carbide (SiC) materials are of interest from high-power high temperature applications across recent photo-voltaic cells to hosting solid state quantum bits, where the tight control of electrically, optically, and magnetically active point defects is pivotal in these areas. 4H- and 6H-SiC substrates are grown at high temperatures and the incorporation of transition metal impurities is common. In unintentionally Nb-doped 4H- and 6H-SiC substrates grown by high-temperature chemical vapor deposition, an electron paramagnetic resonance (EPR) spectrum with C-1h symmetry and a clear hyperfine (hf) structure consisting of ten equal intensity hf lines was observed. The hf structure can be identified as due to the interaction between the electron spin S - 1/2 and the nuclear spin of Nb-93. Additional hf structures due to the interaction with three Si neighbors were also detected. In 4H-SiC, a considerable spin density of similar to 37.4% was found on three Si neighbors, suggesting the defect to be a complex between Nb and a nearby carbon vacancy (V-C). Calculations of the Nb-93 and Si-29 hf constants of the neutral Nb on Si site, Nb-Si(0), and the Nb-vacancy defect, NbSiVC0, support previous reported results that Nb preferentially forms an asymmetric split-vacancy (ASV) defect. In both 4H- and 6H-SiC, only one Nb-related EPR spectrum has been observed, supporting the prediction from calculations that the hexagonal-hexagonal defect configuration of the ASV complex is more stable than others.

  • 27.
    Trinh, Xuan Thang
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Gällström, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Nguyen, Son Tian
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Leone, Stefano
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kordina, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Electron Paramagnetic Resonance Studies of Nb in 6H-SiC2013In: Materials Science Forum (Volumes 740 - 742), Trans Tech Publications Inc., 2013, p. 385-388Conference paper (Refereed)
    Abstract [en]

    Defects in unintentionally Nb-doped 6H-SiC grown by high-temperature chemical vapor deposition were studied by electron paramagnetic resonance (EPR). An EPR spectrum with a hyperfine (hf) structure consisting of ten equal-intensity lines was observed. The hf structure is identified to be due to the hf interaction between an electron spin S=1/2 and a nuclear spin of 93Nb. The hf interaction due to the interaction three nearest Si neighbors was also observed, suggesting the involvement of the C vacancy (VC) in the defect. Only one EPR spectrum was observed in 6H-SiC polytype. The obtained spin-Hamiltonian parameters are similar to that of the Nb-related EPR defect in 4H-SiC, suggesting that the EPR center in 6H-SiC is the NbSiVC complex in the neutral charge state, NbSiVC0. Photoexcitation EPR experiments suggest that the single negative charge state of the NbSiVC complex is located at ~1.3 eV below the conduction band minimum.

1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf