liu.seSearch for publications in DiVA
Change search
Refine search result
12345 1 - 50 of 249
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alami, Jones
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Gudmundsson, J. T.
    University of Iceland, Reykjavik.
    Böhlmark, Johan
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics . Linköping University, The Institute of Technology.
    Plasma dynamics in a highly ionized pulsed magnetron discharge2005In: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 14, no 3, p. 525-531Article in journal (Refereed)
    Abstract [en]

    We report on electrostatic probe measurements of a high-power pulsed magnetron discharge. Space- and time-dependent characteristics of the plasma parameters are obtained as functions of the process parameters. By applying high-power pulses (peak power of ~0.5 MW), with a pulse-on time of ~100 µs and a repetition frequency of 20 ms, peak electron densities of the order of ~1019 m− 3, i.e. three orders of magnitude higher than for a conventional dc magnetron discharge, are achieved soon after the pulse is switched on. At high sputtering gas pressures (>5 mTorr), a second peak occurs in the electron density curve, hundreds of microseconds after the pulse is switched off. This second peak is mainly due to an ion acoustic wave in the plasma, reflecting off the chamber walls. This is concluded from the time delay between the two peaks in the electron and ion saturation currents, which is shown to be dependent on the chamber dimensions and the sputtering gas composition. Finally, the electron temperature is determined, initially very high but decreasing rapidly as the pulse is turned off. The reduction seen in the electron temperature, close to the etched area of the cathode, is due to cooling by the sputtered metal atoms.

  • 2.
    Albani, Giorgia
    et al.
    University of Milano Bicocca, Italy; Ist Nazl Fis Nucl, Italy.
    Perelli Cippo, Enrico
    CNR, Italy.
    Croci, Gabriele
    University of Milano Bicocca, Italy; Ist Nazl Fis Nucl, Italy.
    Muraro, Andrea
    CNR, Italy.
    Schooneveld, Erik
    Rutherford Appleton Lab, England.
    Scherillo, Antonella
    Rutherford Appleton Lab, England.
    Hall-Wilton, Richard
    European Spallat Source ERIC, Sweden; Mittuniversitetet, Sweden.
    Kanaki, Kalliopi
    European Spallat Source ERIC, Sweden.
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. European Spallat Source ERIC, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Claps, Gerardo
    Ist Nazl Fis Nucl, Italy.
    Murtas, Fabrizio
    Ist Nazl Fis Nucl, Italy.
    Rebai, Marica
    University of Milano Bicocca, Italy; Ist Nazl Fis Nucl, Italy.
    Tardocchi, Marco
    CNR, Italy.
    Gorini, Giuseppe
    University of Milano Bicocca, Italy; CNR, Italy; Ist Nazl Fis Nucl, Italy.
    Evolution in boron-based GEM detectors for diffraction measurements: from planar to 3D converters2016In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 27, no 11, article id 115902Article in journal (Refereed)
    Abstract [en]

    The so-called He-3-crisis has motivated the neutron detector community to undertake an intense Ramp;D programme in order to develop technologies alternative to standard He-3 tubes and suitable for neutron detection systems in future spallation sources such as the European spallation source (ESS). Boron-based GEM (gas electron multiplier) detectors are a promising He-3-free technology for thermal neutron detection in neutron scattering experiments. In this paper the evolution of boron-based GEM detectors from planar to 3D converters with an application in diffraction measurements is presented. The use of 3D converters coupled with GEMs allows for an optimization of the detector performances. Three different detectors were used for diffraction measurements on the INES instrument at the ISIS spallation source. The performances of the GEM-detectors are compared with those of conventional He-3 tubes installed on the INES instrument. The conceptual detector with the 3D converter used in this paper reached a count rate per unit area of about 25% relative to the currently installed He-3 tube. Its timing resolution is similar and the signal-to-background ratio (S/B) is 2 times lower.

  • 3.
    Ali, Sharafat
    et al.
    Linnaeus Univ, Sweden.
    Magnusson, Roger
    Linnaeus Univ, Sweden.
    Pshyk, Oleksandr
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Empa Swiss Fed Labs Mat Sci & Technol, Switzerland.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Effect of O/N content on the phase, morphology, and optical properties of titanium oxynitride thin films2023In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 58, p. 10975-10985Article in journal (Refereed)
    Abstract [en]

    Phase formation, morphology, and optical properties of Ti(O,N) thin films with varied oxygen-to- nitrogen ration content were investigated. The films were deposited by magnetron sputtering at 500 & DEG;C on Si(100) and c-plane sapphire substrate. A competition between a NaCl B1 structure TiN1-xOx, a rhombohedral structure Ti-2(O1-yNy)(3), and an anatase structure Ti(O1-zNz)(2) phase was observed. While the N-rich films were composed of a NaCl B1 TiN1-xOx phase, an increase of oxygen in the films yields the growth of rhombohedral Ti-2(O1-yNy)(3) phase and the oxygen-rich films are comprised of a mixture of the rhombohedral Ti-2(O1-yNy)(3) phase and anatase Ti(O1-zNz)(2) phase. The optical properties of the films were correlated to the phase composition and the observation of abrupt changes in terms of refractive index and absorption coefficient. The oxide film became relatively transparent in the visible range while the addition of nitrogen into films increases the absorption. The oxygen rich-samples have bandgap values below 3.75 eV, which is higher than the value for pure TiO2, and lower than the optical bandgap of pure TiN. The optical properties characterizations revealed the possibility of adjusting the band gap and the absorption coefficient depending on the N-content, because of the phases constituting the films combined with anionic substitution.

    Download full text (pdf)
    fulltext
  • 4.
    Ali, Sharafat
    et al.
    Linnaeus University, Sweden; Corning Inc, NY 14831 USA.
    Paul, Biplab
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Jonson, Bo
    Linnaeus University, Sweden.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis and characterization of the mechanical and optical properties of Ca-Si-O-N thin films deposited by RF magnetron sputtering2017In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 315, p. 88-94Article in journal (Refereed)
    Abstract [en]

    Ca-Si-O-N thin films were deposited on commercial soda-lime silicate float glass, silica wafers and sapphire substrates by RF magnetron co-sputtering from Ca and Si targets in an Ar/N-2/O-2 gas mixture. Chemical composition, surface morphology, hardness, reduced elastic modulus and optical properties of the films were investigated using X-ray photoelectron spectroscopy, scanning electron microscopy, nanoindentation, and spectroscopic ellipsometry. It was found that the composition of the films can be controlled by the Ca target power, predominantly, and by the reactive gas flow. Thin films in the Ca-Si-O-N system are composed of N and Ca contents up to 31 eq. % and 60 eq. %, respectively. The films thickness ranges from 600 to 3000 nm and increases with increasing Ca target power. The films surface roughness varied between 2 and 12 nm, and approximately decreases with increasing power of Ca target. The hardness (4-12 GPa) and reduced elastic modulus (65-145 GPa) of the films increase and decrease with the N and Ca contents respectively. The refractive index (1.56-1.82) is primarily dictated by the N content. The properties are compared with findings for bulk glasses in the Ca-Si-(Al)-O-N systems, and it is concluded that Ca-Si-O-N thin films have higher values of hardness, elastic modulus and refractive index than bulk glasses of similar composition. (C) 2017 Elsevier B.V. All rights reserved.

    Download full text (pdf)
    fulltext
  • 5.
    Ali, Sharafat
    et al.
    Linnaeus Univ, Sweden.
    Paul, Biplab
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ekström, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pallier, Camille
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. RISE IVF, S-58188 Linkoping, Sweden.
    Jonson, Bo
    Linnaeus Univ, Sweden.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Optical and mechanical properties of amorphous Mg-Si-O-N thin films deposited by reactive magnetron sputtering2019In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 372, p. 9-15Article in journal (Refereed)
    Abstract [en]

    In this work, amorphous thin films in Mg-Si-O-N system typically containing amp;gt; 15 at.% Mg and 35 at.% N were prepared in order to investigate especially the dependence of optical and mechanical properties on Mg composition. Reactive RF magnetron co-sputtering from magnesium and silicon targets were used for the deposition of Mg-Si-O-N thin films. Films were deposited on float glass, silica wafers and sapphire substrates in an Ar, N-2 and O-2 gas mixture. X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, spectroscopic ellipsometry, and nanoindentation were employed to characterize the composition, surface morphology, and properties of the films. The films consist of N and Mg contents up to 40 at.% and 28 at.%, respectively and have good adhesion to substrates and are chemically inert. The thickness and roughness of the films increased with increasing content of Mg. Both hardness (16-21 GPa) and reduced elastic modulus (120-176 GPa) are strongly correlated with the amount of Mg content. The refractive index up to 2.01 and extinction coefficient up to 0.18 were found to increase with Mg content. The optical band gap (3.1-4.3) decreases with increasing the Mg content. Thin film deposited at substrate temperature of 100 degrees C shows a lower value of hardness (10 GPa), refractive index (1.75), and higher values of reduced elastic modulus (124 GPa) as compared to the thin film deposited at 310 degrees C and 510 degrees C respectively, under identical synthesis parameters.

    Download full text (pdf)
    fulltext
  • 6.
    Ali, Sharafat
    et al.
    Linnaeus University, Sweden.
    Paul, Biplab
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Jonson, Bo
    Linnaeus University, Sweden.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Novel transparent Mg-Si-O-N thin films with high hardness and refractive index2016In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 131Article in journal (Refereed)
    Abstract [en]

    There is an increasing demand for glass materials with better mechanical and optical properties for display and electronic applications. This paper describes the deposition of novel thin films of Mg-circle divide-Si-O-N onto float glass substrates. Amorphous thin films in the Mg-Si-O-N system with high nitrogen and magnesium contents were deposited by reactive RF magnetron co-sputtering from Mg and Si targets in Ar/N-2/O-2 gas mixtures. The thin films studied span an unprecedented range of compositions up to 45 at% Mg and 80 at% N out of cations and anions respectively. Thin films in the Mg-Si-O-N system were found to be homogeneous and transparent in the visible region. Mechanical properties like hardness (H) and reduced elastic modulus (Er) show high values, up to 21 GPa and 166 GPa respectively. The refractive index (1.87-2.00) increases with increasing magnesium and nitrogen contents. (C) 2016 Elsevier Ltd. All rights reserved.

    Download full text (pdf)
    fulltext
  • 7.
    Alves Machado Filho, Manoel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Universidade Maurício de Nassau − UNINASSAU − Unidade Vitória da Conquista, 45020-750Vitória da Conquista, Bahia, Brazil.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    dos Santos, Renato Batista
    Instituto Federal de Educação, Ciência e Tecnologia Baiano, 46880-000Itaberaba, Bahia, Brazil.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Gueorguiev, Gueorgui Kostov
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations2023In: ACS Nanoscience Au, E-ISSN 2694-2496, Vol. 3, no 1, p. 84-93Article in journal (Refereed)
    Abstract [en]

    By addressing precursor prevalence and energetics using the DFT-based synthetic growth concept (SGC), the formation mechanism of self-induced InAlN core–shell nanorods (NRs) synthesized by reactive magnetron sputter epitaxy (MSE) is explored. The characteristics of In- and Al-containing precursor species are evaluated considering the thermal conditions at a typical NR growth temperature of around 700 °C. The cohesive and dissociation energies of In-containing precursors are consistently lower than those of their Al-containing counterparts, indicating that In-containing precursors are more weakly bonded and more prone to dissociation. Therefore, In-containing species are expected to exhibit lower abundance in the NR growth environment. At increased growth temperatures, the depletion of In-based precursors is even more pronounced. A distinctive imbalance in the incorporation of Al- and In-containing precursor species (namely, AlN/AlN+, AlN2/AlN2+, Al2N2/Al2N2+, and Al2/Al2+ vs InN/InN+, InN2/InN2+, In2N2/In2N2+, and In2/In2+) is found at the growing edge of the NR side surfaces, which correlates well with the experimentally obtained core–shell structure as well as with the distinctive In-rich core and vice versa for the Al-rich shell. The performed modeling indicates that the formation of the core–shell structure is substantially driven by the precursors’ abundance and their preferential bonding onto the growing edge of the nanoclusters/islands initiated by phase separation from the beginning of the NR growth. The cohesive energies and the band gaps of the NRs show decreasing trends with an increment in the In concentration of the NRs’ core and with an increment in the overall thickness (diameter) of the NRs. These results reveal the energy and electronic reasons behind the limited growth (up to ∼25% of In atoms of all metal atoms, i.e., InxAl1–xN, x ∼ 0.25) in the NR core and may be qualitatively perceived as a limiting factor for the thickness of the grown NRs (typically <50 nm).

    Download full text (pdf)
    fulltext
  • 8.
    Anastasopoulos, M.
    et al.
    European Spallat Source, Sweden.
    Bebb, R.
    European Spallat Source, Sweden.
    Berry, K.
    Spallat Neutron Source, TN 37831 USA.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Brys, T.
    European Spallat Source, Sweden.
    Buffet, J. -C.
    Institute Laue Langevin, France.
    Clergeau, J. -F.
    Institute Laue Langevin, France.
    Deen, P. P.
    European Spallat Source, Sweden.
    Ehlers, G.
    Spallat Neutron Source, TN 37831 USA.
    van Esch, P.
    Institute Laue Langevin, France.
    Everett, S. M.
    Spallat Neutron Source, TN 37831 USA.
    Guerard, B.
    Institute Laue Langevin, France.
    Hall-Wilton, R.
    European Spallat Source, Sweden; Mid Sweden University, Sweden.
    Herwig, K.
    Spallat Neutron Source, TN 37831 USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. European Spallat Source, Sweden.
    Iruretagoiena, I.
    European Spallat Source, Sweden.
    Issa, F.
    European Spallat Source, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Khaplanov, A.
    European Spallat Source, Sweden.
    Kirstein, O.
    European Spallat Source, Sweden; University of Newcastle, Australia.
    Lopez Higuera, I.
    European Spallat Source, Sweden.
    Piscitelli, F.
    European Spallat Source, Sweden.
    Robinson, L.
    European Spallat Source, Sweden.
    Schmidt, Susann
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. European Spallat Source, Sweden.
    Stefanescu, I.
    European Spallat Source, Sweden.
    Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS2017In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, article id P04030Article in journal (Refereed)
    Abstract [en]

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG. CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of He-3 detectors on an operational instrument. The demonstrator has an active area of 0.2m(2). It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the He-3 detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by He-3, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

    Download full text (pdf)
    fulltext
  • 9.
    Andersen, Ken
    et al.
    European Spallation Source ESS AB, Lund, Sweden.
    Bigault, Thierry
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Buffet, J. C.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Correa, Jonathan
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Hall-Wilton, Richard
    European Spallation Source ESS AB, Lund, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Guerard, Bruno
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Khaplanov, Anton
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Kirstein, Oliver
    Linköping University.
    Piscitelli, Fransesco
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    van Esch, P.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Vettier, Christian
    European Spallation Source, Lund, Sweden.
    10B multi-grid proportional gas counters for large area thermal neutrondetectors2013In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 720, p. 116-121Article in journal (Refereed)
    Abstract [en]

    3He was a popular material in neutrons detectors until its availability dropped drastically in 2008. The development of techniques based on alternative convertors is now of high priority for neutron research institutes. Thin films of 10B or 10B4C have been used in gas proportional counters to detect neutrons, but until now, only for small or medium sensitive area. We present here the multi-grid design, introduced at the ILL and developed in collaboration with ESS for LAN (large area neutron) detectors. Typically thirty 10B4C films of 1 μm thickness are used to convert neutrons into ionizing particles which are subsequently detected in a proportional gas counter. The principle and the fabrication of the multi-grid are described and some preliminary results obtained with a prototype of 200 cm×8 cm are reported; a detection efficiency of 48% has been measured at 2.5 Å with a monochromatic neutron beam line, showing the good potential of this new technique.

  • 10.
    Aquila, Andrew L.
    et al.
    Lawrence Berkeley National Laboratory, USA.
    Salmassi, Fahrad
    Lawrence Berkeley National Laboratory, USA.
    Gullikson, Eric M.
    Lawrence Berkeley National Laboratory, USA.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Measurements of the optical constants of scandium in the 50-1300 eV range2004In: SPIE 5538, Optical Constants of Materials for UV to X-Ray Wavelengths / [ed] Regina Soufli, John F. Seely, SPIE - International Society for Optical Engineering, 2004, p. 64-71Conference paper (Refereed)
    Abstract [en]

    Scandium containing multilayers have been produced with very high reflectivity in the soft x-ray spectrum.  Accurate optical constants are required in order to model the multilayer reflectivity.  Since there are relatively few measurements of the optical constants of Scandium in the soft x-ray region we have performed measurements over the energy range of 50-1,300 eV.  Thin films of Scandium were deposited by ion-assisted magnetron sputtering at Linkoping University and DC Magnetron sputtering at CXRO.  Transmission measurements were performed at the Advanced Light Source beamline 6.3.2.  The absorption coefficient was deduced from the measurements and the dispersive part of the index of refraction was obtained using the Kramers-Kronig relation.  The measured optical constants are used to model the near-normal incidence reflectivity of Cr/Sc multilayers near the Sc L2,3 edge.

  • 11.
    Arwin, Hans
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Berlind, Torun
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Fernández del Río, Lia
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Gustafson, Johan
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Landin, Jan
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, The Institute of Technology.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Åkerlind, Christina
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Polarization effects in reflection from the cuticle of scarab beetles studied by spectroscopic Mueller-matrix ellipsometry2012In: AES 2012, Advanced Electromagnetics Symposium, 2012Conference paper (Other academic)
    Abstract [en]

    Polarization effects in reflection from the cuticle of scarab beetles studied by spectroscopic Mueller-matrix ellipsometry

     

    H. Arwin*, T. Berlind, J. Birch, L. Fernandez Del Rio, J. Gustafson, J. Landin,

    R. Magnusson, C. Åkerlind, and K. Järrendahl

    Department of Physics, Chemistry and Biology, Linköping University, Sweden

    *corresponding author: han@ifm.liu.se

     

    Abstract- Many scarab beetles exhibit structural colors and complex polarization phenomena in reflection. These effects are characterized with spectroscopic Mueller-matrix ellipsometry in our work. The polarization ellipse of reflected light as well as the degree of polarization is presented including variations with angle of incidence and wavelength. Emphasis is on beetles showing chiral effects and structural modeling of cuticle nanostructure is discussed.

     

    Background Since one hundred years it is known that some scarab beetles reflect elliptically polarized light as demonstrated by Michelson for the beetle Chrysina resplendens [1]. The handedness of the polarization is in a majority of the cases left-handed but also right-handed polarization has been found [2,3]. The ellipticity varies with wavelength and viewing angle but can be close to +1 or -1 (right or left circular polarization, respectively) and in addition these beetles may exhibit beautiful structural colors. The polarization and color effects are generated in the outer part of the exoskeleton, the cuticle. These natural photonic structures are often multifunctional and play important roles for survival of beetles, e.g. for hiding from or scaring predators, for intraspecies communication, etc. [4]. However, such structures may find use in many commercial applications and a major motivation for detailed studies of natural photonic structures is that they inspire to biomimetic applications [5,6].

    Approach Our objective is to use spectral Mueller-matrix data on scarab beetles to parameterize reflection properties in terms of polarization parameters and degree of polarization. The studied beetles all are phytophagous and include species from the Cetoniinae subfamily (e.g. Cetonia aurata and Coptomia laevis,), the Rutelinae subfamily (e.g. Chrysina argenteola and Chrysina resplendens) and the Melolonthinae subfamily (Cyphochilus insulanus). Furthermore, structural modeling is presented on Cetonia aurata and a few more beetles to demonstrate that structural parameters can be extracted by advanced modeling of Mueller-matrix data.

    Experimental A dual rotating compensator ellipsometer (RC2, J. A. Woollam Co., Inc.) is used to record all 16 Mueller-matrix elements mij (i,j=1..4) in the spectral range 300 – 900 nm at angles of incidence in the range 20-70º. The elements are normalized to m11 and thus have values between -1 and +1. All measurements are performed on the scutellum (a small triangular part on the dorsal side of the beetles) with focusing optics resulting in a spot size of the order of 50-100 mm. The software CompleteEASE (J. A. Woollam Co., Inc.) is used for analysis.

    Results and discussion As an example, Fig. 1 shows contour plots of Mueller-matrix data measured on Cetonia aurata. This beetle has a metallic shine and if illuminated with unpolarized white light it reflects left-handed polarized green light as revealed by the non-zero Mueller-matrix elements m14 and m41 in the green spectral region for angles of incidence below about 45º. This is clearly seen in the graph to the right in Fig. 1 which shows a spectrum for Mueller-matrix element m41at 20º as well as fitted model data. A model based on a twisted lamella structure, also called Bouligand structure, is used to model the chiral nanostructure [4]. Given the complexity of the nanostructure, an excellent model fit is achieved. The obtained model parameters are the spectral variation of the refractive index of the birefringent lamellas and the pitch. The model also includes a dielectric surface layer.

     

     

     

    Fig.1. Left: Mueller-matrix data on Cetonia aurata. Each contour plot shows mij, where i and j correspond to the row and column, respectively. m11 =1 and is not shown but is replaced with a photo of the beetle. Right: Experimental and model-generated Mueller-matrix element m41at an angle of incidence of 20º.

     

    From the Mueller-matrix data one can also determine so called derived parameters including azimuth and ellipticity of the polarization ellipse and the degree of polarization. The variations of these parameters with angle of incidence are presented for a selection of scarab beetles. Examples of both left-handed and right-handed polarization effects are shown and the importance of degree of polarization will be discussed.

    Concluding remarks Mueller-matrix spectra at oblique incidence are very rich in information about reflection properties and allows parameterization of polarization parameters of the reflected light. Both left-handed and right-handed reflected light is found in scarab beetles. Mueller-matrix data can also be used for a detailed modeling of the nanostructure of the cuticle of beetles.

    AcknowledgementsFinancial support was obtained from the Knut and Alice Wallenberg foundation and the Swedish Research Council. The Museum of Natural History in Stockholm, the National Museum of Natural Science in Madrid, the Berlin Museum of Natural History and the Natural History Museum in London are acknowledged for loan of beetles.

     

    REFERENCES

    1. Michelson, A. A. “On Metallic Colouring in Birds and Insects,” Phil. Mag., 21, 554-567, 1911.
    2. Goldstein, D. H. “Polarization properties of Scarabaeidae,” Appl. Opt., 45, 7944-7950, 2006.
    3. Hodgkinson, I., Lowrey, S., Bourke, L., Parker, A. and McCall, M. W. “Mueller-matrix characterization of beetle cuticle polarized and unpolarized reflections from representative architectures,” Appl. Opt., 49, 4558-4567, 2010.
    4. Vukusic, P. and Sambles, J. R. “Photonic structures in biology,” Nature, 424, 852-855, 2003.
    5. Lenau, T. and Barfoed, M. “Colours and Metallic Sheen in Beetle Shells - A Biomimetic Search for Material Structuring Principles Causing Light Interference,” Adv. Eng. Mat., 10, 299-314. 2008.
    6. Parker, A. R. and Townley, H. E “Biomimetics of photonic nanostructures,” Nature Nanotech., 2, 347-351, 2007.
  • 12.
    Backis, A.
    et al.
    Univ Glasgow, Scotland; European Spallat Source ERIC ESS, Sweden.
    Khaplanov, A.
    European Spallat Source ERIC ESS, Sweden.
    Al Jebali, R.
    Univ Glasgow, Scotland; European Spallat Source ERIC ESS, Sweden.
    Ammer, R.
    European Spallat Source ERIC ESS, Sweden.
    Apostolidis, I
    European Spallat Source ERIC ESS, Sweden.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lai, Chung-Chuan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. European Spallat Source ERIC ESS, Sweden.
    Deen, P. P.
    European Spallat Source ERIC ESS, Sweden; Univ Copenhagen, Denmark.
    Etxegarai, M.
    European Spallat Source ERIC ESS, Sweden.
    de Ruette, N.
    European Spallat Source ERIC ESS, Sweden.
    Ramos, J. Freita
    European Spallat Source ERIC ESS, Sweden.
    Foerster, D. F.
    Forschungszentrum Julich, Germany.
    Haettner, E.
    European Spallat Source ERIC ESS, Sweden.
    Hall-Wilton, R.
    Univ Glasgow, Scotland; European Spallat Source ERIC ESS, Sweden; Univ Milano Bicocca, Italy.
    Hamilton, D.
    Univ Glasgow, Scotland.
    Hoglund, C.
    European Spallat Source ERIC ESS, Sweden; Impact Coatings AB, Westmansgatan 29G, SE-58216 Linkoping, Sweden.
    Kadletz, P. M.
    European Spallat Source ERIC ESS, Sweden.
    Kanaki, K.
    European Spallat Source ERIC ESS, Sweden.
    Karnickis, E.
    European Spallat Source ERIC ESS, Sweden.
    Kirstein, O.
    European Spallat Source ERIC ESS, Sweden.
    Kolya, S.
    European Spallat Source ERIC ESS, Sweden.
    Kraujalyte, Z.
    European Spallat Source ERIC ESS, Sweden.
    Laloni, A.
    European Spallat Source ERIC ESS, Sweden.
    Livingston, K.
    Univ Glasgow, Scotland.
    Loehman, O.
    Tech Univ Darmstadt, Germany.
    Maulerova, V
    European Spallat Source ERIC ESS, Sweden; Lund Univ, Sweden.
    Mauritzon, N.
    European Spallat Source ERIC ESS, Sweden; Lund Univ, Sweden.
    Mueller, F.
    Forschungszentrum Julich, Germany.
    Higuera, I. Lopez
    European Spallat Source ERIC ESS, Sweden.
    Richter, T.
    European Spallat Source ERIC ESS, Sweden.
    Robinson, L.
    European Spallat Source ERIC ESS, Sweden.
    Roth, R.
    EWCON, Sweden.
    Shetty, M.
    European Spallat Source ERIC ESS, Sweden.
    Taylor, J.
    European Spallat Source ERIC ESS, Sweden.
    Woracek, R.
    European Spallat Source ERIC ESS, Sweden.
    Xiong, W.
    European Spallat Source ERIC ESS, Sweden.
    Time- and energy-resolved effects in the boron-10 based multi-grid and helium-3 based thermal neutron detectors2021In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 32, no 3, article id 035903Article in journal (Refereed)
    Abstract [en]

    The boron-10 based multi-grid detector is being developed as an alternative to helium-3 based neutron detectors. At the European Spallation Source, the detector will be used for time-of-flight neutron spectroscopy at cold to thermal neutron energies. The objective of this work is to investigate fine time- and energy-resolved effects of the Multi-Grid detector, down to a few mu eV, while comparing it to the performance of a typical helium-3 tube. Furthermore, it is to characterize differences between the detector technologies in terms of internal scattering, as well as the time reconstruction of similar to mu s short neutron pulses. The data were taken at the Helmholtz Zentrum Berlin, where the Multi-Grid detector and a helium-3 tube were installed at the ESS test beamline, V20. Using a Fermi-chopper, the neutron beam of the reactor was chopped into a few tens of mu s wide pulses before reaching the detector, located a few tens of cm downstream. The data of the measurements show an agreement between the derived and calculated neutron detection efficiency curve. The data also provide fine details on the effect of internal scattering, and how it can be reduced. For the first time, the chopper resolution was comparable to the timing resolution of the Multi-Grid detector. This allowed a detailed study of time- and energy resolved effects, as well as a comparison with a typical helium-3 tube.

    Download full text (pdf)
    fulltext
  • 13.
    Bairagi, Samiran
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Chang, Jui-Che
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tarntair, Fu-Gow
    National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
    Wu, Wan-Yu
    National United University, Miaoli, 36063, Taiwan.
    Gueorguiev, Gueorgui Kostov
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    de Almeida, Edward Ferraz
    Federal University of the West of Bahia, Brazil.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lin, Kun-Lin
    Taiwan Semiconductor Research Institute (TSRI), Taiwan.
    Hsu, Shao-Hui
    Taiwan Semiconductor Research Institute (TSRI), Taiwan.
    Shieh, Jia-Min
    Taiwan Semiconductor Research Institute (TSRI), Taiwan.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Horng, Ray-Hua
    National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Formation of quaternary Zn(AlxGa1−x)2O4 epilayers driven by thermally induced interdiffusion between spinel ZnGa2O4 epilayer and Al2O3 substrate2023In: Materials Today Advances, ISSN 2590-0498, Vol. 20, article id 100422Article in journal (Refereed)
    Abstract [en]

    Zinc aluminogallate, Zn(AlxGa1−x)2O4 (ZAGO), a single-phase spinel structure, offers considerable potential for high-performance electronic devices due to its expansive compositional miscibility range between aluminum (Al) and gallium (Ga). Direct growth of high-quality ZAGO epilayers however remains problematic due to the high volatility of zinc (Zn). This work highlights a novel synthesis process for high-quality epitaxial quaternary ZAGO thin films on sapphire substrates, achieved through thermal annealing of a ZnGa2O4 (ZGO) epilayer on sapphire in an ambient air setting. In-situ annealing x-ray diffraction measurements show that the incorporation of Al in the ZGO epilayer commenced at 850 °C. The Al content (x) in ZAGO epilayer gradually increased up to around 0.45 as the annealing temperature was raised to 1100 °C, which was confirmed by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy. X-ray rocking curve measurement revealed a small full width at half maximum value of 0.72 °, indicating the crystal quality preservation of the ZAGO epilayer with a high Al content. However, an epitaxial intermediate �–(AlxGa1−x)2O3 layer (� - AGO) was formed between the ZAGO and sapphire substrate. This is believed to be a consequence of the interdiffusion of Al and Ga between the ZGO thin film and sapphire substrate. Using density functional theory, the substitution cost of Ga in sapphire was determined to be about 0.5 eV lower than substitution cost of Al in ZGO. Motivated by this energetically favorable substitution, a formation mechanism of the ZAGO and AGO layers was proposed. Spectroscopic ellipsometry studies revealed an increase in total thickness of the film from 105.07 nm (ZGO) to 147.97 nm (ZAGO/AGO) after annealing to 1100 °C, which were corroborated using TEM. Furthermore, an observed increase in the direct (indirect) optical bandgap from 5.06 eV (4.7 eV) to 5.72 eV (5.45 eV) with an increasing Al content in the ZAGO layer further underpins the formation of a quaternary ZAGO alloy with a tunable composition.

    Download full text (pdf)
    fulltext
  • 14.
    Bairagi, Samiran
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Chu, Jinn P.
    Natl Taiwan Univ Sci & Technol, Taiwan.
    Tarntair, Fu-Gow
    Natl Yang Ming Chiao Tung Univ, Taiwan.
    Horng, Ray-Hua
    Natl Taiwan Univ Sci & Technol, Taiwan; Natl Yang Ming Chiao Tung Univ, Taiwan.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zinc gallate (ZnGa2O4) epitaxial thin films: determination of optical properties and bandgap estimation using spectroscopic ellipsometry2022In: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 12, no 8, p. 3284-3295Article in journal (Refereed)
    Abstract [en]

    Electronic grade ZnGa2O4 epitaxial thin films were grown on c-plane sapphire substrates by metal-organic chemical vapor deposition and investigated using spectroscopic ellipsometry. Their thickness, roughness and optical properties were determined using a Multiple Sample Analysis based approach by the regression analysis of optical model and measured data. These samples were then compared to samples which had undergone ion etching, and it was observed that etching time up to four minutes had no discernible impact on its optical properties. Line shape analysis of resulting absorption coefficient dispersion revealed that ZnGa(2)O(4 )exhibited both direct and indirect interband transitions. The modified Cody formalism was employed to determine their optical bandgaps. These values were found to be in good agreement with values obtained using other popular bandgap extrapolation procedures. Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.

    Download full text (pdf)
    fulltext
  • 15.
    Bairagi, Samiran
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Glancing Angle Deposition and Growth Mechanism of Inclined AlN Nanostructures Using Reactive Magnetron Sputtering2020In: Coatings, ISSN 2079-6412, Vol. 10, no 8, article id 768Article in journal (Refereed)
    Abstract [en]

    Glancing angle deposition (GLAD) of AlN nanostructures was performed at room temperature by reactive magnetron sputtering in a mixed gas atmosphere of Ar and N-2. The growth behavior of nanostructures shows strong dependence on the total working pressure and angle of incoming flux. In GLAD configuration, the morphology changed from coalesced, vertical nanocolumns with faceted terminations to highly inclined, fan-like, layered nanostructures (up to 38 degrees); while column lengths decreased from around 1743 to 1068 nm with decreasing pressure from 10 to 1.5 mTorr, respectively. This indicates a change in the dominant growth mechanism from ambient flux dependent deposition to directional ballistic shadowing deposition with decreasing working pressures, which is associated with the change of energy and incident angle of incoming reactive species. These results were corroborated using simulation of metal transport (SiMTra) simulations performed at similar working pressures using Ar and N separately, which showed the average particle energy and average angle of incidence decreased while the total average scattering angle of the metal flux arriving at substrate increased with increasing working pressures. Observing the crystalline orientation of GLAD deposited wurtzite AlN nanocolumns using X-ray diffraction (XRD), pole-figure measurements revealedc-axis growth towards the direction of incoming flux and a transition from fiber-like to biaxial texture took place with increasing working pressures. Under normal deposition conditions, AlN layer morphology changed from {0001} to {10 (1) over bar1} with increasing working pressure because of kinetic energy-driven growth.

    Download full text (pdf)
    fulltext
  • 16.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dorri, Samira
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kosari, Ali
    Delft Univ Technol, Netherlands.
    Mol, Arjan
    Delft Univ Technol, Netherlands.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci & Technol, Taiwan.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Microstructure, mechanical, and corrosion properties of Zr1-xCrxBy diboride alloy thin films grown by hybrid high power impulse/DC magnetron co-sputtering2022In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 591, article id 153164Article in journal (Refereed)
    Abstract [en]

    We study microstructure, mechanical, and corrosion properties of Zr1-xCrxBy coatings deposited by hybrid high power impulse/DC magnetron co-sputtering (CrB2-HiPIMS/ZrB2-DCMS). Cr/(Zr + Cr) ratio, x, increases from 0.13 to 0.9, while B/(Zr + Cr) ratio, y, decreases from 2.92 to 1.81. As reference, ZrB2.18 and CrB1.81 layers are grown at 4000 W DCMS. ZrB2.18 and CrB1.81 columns are continual from near substrate toward the surface with open column boundaries. We find that the critical growth parameter to achieve dense films is the ratio of Cr+- dominated ion flux and the (Zr + B) neutral flux from the ZrB2 target. Thus, the alloys are categorized in two groups: films with x &lt; 0.32 (low Cr+/(Zr + B) ratios) that have continuous columnar growth, rough surfaces, and open column boundaries, and films with x &gt;= 0.32 (high Cr+/(Zr + B) ratios) that Cr+-dominated ion fluxes are sufficient to interrupt continuous columns, resulting in smooth surface and dense fine-grain microstructure. The pulsed metal-ion irradiation is more effective in film densification than continuous Ar+ bombardment. Dense Zr0.46Cr0.54B2.40 and Zr0.10Cr0.90B1.81 alloys are hard (&gt; 30 GPa) and almost stress-free with relative nano indentation toughness of 1.3 MPa root m and 2.3 MPa root m, respectively, and remarkedly low corrosion rates (~& nbsp;1.0 x 10(-6) mA/cm(2) for Zr0.46Cr0.54B2.40 and~& nbsp; 2.1 x 10(-6) mA/cm(2) for Zr0.10Cr0.90B1.81).

    Download full text (pdf)
    fulltext
  • 17.
    Bangolla, Hemanth Kumar
    et al.
    Natl Taiwan Univ Sci & Technol, Taiwan.
    Siao, Ming-Deng
    Natl Taiwan Univ Sci & Technol, Taiwan.
    Huang, Yi-Hua
    Natl Taiwan Univ Sci & Technol, Taiwan.
    Chen, Ruei-San
    Natl Taiwan Univ Sci & Technol, Taiwan.
    Zukauskaite, Agne
    Fraunhofer Inst Organ Elect Electron Beam & Plasm, Germany.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O Å
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Composition-dependent photoconductivities in indium aluminium nitride nanorods grown by magnetron sputter epitaxy2022In: Nanoscale Advances, E-ISSN 2516-0230, Vol. 4, no 22, p. 4886-4894Article in journal (Refereed)
    Abstract [en]

    Photoconduction (PC) properties were investigated for ternary indium aluminium nitride (InxAl1-xN) nanorods (NRs) with different indium compositions (x) from 0.35 to 0.68, as grown by direct-current reactive magnetron sputter epitaxy. Cross-sectional scanning transmission electron microscopy (STEM) reveals single-crystal quality of the vertically aligned InxAl1-xN NRs. Single-rod photodetector devices with good ohmic contacts were fabricated using the focused-ion-beam technique (FIB), where the In-rich In0.68Al0.32N NR exhibits an optimal photocurrent responsivity of 1400 A W-1 and photoconductive gain of 3300. A transition from a positive photoresponse to a negative photoresponse was observed, while increasing the In composition x from 0.35 to 0.57. The negative PC was further enhanced by increasing x to 0.68. A model based on the coexistence and competition of deep electron trap states and recombination centers was proposed to explain the interesting composition-dependent PC in these ternary III-nitride 1D nanostructures.

    Download full text (pdf)
    fulltext
  • 18.
    Ben Sedrine, Nabiha
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Aveiro, Portugal; University of Aveiro, Portugal.
    Zukauskaite, Agne
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. Fraunhofer Institute Appl Solid State Phys, Germany.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Schoeche, S.
    University of Nebraska, NE 68588 USA.
    Schubert, M.
    University of Nebraska, NE 68588 USA.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Infrared dielectric functions and optical phonons of wurtzite YxAl1-xN (0 less than= x less than= 0.22)2015In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 48, no 41, p. 415102-Article in journal (Refereed)
    Abstract [en]

    YAlN is a new member of the group-III nitride family with potential for applications in next generation piezoelectric and light emitting devices. We report the infrared dielectric functions and optical phonons of wurtzite (0001) YxAl1-xN epitaxial films with 0 less than= x less than= 0.22. The films are grown by magnetron sputtering epitaxy on c-plane Al2O3 and their phonon properties are investigated using infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The infrared-active E-1(TO) and LO, and the Raman active E-2 phonons are found to exhibit one-mode behavior, which is discussed in the framework of the MREI model. The compositional dependencies of the E-1(TO), E-2 and LO phonon frequencies, the high-frequency limit of the dielectric constant, epsilon(infinity), the static dielectric constant, epsilon(0), and the Born effective charge Z(B) are established and discussed.

    Download full text (pdf)
    fulltext
  • 19.
    Ben Sedrine, Nebiha
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Zukauskaite, Agne
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Bandgap Engineering and Optical Constants of YxAl1-xN Alloys2013In: Japanese Journal of Applied Physics, ISSN 0021-4922, E-ISSN 1347-4065, Vol. 52, no 8Article in journal (Refereed)
    Abstract [en]

    We study wurtzite Yx Al1-xN (0 andlt;= x andlt;= 0:22) films with (0001) orientation deposited by magnetron sputtering epitaxy on Si(100) substrates and we determine the alloys band gap energies and optical constants. Room temperature spectroscopic ellipsometry (SE) is employed in the energy range from 1 to 6.3 eV, and data modeling based on the standard dielectric function model is used. As a result of the SE data analysis the Yx Al1-xN refractive index and extinction coefficient are determined. The band gap of Yx Al1-xN is found to decrease linearly from 6.2 eV (x=0) down to 4.5 eV (x=0:22). We further observe an increase of the refractive index with increasing Y content; from 1.93 to 2.20 (at 2 eV) for x=0 and 0.22, respectively, reflecting the increase in material density.

  • 20.
    Bernard, M
    et al.
    CNRS, LEPES, F-38042 Grenoble 9, France Fac Sci & Tech St Jerome, MATOP, CNRS, F-13397 Marseille, France Linkoping Univ, Dept Phys, S-58183 Linkoping, Sweden.
    Deneuville, A
    CNRS, LEPES, F-38042 Grenoble 9, France Fac Sci & Tech St Jerome, MATOP, CNRS, F-13397 Marseille, France Linkoping Univ, Dept Phys, S-58183 Linkoping, Sweden.
    Thomas, O
    CNRS, LEPES, F-38042 Grenoble 9, France Fac Sci & Tech St Jerome, MATOP, CNRS, F-13397 Marseille, France Linkoping Univ, Dept Phys, S-58183 Linkoping, Sweden.
    Gergaud, P
    CNRS, LEPES, F-38042 Grenoble 9, France Fac Sci & Tech St Jerome, MATOP, CNRS, F-13397 Marseille, France Linkoping Univ, Dept Phys, S-58183 Linkoping, Sweden.
    Sandstrom, P
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Raman spectra of TiN/AlN superlattices2000In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 380, no 1-2, p. 252-255Article in journal (Refereed)
    Abstract [en]

    TiN (4.5 nm)/AIN (3, 6, 22 nm) superlattices deposited by DC magnetron sputtering on MgO(001) at a temperature of 850 degreesC exhibit Raman signals. They indicate N and Ti vacancies (as in thick TiN) in TiN1-x layers (x = 3 +/- 2%). x is higher for the sample with 3-nm thick AIN layers, which is ascribed to N diffusion from AIN (standing close to the TiN interfaces) to TiN. In comparison to Raman peaks of thick ALN, there are split signals of wurzite ALN phase, and a signal from another phase, which might be defective rocksalt AIN standing close to the TiN interfaces. The Raman signals clearly show interactions between ALN and TiN layers. (C) 2000 Elsevier Science B.V. All rights reserved.

  • 21.
    Beshkova, M.
    et al.
    Bulgarian Academy of Science, Sofia, Bulgaria.
    Zakhariev, Z.
    Bulgarian Academy of Science, Sofia, Bulgaria.
    Abrashev, M. V.
    University of Sofia, Bulgaria.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Postovit, A.
    Institute of Problem Microelectronics Technology and High Purity Materials, Moskow, Russia.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Properties of AlN epitaxial layers on 6H-SiC substrate grown by sublimation in argon, nitrogen, and their mixtures2006In: Materials Science & Engineering: B. Solid-state Materials for Advanced Technology, ISSN 0921-5107, E-ISSN 1873-4944, Vol. 129, no 1-3, p. 228-231Article in journal (Refereed)
    Abstract [en]

    Epitaxial layers of aluminum nitride (AlN) have been grown at temperature 1900 °C on 10 mm × 10 mm 6H-SiC substrate via sublimation-recondensation in RF heated graphite furnace. The source material was polycrystalline sintered AlN. Growth of AlN layers in pure nitrogen, mixed nitrogen/argon and pure argon atmosphere of 50 mbar were compared. A maximum growth rate of about 30 µm/h was achieved in pure nitrogen atmosphere. The surface morphology reflects the hexagonal symmetry of the seed, which is characteristic of an epitaxial growth for samples grown in a pure nitrogen and mixed nitrogen/argon atmosphere. X-ray diffraction (XRD) measurements show very strong and well defined (0 0 0 2) reflection positioned at around 36° in symmetric ?-2? scans. Micro-Raman spectroscopy reveals that the films have a wurtzite structure. Secondary-ion mass spectroscopy (SIMS) results showed a low concentration of carbon incorporation in the AlN layers. This study demonstrates that nitrogen is necessary for the successful epitaxial growth of AlN on 6H-SiC by sublimation. © 2006 Elsevier B.V. All rights reserved.

  • 22.
    Beshkova, Milena
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Sublimation epitaxy of 3C-SiC grown at Si- and C-rich conditions2012In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 86, no 10, p. 1595-1599Article in journal (Refereed)
    Abstract [en]

    3C-SiC layers have been grown by using sublimation epitaxy at a source temperature of 2000 degrees C, under vacuum conditions (andlt;10(-5) mbar) on well oriented (on-axis) 6H-SiC (0001) substrates. Close space sublimation growth geometry has been used in a RF-heated furnace employing high-purity graphite crucible with a possibility to change the growth environment from Si vapor-rich to C vapor-rich. The optical microscopy in transmission mode reveals continuous 3C-domains for 3C-SiC with less than 0.4% 6H-inclusions for the layer grown at Si-rich conditions, and separate 3C-SiC domains for the layer grown at C-rich conditions. The type of 6H-inclusions for layers with continuous domain structure investigated by Atomic Force Microscopy (AFM) is discussed. 2Theta-omega scan shows 0006 and 111 peaks coming from the substrate and the layer, respectively with a higher intensity of the 111 peak for 3C-SiC grown at Si-rich conditions which is related with the continuous character of the 3C-SiC domains.

  • 23.
    Beshkova, Milena
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lorenzzi, J.
    UMR-CNRS.
    Jegenyes, N.
    UMR-CNRS.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ferro, G.
    UMR-CNRS.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Properties of 3C-SiC Grown by Sublimation Epitaxy on Different Type of Substrates2010In: Materials Science Forum, Vols. 645-648, Transtec Publications; 1999 , 2010, Vol. 645-648, p. 183-186Conference paper (Refereed)
    Abstract [en]

    3C-SiC layers have been grown by using sublimation epitaxy at a temperature of 2000 degrees C, on different types of on-axis 6H-SiC(0001) substrates. The influence of the type of substrate on the morphology of the layers investigated by Atomic Force Microscopy (AFM) is discussed. Stacking faults are studied by reciprocal space map (RSM) which shows that double positions domains exists.

  • 24.
    Beshkova, Milena
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Syväjärvi, Mikael
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Vasiliauskas, Remigijus
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Birch, Jens
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Yakimova, Rositsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Properties of 3C-SiC Grown by Sublimation Epitaxy2009In: ECSCRM2008,2008, 2009Conference paper (Refereed)
    Abstract [en]

      

  • 25.
    Beshkova, Milena
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Syväjärvi, Mikael
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Vasiliauskas, Remigijus
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Birch, Jens
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Yakimova, Rositsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Structural Properties of 3C-SiC Grown by Sublimation Epitaxy2009In: ECSCRM2009,2009, Materials Science Forum Vols. 615-617: Trans Tech Publications , 2009, p. 181-184Conference paper (Refereed)
    Abstract [en]

    The present paper deals with morphological and structural investigation of 3C-SiC layers grown by sublimation epitaxy on on axis 6H-SiC(0001) at source temperature 2000 °C, under vacuum conditions (<10-5 mbar) and different temperature gradients in the range of 5-8 °C/mm. The layer grown at a temperature gradient 6 °C/mm has the largest average domain size of 0.4 mm2 assessed by optical microscope in transmission mode. The rocking curve full width at half maximum (FWHM) of (111) reflection is 43 arcsec which suggests good crystalline quality. The AFM image of the same layer shows steps with height 0.25 nm and 0.75 nm which are characteristic of a stacking fault free 3C-SiC surface and c-axis repeat height, respectively.

  • 26.
    Beshkova, Milena
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Zakhariev, Z.
    Abrashev, M.V.
    Birch, Jens
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Kakanakova-Georgieva, Anelia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Yakimova, Rositsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Low-pressure sublimation epitaxy of AlN films - growth and characterization2004In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 76, p. 143-146Article in journal (Refereed)
    Abstract [en]

    Epitaxial layers of aluminum nitride have been grown at temperatures 1900-2400degreesC on 10 x 10 mm(2) 4H-SiC substrate via sublimation recondensation in an RF heated graphite furnace. The source material was polycrystalline sintered AlN. A maximum growth rate of about 100 mum/h was achieved at 2400degreesC and seed to source distance of 1 mm. The surface morphology reflects the hexagonal symmetry of the seed suggesting an epitaxial growth. This was confirmed by X-ray diffraction (XRD). The spectra showed very strong and well-defined (0002) reflection position at around 36.04degrees in symmetric Theta-2Thetascans for all samples. Micro-Raman spectroscopy reveals that the films have a wurtzite structure. It is evidenced by the appearance of the A(1) (TO) (at 601 cm(-1)) and E-2((2)) (at 651 cm(-1)) lines in the spectra. Secondary-ion mass spectroscopy (SIMS) results showed a low concentration of carbon incorporation in the AlN films. A correlation between the growth conditions and properties of the AlN layers was established.

  • 27.
    Beshkova, Milena
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Zakhariev, Z
    Birch, Jens
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Kakanakova-Georgieva, Anelia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Yakimova, Rositsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Properties of AlN layers grown by sublimation epitaxy2003In: Materials Science Forum, Vols. 433-436, 2003, Vol. 433-4, p. 995-998Conference paper (Refereed)
    Abstract [en]

    Epitaxial layers of aluminum nitride (AlN)less than or equal to 80 mum thick have been grown at the temperatures 1900 and 2100 degreesC on 10x10mm(2) 4H-SiC substrates via sublimation recondensation in a RF heated graphite furnace. The source material was polyerystalline sintered AlN. A maximum growth rate of 80 mum/h was achieved at 2100degreesC and seed to source separation of I mm. The surface morphology reflects the hexagonal symmetry of the seed that suggesting an epitaxial growth. All crystals show strong and well defined single crystalline XRD patterns. Only the (002) reflection positioned at around 36.04 was observed in symmetric Theta-2Theta scan. The rocking curves FWHM (full width half maximum) and peak positions arc reported.

  • 28.
    Beshkova, Milena
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Zakhariev, Z
    Birch, Jens
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Kakanakova-Georgieva, Anelia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Yakimova, Rositsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
    Sublimation epitaxy of AIN layers on 4H-SiC depending on the type of crucible2003In: Journal of materials science. Materials in electronics, ISSN 0957-4522, E-ISSN 1573-482X, Vol. 14, no 10-12, p. 767-768Article in journal (Refereed)
    Abstract [en]

    Epitaxial layers of aluminum nitride less than or equal to335 mum thick have been grown attemperatures of 1900 and 2100degreesC on 10 x 10 mm(2) (0001)-oriented alpha(4H) silicon carbide (SiC), with growth times of 1 and 4h, via sublimation-recondensation in a RF-heated graphite furnace. The source material was polycrystalline AIN. The sublimation process was performed in three types of graphite (C) crucible: C-1, C-2 with inner diameters of 35 and 51 mm, respectively, and C-3 with the same inner diameter as C-1, but coated with a layer of TaC. The surface morphology reflects the hexagonal symmetry of the substrate, suggesting an epitaxial growth for samples grown in C-1 and C-3 crucibles for all growth conditions. The same symmetry is observed for AIN layers grown in the C-2 crucible, but only at 2100degreesC. X-ray diffraction analyses confirm the epitaxial growth of AIN samples with the expected hexagonal symmetry. A high-resolution X-ray diffractometer was used to assess the quality of the single crystals. A full width at half maximum of 242 arcsec was achieved for an AIN layer grown in the crucible coated with TaC. (C) 2003 Kluwer Academic Publishers.

  • 29.
    Bigault, Thierry
    et al.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Buffet, J. C.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Correa, Jonathan
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Hall-Wilton, Richard
    European Spallation Source ESS AB, Lund, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Guérard, Bruno
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Khaplanov, Anton
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Piscitelli, Fransesco
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    van Esch, P.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    10B multi-grid proportional gas counters for large area thermal neutron detectors2012In: Neutron News, ISSN 1044-8632, E-ISSN 1931-7352, Vol. 23, no 4, p. 20-24Article in journal (Refereed)
  • 30.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Single-crystal Mo/V superlattices: growth, structure, and hydrogen uptake1994Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Fundamental studies concerning the growth, structural characterization and hydrogen uptake of single-crystal (00 l )-oriented Mo/V superlattices have been performed. The superlattices were grown by dual-target magnetron sputtering in pure Ar-atmosphere < 6·10-3 Torr on (001)-oriented MgO substrates. X-ray diffraction (XRD), X-ray and neutron reflectivity, high resolution (HR) as well as ordinary crosssectional transmission electron microscopy (XTEM) and selected area electron diffraction (SAED) were used for the structural characterization. Hydrogen depth-profiling was performed by the 15N method.

    For growth of periodic Mo/V superlattices, it is shown that substrate temperatures in the range of 600-700 °C is feasible for epitaxy. At higher growth temperatures substantial interdiffusion occurred. Furthermore, simulations of XRDpatterns gave the width of the interfaces to be ±1 monolayer (±0,154 nm) which was confirmed by XRD and HRXTEM analyses of a superlattice grown with layer thicknesses DMo=Dv=0,31 nm (2 monolayers). A transition from smooth to wavy V-layers was found to occur at a critical V-layer thickness Dc. In superlattices where the relative amount of V is large, De is large and vice versa for superlattices containing thin V-layers. In superlattices with equally thick Mo- and V-layers Dc was found to be ~2,5 nm. Mo was found to grow with a uniform thickness following the surface of the V-layers. The layer thickness fluctuations are non-accumulative and disappear if the periodicity of a growing Mo/V superlattice is changed so that Dv becomes smaller than Dc. The origin of the 3D evolution is explained in terms of surface strain and the roughening transition. The interfaces of Mo/V superlattices grown under the influence of energetic ion bombardment ranging from about 15 eV to 250 eV was studied by HRXTEM and XRD. Both techniques indicated a continous deterioration of the interface quality and an increasing amount of defects with increasing ion energy.

    The diffraction peaks from a clas of quasi-periodic superlattices which can be generated by the inflation rules A→AmB, B→A (m = positive integer) was analytically, experimentally and numerically found to be located at the wavevectors q = 2πɅ-1rγ(m)k where r and k are integers and A is an average superlattice period. The ratios, γ(m), between the thicknesses of the two superlattice building blocks, A and B, must be chosen such that γ(m) = (m + (m2 + 4) 1/2 )/2.

    The uptake of hydrogen in the superlattices is found to decrease with decreasing A and for 5,5 nm the transition between α-VHx and β-VHx is not observed. A model is proposed which explains the A-dependent behaviour of the hydrogen uptake by a transfer of interstitial electrons from Mo to V, creating a 0,49 nm wide H-free interface layer. The existence of this layer is shown both by the 15N method performed on samples containing several A:s and by combining simulations of X-ray and neutron reflectivities with measurements on superlattices loaded with either hydrogen or deuterium. The structural change of Mo/V(OOl) superlattices upon H-loading was measured by a method derived in this work which utilises a combination of X-ray reflectivity and reciprocal space mapping by XRD. The lattice parameters in the layers are measured in the growth direction as well a in the plane of the sample. It is found that the V lattice expands in the growth direction and that the hydrogenation process is associated with relaxation of coherency strain.

  • 31.
    Birch, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Buffet, J. -C.
    Institute Laue Langevin, France.
    Clergeau, J. -F.
    Institute Laue Langevin, France.
    van Esch, P.
    Institute Laue Langevin, France.
    Ferraton, M.
    Institute Laue Langevin, France.
    Guerard, B.
    Institute Laue Langevin, France.
    Hall-Wilton, R.
    European Spallat Source, Sweden; Mid Sweden University, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. European Spallat Source, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Khaplanov, A.
    Institute Laue Langevin, France; European Spallat Source, Sweden.
    Piscitelli, F.
    Institute Laue Langevin, France; European Spallat Source, Sweden.
    Investigation of background in large-area neutron detectors due to alpha emission from impurities in aluminium2015In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 10, p. 1-14Article in journal (Refereed)
    Abstract [en]

    Thermal neutron detector based on films of (B4C)-B-10 have been developed as an alternative to He-3 detectors. In particular, The Multi-Grid detector concept is considered for future large area detectors for ESS and ILL instruments. An excellent signal-to-background ratio is essential to attain expected scientific results. Aluminium is the most natural material for the mechanical structure of of the Multi-Grid detector and other similar concepts due to its mechanical and neutronic properties. Due to natural concentration of alpha emitters, however, the background from alpha particles misidentified as neutrons can be unacceptably high. We present our experience operating a detector prototype affected by this issue. Monte Carlo simulations have been used to confirm the background as alpha particles. The issues have been addressed in the more recent implementations of the Multi-Grid detector by the use of purified aluminium as well as Ni-plating of standard aluminium. The result is the reduction in background by two orders of magnitude. A new large-area prototype has been built incorporating these modifications.

  • 32.
    Birch, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Buffet, J. C.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Correa, Jonathan
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    van Esch, P.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Guerard, Bruno
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Hall-Wilton, Richard
    European Spallation Source ESS AB, Lund, Sweden.
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Khaplanov, Anton
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Piscitelli, Fransesco
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    (B4C)-B-10 Multi-Grid as an Alternative to He-3 for Large Area Neutron Detectors2013In: IEEE Transactions on Nuclear Science, ISSN 0018-9499, E-ISSN 1558-1578, Vol. 60, no 2, p. 871-878Article in journal (Refereed)
    Abstract [en]

    Despite its present shortage, 3He continues to be the most common neutron converter for detectors in neutron scattering science. However, it is obvious that the development of large area neutron detectors based on alternative neutron converters is rapidly becoming a matter of urgency. In the technique presented here, grids each comprising 28 10B4C layers (each 1 μm thick) are used to convert neutrons into ionizing particles which are subsequently detected in proportional gas counters. The total active area of the prototype is 8 cm × 200 cm. To instrument this detector 4.6 m2 of 10B-enriched boron carbide were coated onto aluminium blades using a DC magnetron sputtering machine.

  • 33.
    Birch, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Buffet, J.-C.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    Clergeau, J.-F.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    Correa, J.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    van Esch, P.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    Ferraton, M.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    Guerard, B.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    Halbwachs, J.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    Hall-Wilton, R.
    European Spallation Source ESS AB, P.O Box 176, SE-221 00 Lund, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. European Spallation Source ESS AB, P.O Box 176, SE-221 00 Lund, Sweden.
    Khaplanov, A.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France; European Spallation Source ESS AB, P.O Box 176, SE-221 00 Lund, Sweden.
    Koza, M.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    Piscitelli, F.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    Zbiri, M.
    Institute Laue Langevin, Rue Jules Horowitz, FR-38000 Grenoble, France.
    In-beam test of the Boron-10 Multi-Grid neutron detector at the IN6 time-of-flight spectrometer at the ILL2014In: INTERNATIONAL WORKSHOP ON NEUTRON OPTICS AND DETECTORS (NOPandD 2013), IOP Publishing: Conference Series / Institute of Physics (IoP) , 2014, Vol. 528, no 012040Conference paper (Refereed)
    Abstract [en]

    A neutron detector concept based on solid layers of boron carbide enriched in 1 B has been in development for the last few years as an alternative for He-3 by collaboration between the ILL, ESS and Linkoping University. This Multi-Grid detector uses layers of aluminum substrates coated with (B4C)-B-10 on both sides that are traversed by the incoming neutrons. Detection is achieved using a gas counter readout principle. By segmenting the substrate and using multiple anode wires, the detector is made inherently position sensitive. This development is aimed primarily at neutron scattering instruments with large detector areas, such as time-of-flight chopper spectrometers. The most recent prototype has been built to be interchangeable with the He-3 detectors of IN6 at ILL. The 1 B detector has an active area of 32 x 48 cm(2). It was installed at the IN6 instrument and operated for several weeks, collecting data in parallel with the regularly scheduled experiments, thus providing the first side-by-side comparison with the conventional He-3 detectors. Results include an efficiency comparison, assessment of the in-detector scattering contribution, sensitivity to gamma-rays and the signal-to-noise ratio in time-of-flight spectra. The good expected performance has been confirmed with the exception of an unexpected background count rate. This has been identified as natural alpha activity in aluminum. New convertor substrates are under study to eliminate this source of background.

    Download full text (pdf)
    fulltext
  • 34.
    Birch, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Eriksson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Johansson, G.A.
    Biomedical and X-ray Physics, Royal Institute of Technology, SCFAB, SE-106 91 Stockholm, Sweden.
    Hertz, H.M.
    Biomedical and X-ray Physics, Royal Institute of Technology, SCFAB, SE-106 91 Stockholm, Sweden.
    Recent advances in ion-assisted growth of Cr/Sc multilayer X-ray mirrors for the water window2002Conference paper (Refereed)
    Abstract [en]

    Cr/Sc multilayer X-ray mirrors intended for normal incidence reflection in the water window wavelength range, ?=[2.4-4.4nm], have been grown by ion-assisted sputter deposition and characterized using soft and hard X-ray reflectivity. By extracting low-energy ions, with energies, Eion, ranging from 9 to 113eV and with ion-to-metal flux ratios, F, between 0.76 and 23.1, from the sputtering plasma to the growing film, the nano-structure of the multilayer interfaces could be modified. A significantly increased soft X-ray reflectivity, using ?=3.374nm, for Cr/Sc multilayers with layer thicknesses in the range 0.4-2.8nm, was obtained when high ion-to-metal flux ratios, FCr=7.1 and FSc=23.1, and low energy ions, Eion=9eV, were used. An experimental reflectivity of 5.5% was obtained at 76° for a multilayer with 400 bi-layers. Simulations of the reflectivity data showed that the interface widths are <0.425nm. It could be concluded that roughness of low spatial frequency is reduced at lower ion energies than the high spatial frequency which was eliminated at the expense of intermixing at the interfaces at higher ion energies. The predicted performance of normal incidence multilayer mirrors grown at optimum conditions and designed for ?=3.374 and 3.115nm indicates possible reflectivities of 6.5% and 14%, respectively. © 2002 Elsevier Science Ltd. All rights reserved.

  • 35.
    Birch, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Joelsson, Torbjörn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Single crystal CrN/ScN superlattice soft X-ray mirrors: epitaxial growth, structure, and properties2006In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 514, no 1-2, p. 10-19Article in journal (Refereed)
    Abstract [en]

    Single crystal CrN/ScN superlattice films with modulation periods of 1.64 nm were grown on MgO(001) substrates. By utilizing a magnetically enhanced plasma in the vicinity of the substrate and a negative substrate bias, ion/metal nitride flux ratios of 45 and 144 were achieved during deposition of CrN and ScN, respectively. The effects of ion energies in the range [16–58 eV] and substrate temperatures in the range [535–853 °C] on the composition, interface width, crystal quality, and microstructure evolution were investigated using elastic recoil detection analysis, hard X-ray reflectivity, X-ray diffraction, and transmission electron microscopy (TEM). Minimal interface widths of 0.2 nm = 1/2 nitride unit cell were achieved at a growth temperature of 735 °C and ion energies of 24 and 28 eV for CrN and ScN, respectively. Under these conditions, also an optimum in the crystal quality was observed for near stoichiometric composition of CrN and ScN. TEM confirmed a cube-on-cube epitaxial relationship for the system with CrN(001)ScN(001)MgO(001) and CrN[100]ScN[100]MgO[100]. Also, the layers were coherently strained to each other with no misfit dislocations, threading dislocations, surface cusps, voids or gas bubbles present. Higher ion energies or lower deposition temperatures gave over-stoichiometric films with poor superlattice modulation while higher growth temperatures yielded a decreased crystal quality, due to loss of N. As-deposited superlattices with only 61 periods exhibited an absolute soft X-ray reflectance of 6.95% at an energy of 398.8 eV (Sc 2p-absorption edge) which is comparable to the performance of Cr/Sc. The compositional modulation and phase structure was stable during extended annealing at 850 °C, which is the highest thermal stability for an X-ray multilayer mirror. It is concluded that the ScN layers serve as effective diffusion barriers to hinder decomposition of the CrN layers and stabilize the pseudomorphic superlattice structure. Nanoindentation experiments showed that the hardness of the CrN/ScN superlattice films was 19 GPa.

  • 36.
    Broekhuijsen, Sjoerd
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Vorobiev, Alexei
    Department of Physics and Astronomy, Material Physics, Uppsala University, Uppsala, Sweden; Institut Max von Laue—Paul Langevin, Grenoble, France.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis and characterization of 11B4C containing Ni/Ti multilayers using combined neutron and X-ray reflectometry2023In: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 13, no 4, p. 1140-1149Article in journal (Refereed)
    Abstract [en]

    The performance of multilayers in optical components, such as those used in neutron scattering instruments, is crucially dependent on the achievable interface width. We have shown how the interface width of Ni/Ti multilayers can be improved using the incorporation of B4C to inhibit the formation of nanocrystals and limit interdiffusion and intermetallic reactions at the interfaces. A modulated ion-assistance scheme was used to prevent intermixing and roughness accumulation throughout the layer stack. In this work we investigate the incorporation of low-neutron-absorbing 11B4C for Ni/Ti neutron multilayers. Combined fitting of neutron reflectivity and X-ray reflectivity measurements shows an elimination of accumulated roughness for the 11B4C containing multilayers with a mean interface width of 4.5 Å, resulting in an increase in reflectivity at the first Bragg peak by a factor of 2.3 and 1.5 for neutron and X-ray measurements, respectively.

    Download full text (pdf)
    fulltext
  • 37.
    Buyanova, Irina A
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Izadifard, Morteza
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Seppänen, Timo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Birch, Jens
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Chen, Weimin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Pearton, SJ
    Polimeni, A
    Capizzi, M
    Brandt, MS
    Bihler, C
    Hong, YG
    Tu, CW
    Unusual effects of hydrogen on electronic and lattice properties of GaNP alloys2006In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 376, p. 568-570Article in journal (Refereed)
    Abstract [en]

    Hydrogen incorporation is shown to cause passivation of various N-related localized states and partial neutralization of N-induced changes in the electronic structure of the GaNxP1-x alloys with x < 0.008. According to the performed X-ray diffraction measurements, the hydrogenation is also found to cause strong expansion of the GaNP lattice which even changes from a tensile strain in the as-grown GaNP epilayers to a compressive strain in the post-hydrogenated structures with the highest H concentration. By comparing results obtained using two types of hydrogen treatments, i.e. by implantation from a Kaufman source and by using a remote dc H plasma, the observed changes are shown to be inherent to H due to its efficient complexing with N atoms, whereas possible effects of implantation damage are only marginal. (c) 2005 Elsevier B.V. All rights reserved.

  • 38.
    Buyanova, Irina
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Izadifard, Morteza
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Ivanov, Ivan Gueorguiev
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Chen, Wei Min
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Felici, M.
    Polimeni, A.
    Capizzi, M.
    Hong, Y.G.
    Xin, H.P.
    Tu, C.W.
    Unusual effects of hydrogen in GaNP alloys: A general property of dilute nitrides2005In: 2005 MRS Spring Meeting,2005, 2005, p. 135-Conference paper (Other academic)
  • 39.
    Buyanova, Irina
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Izadifard, Morteza
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Felici, M.
    Dipartimento di Fisica, Università di Roma “La Sapienza,” Roma, Italy .
    Polimeni, A.
    Dipartimento di Fisica, Università di Roma “La Sapienza,” Roma, Italy .
    Capizzi, M.
    Dipartimento di Fisica, Università di Roma “La Sapienza,” Roma, Italy .
    Hong, Y. G.
    Department of Electrical and Computer Engineering, University of California, La Jolla, California, USA .
    Xin, H. P.
    Department of Electrical and Computer Engineering, University of California, La Jolla, California, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, La Jolla, California, USA .
    Direct experimental evidence for unusual effects of hydrogen on the electronic and vibrational properties of GaNxP1−x alloys: a proof for a general property of dilute nitrides2004In: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 70, no 24, p. 245215-245219Article in journal (Refereed)
    Abstract [en]

    Direct experimental evidence for dramatic effects of hydrogen incorporation on the electronic structure and lattice properties of GaNxP1−x alloys is presented. By employing photoluminescence excitation spectroscopy, postgrowth hydrogenation is shown to reopen the band gap of the GaNP alloys and to efficiently reduce the N-induced coupling between the conduction band states. By Raman spectroscopy, these effects are shown to be accompanied by hydrogen-induced breaking of the Ga-P bond in the alloy, evident from disappearance of the corresponding vibrational mode. According to the performed Raman and x-ray diffraction measurements, the hydrogenation is also found to cause a strong expansion of the GaNP lattice, which changes the sign of strain from tensile in the as-grown GaNP epilayers to compressive in the posthydrogenated structures, due to the formation of complexes between N and H.

  • 40.
    Buyanova, Irina
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Izadifard, Morteza
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Ivanov, Ivan Gueorguiev
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Birch, Jens
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Chen, Weimin
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials.
    Polimeni, A.
    Capizzi, M.
    Hong, Y. G.
    Tu, C. W.
    Effects of hydrogen on electronic and crystalline structure of GaNP2004In: EMRS-2004 Spring Meeting,2004, 2004Conference paper (Other academic)
  • 41.
    Chang, Jui-Che
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kostov Gueorguiev, Gueorgui
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Bakhit, Babak
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Domain epitaxial growth of Ta3N5 film on c-plane sapphire substrate2022In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 443, article id 128581Article in journal (Refereed)
    Abstract [en]

    Tritantalum pentanitride (Ta3N5) semiconductor is a promising material for photoelectrolysis of water with high efficiency. Ta3N5 is a metastable phase in the complex system of TaN binary compounds. Growing stabilized single-crystal Ta3N5 films is correspondingly challenging. Here, we demonstrate the growth of a nearly single-crystal Ta3N5 film with epitaxial domains on c-plane sapphire substrate, Al2O3(0001), by magnetron sputter epitaxy. Introduction of a small amount ~2% of O2 into the reactive sputtering gas mixed with N2 and Ar facilitates the formation of a Ta3N5 phase in the film dominated by metallic TaN. In addition, we indicate that a single-phase polycrystalline Ta3N5 film can be obtained with the assistance of a Ta2O5 seed layer. With controlling thickness of the seed layer smaller than 10 nm and annealing at 1000 °C, a crystalline β phase Ta2O5 was formed, which promotes the domain epitaxial growth of Ta3N5 films on Al2O3(0001). The mechanism behind the stabilization of the orthorhombic Ta3N5 structure resides in its stacking with the ultrathin seed layer of orthorhombic β-Ta2O5, which is energetically beneficial and reduces the lattice mismatch with the substrate.

    Download full text (pdf)
    fulltext
  • 42.
    Chang, Jui-Che
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sortica, Mauricio A.
    Uppsala Univ, Sweden.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Bakhit, Babak
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hu, Zhang-Jun
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Primetzhofer, Daniel
    Uppsala Univ, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Orthorhombic Ta3-xN5-yOy thin films grown by unbalanced magnetron sputtering: The role of oxygen on structure, composition, and optical properties2021In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 406, article id 126665Article in journal (Refereed)
    Abstract [en]

    Direct growth of orthorhombic Ta3N5-type Ta-O-N compound thin films, specifically Ta3-xN5-yOy, on Si and sapphire substrates with various atomic fractions is realized by unbalanced magnetron sputtering. Low-degree fiber-textural Ta3-xN5-yOy films were grown through reactive sputtering of Ta in a gas mixture of N-2, Ar, and O-2 with keeping a partial pressure ratio of 3:2:0.1 in a total working pressure range of 5-30 mTorr. With increasing total pressure from 5 to 30 mTorr, the atomic fraction of O in the as-grown Ta3-xN5-yOy films was found to increase from 0.02 to 0.15 while that of N and Ta decrease from 0.66 to 0.54 and 0.33 to 0.31, respectively, leading to a decrease in b lattice constant up to around 1.3%. Metallic TaNx phases were formed without oxygen. For a working pressure of 40 mTorr, an amorphous, O-rich Ta-N-O compound film with a high O fraction of similar to 0.48, was formed, mixed with non-stoichiometric TaON and Ta2O5. By analyzing the plasma discharge, the increasing O incorporation is associated with oxide formation on top of the Ta target due to a higher reactivity of Ta with O than with N. The increase of O incorporation in the films also leads to a optical bandgap widening from similar to 2.22 to similar to 2.96 eV, which is in agreement with the compositional and structural changes from a crystalline Ta3-xN5-yOy to an amorphous O-rich Ta-O-N compound.

    Download full text (pdf)
    fulltext
  • 43.
    Chang, Jui-Che
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tseng, Eric Nestor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lo, Yi-Ling
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Nayak, Sanjay Kumar
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Lundin, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Horng, Ray-Hua
    National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    HiPIMS-grown AlN buffer for threading dislocation reduction in DC-magnetron sputtered GaN epifilm on sapphire substrate2023In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 217, article id 112553Article in journal (Refereed)
    Abstract [en]

    Gallium nitride (GaN) epitaxial films on sapphire (Al2O3) substrates have been grown using reactive magnetron sputter epitaxy with a liquid Ga target. Threading dislocations density (TDD) of sputtered GaN films was reduced by using an inserted high-quality aluminum nitride (AlN) buffer layer grown by reactive high power impulse magnetron sputtering (R-HiPIMS) in a gas mixture of Ar and N2. After optimizing the Ar/N2 pressure ratio and deposition power, a high-quality AlN film exhibiting a narrow full-width at half-maximum (FWHM) value of the double-crystal x-ray rocking curve (DCXRC) of the AlN(0002) peak of 0.086° was obtained by R-HiPIMS. The mechanism giving rise the observed quality improvement is attributed to the enhancement of kinetic energy of the adatoms in the deposition process when operated in a transition mode. With the inserted HiPIMS-AlN as a buffer layer for direct current magnetron sputtering (DCMS) GaN growth, the FWHM values of GaN(0002) and (10 1‾ 1) XRC decrease from 0.321° to 0.087° and from 0.596° to 0.562°, compared to the direct growth of GaN on sapphire, respectively. An order of magnitude reduction from 2.7 × 109 cm−2 to 2.0 × 108 cm−2 of screw-type TDD calculated from the FWHM of the XRC data using the inserted HiPIMS-AlN buffer layer demonstrates the improvement of crystal quality of GaN. The result of TDD reduction using the HiPIMS-AlN buffer was also verified by weak beam dark-field (WBDF) cross-sectional transmission electron microscopy (TEM).

    Download full text (pdf)
    fulltext
  • 44.
    Chen, Ruei-San
    et al.
    National Taiwan University of Science and Technology, Taiwan.
    Tang, Chih-Che
    Department of Electronic Engineering, National Taiwan University of Science and Technology, Taiwan.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Holtz, Per Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Electronic transport properties in aluminum indium nitride nanorods grown by magnetron sputter epitaxy2013In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 285, p. 625-628Article in journal (Refereed)
    Abstract [en]

    The electronic transport properties of the wide-bandgap aluminum indium nitride (AlInN) nanorods (NRs) grown by ultrahigh-vacuum magnetron sputter epitaxy (MSE) have been studied. The conductivities of the ternary compound nanostructure locates at the value of 15 Q-1 cm -1, which is respectively one and two orders of magnitude lower than the binary GaN and InN counterparts grown by chemical vapor deposition (CVD). The very shallow donor level/band with the activation energy at 11 + 2 meV was obtained by the temperature-dependent measurement. In addition, the photoconductivity has also been investigated. The photoconductive (PC) gain of the NRs device can reach near 2400 under a low bias at 0.1 V and the light intensity at 100W m-2 for ultraviolet response in vacuum. The power-insensitive gain and ambience-dependent photocurrent are also observed, which is attributed to the probable surfacecontrolled PC mechanism in this ternary nitride nanostructure.

    Download full text (pdf)
    fulltext
  • 45.
    Chen, Yen-Ting
    et al.
    Academic Sinica, Taiwan .
    Araki, Tsutomu
    Ritsumeikan University, Japan .
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Chen, Li-Chyong
    National Taiwan University, Taiwan .
    Chen, Kuei-Hsien
    Academic Sinica, Taiwan .
    Holtz, Per-Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nanishi, Yasushi
    Ritsumeikan University, Japan .
    Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy2013In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 103, no 20, p. 203108-Article in journal (Refereed)
    Abstract [en]

    Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (andlt; 35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a "narrow-pass" approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm.

    Download full text (pdf)
    fulltext
  • 46.
    Chen, Yen-Ting
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Karlsson, K. Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Holtz, Per-Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Determination of critical diameters for intrinsic carrier diffusion-length of GaN nanorods with cryo-scanning near-field optical microscopy2016In: Scientific Reports, E-ISSN 2045-2322, Vol. 6, no 21482, p. 1-7Article in journal (Refereed)
    Abstract [en]

    Direct measurements of carrier diffusion in GaN nanorods with a designed InGaN/GaN layer-in-a-wire structure by scanning near-field optical microscopy (SNOM) were performed at liquid-helium temperatures of 10 K. Without an applied voltage, intrinsic diffusion lengths of photo-excited carriers were measured as the diameters of the nanorods differ from 50 to 800 nm. The critical diameter of nanorods for carrier diffusion is concluded as 170 nm with a statistical approach. Photoluminescence spectra were acquired for different positions of the SNOM tip on the nanorod, corresponding to the origins of the well-defined luminescence peaks, each being related to recombination-centers. The phenomenon originated from surface oxide by direct comparison of two nanorods with similar diameters in a single map has been observed and investigated.

    Download full text (pdf)
    fulltext
  • 47.
    Chen, Yu-Hsiang
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Rongström, L.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Ostach, D.
    HZG, Germany.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Johansson-Jöesaar, Mats P
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering. SECO Tools AB, Sweden.
    Schell, N.
    HZG, Germany.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Effects of decomposition route and microstructure on h-AlN formation rate in TiCrAlN alloys2017In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 691, p. 1024-1032Article in journal (Refereed)
    Abstract [en]

    The phase evolution of cubic (c), solid solution TixCr-0.37Al1-0.37-x N alloys with x = 0.03 and 0.16, and the kinetics of the hexagonal (h)-AlN formation are studied via in situ wide angle x-ray scattering experiments during high temperature (1000-1150 degrees C) annealing. Spinodal decomposition was observed in Ti0.16Cr0.36Al0.48N while Ti0.03Cr0.38Al0.59N decomposes through nucleation and growth of h-AlN, c-TiN and c-CrAlN. h-AlN is formed from c-CrAlN domains in both cases and the formation rate of h-AlN depends on the stability of the c-CrAlN domains. In Ti0.16Cr0.36Al0.48N, the c-CrAlN domains are stabilized by crystallographic coherency with the surrounding c-TiCrN in a microstructure originating from spinodal decomposition. This results in lower formation rates of h-AlN for this composition. These differences are reflected in higher activation energy for h-AlN formation in Ti0.16Cr0.36Al0.48N compared to Ti0.03Cr0.38Al0.59N. It also points out different stabilities of the intermediate phase c-CrAlN during phase decomposition of TiCrAlN alloys. Additional contributions to the low activation energy for formation of h-AlN in Ti0.03Cr0.38Al0.59N stems from precipitation at grain boundaries. (C) 2016 Elsevier B.V. All rights reserved.

    Download full text (pdf)
    fulltext
  • 48.
    Choolakkal, Arun Haridas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pedersen, Henrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Conformal chemical vapor deposition of boron-rich boron carbide thin films from triethylboron2023In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 41, no 1, article id 013401Article in journal (Refereed)
    Abstract [en]

    We report conformal chemical vapor deposition (CVD) of boron carbide (BxC) thin films on silicon substrates with 8:1 aspect-ratio morphologies, using triethylboron [B(C2H5)(3)] as a single source CVD precursor. Step coverage (SC) calculated from the cross-sectional scanning electron microscopy measurements shows that films deposited at & LE;450 & DEG;C were highly conformal (SC = 1). We attribute this to the low reaction probability at low substrate temperatures enabling more gas phase diffusion into the features. The chemical state of the material, determined by x-ray photoelectron spectroscopy, shows as a carbide with B-B, B-C, C-B, and C-C chemical bonds. Quantitative analysis by time-of-flight elastic recoil detection analysis reveals that films deposited at 450 & DEG;C are boron-rich with around 82.5 at. % B, 15.6 at. % C, 1.3 at. % O, and 0.6 at. % H, i.e., about B5C. The film density as measured by x-ray reflectometry varies from 1.9 to 2.28 g/cm(3) depending on deposition temperature. (C) 2022 Author(s).All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)license (http://creativecommons.org/licenses/by/4.0/).

    Download full text (pdf)
    fulltext
  • 49.
    Chubarova, E.
    et al.
    Royal Institute Technology KTH.
    Nilsson, D.
    Royal Institute Technology KTH.
    Lindblom, M.
    Royal Institute Technology KTH.
    Reinspach, J.
    Royal Institute Technology KTH.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Vogt, U.
    Royal Institute Technology KTH.
    Hertz, H. M.
    Royal Institute Technology KTH.
    Holmberg, A.
    Royal Institute Technology KTH, Department Appl Phys, SE-10691 Stockholm, Sweden.
    Platinum zone plates for hard X-ray applications2011In: Microelectronic Engineering, ISSN 0167-9317, E-ISSN 1873-5568, Vol. 88, no 10, p. 3123-3126Article in journal (Refereed)
    Abstract [en]

    We describe the fabrication and evaluation of platinum zone plates for 5-12 kV X-ray imaging and focusing. These nano-scale circular periodic structures are fabricated by filling an e-beam generated mold with Pt in an electroplating process. The plating recipe is described. The resulting zone plates, having outer zone widths of 100 and 50 nm, show good uniformity and high aspect ratio. Their diffraction efficiencies are 50-70% of the theoretical, as measured at the European Synchrotron Radiation Facility. Platinum shows promise to become an attractive alternative to present hard X-ray zone plate materials due to its nano-structuring properties and the potential for zone-plate operation at higher temperatures.

  • 50.
    Darakchieva, Vanya
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Birch, Jens
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Paskov, Plamen
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Tungasmita, Sukkaneste
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Paskova, Tanja
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Monemar, Bo
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Strain evolution in high temperature AlN buffer layers for HVPE-GaN growth2002In: Physica status solidi. A, Applied research, ISSN 0031-8965, E-ISSN 1521-396X, Vol. 190, no 1, p. 59-64Article in journal (Refereed)
    Abstract [en]

    High temperature AlN buffer layers are deposited on a-plane sapphire by reactive magnetron sputtering. The effect of the buffer thickness on the AlN structural properties and surface morphology are studied in correlation with the subsequent hydride vapour phase epitaxy of GaN. A minimum degree of mosaicity and screw dislocation density is determined for a 50 nm thick AlN buffer. With increasing the AlN thickness, a strain relaxation occurs as a result of misfit dislocation generation and higher degree of mosaicity. A blue shift of the E-1(TO) frequency evaluated by means of infrared reflection spectroscopy is linearly correlated with an increase in biaxial compressive stress in the films through the IR stress factor k(E1)(b) = 2.57 +/- 0.26 cm(-1) GPa(-1).

12345 1 - 50 of 249
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf