liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Andersson, Peter
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nilsson, David
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Svensson, Per-Olof
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Chen, Miaoxiang
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Malmström, Anna
    ACREO Institute, Norrköping, Sweden.
    Remonen, Tommi
    ACREO Institute, Norrköping, Sweden.
    Kugler, Thomas
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper2002In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 14, no 20, p. 1460-1464Article in journal (Refereed)
    Abstract [en]

    An organic electronic paper display technology (see Figure and also inside front cover) is presented. The electrochromic display cell together with the addressing electrochemical transistor form simple smart pixels that are included in matrix displays, which are achieved on coated cellulose-based paper using printing techniques. The ion-electronic technology presented offers an opportunity to extend existing use of ordinary paper.

     

  • 2.
    Andersson, Peter
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nilsson, David
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Svensson, Per-Olof
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Chen, Miaoxiang
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Malmström, Anna
    ACREO Institute, Norrköping, Sweden.
    Remonen, Tommi
    ACREO Institute, Norrköping, Sweden.
    Kugler, Thomas
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Organic Electrochemical Smart Pixels2003In: Materials Research Society Symposium Proceedings, 2003, Vol. 736, p. D6.6-Conference paper (Refereed)
  • 3.
    Andersson, Peter
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Nilsson, David
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Svensson, Per-Olof
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Chen, Miaoxiang
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Malmström, Anna
    Acreo AB, Norrköping.
    Remonen, Tommie
    Acreo AB, Norrköping.
    Kugler, Thomas
    Acreo AB, Norrköping.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Paper Electronics and Electronic Paper2003In: SID Mid-Europe Chapter Meeting,2003, 2003Conference paper (Refereed)
  • 4.
    Berggren, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, The Institute of Technology.
    Bobacka, Johan
    Åbo Akademi.
    Svensson, Per-Olof
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nilsson, David
    Acreo AB.
    Larsson, Oscar
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Ivaska, Ari
    Åbo Akademi.
    PEDOT: PSS-Based Electrochemical Transistors for Ion-to-Electron Transduction and Sensor Signal Amplification2008In: Organic Semiconductors in Sensor Applications / [ed] D.A. Bernards, R. Owens, G. Malliaras, Springer, 2008, 1, p. 263-280Chapter in book (Other academic)
    Abstract [en]

    The chapter reports the use of organic electrochemical transistors in sensor applications. These transistors are excellent ion-to-electron transducers and can serve as very sensitive transducers in amperometric sensor applications. To further improve their sensitivity, we outline various amplification circuits all realized in organic electrochemical transistors.

  • 5.
    Nilsson, David
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Chen, Miaoxiang
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Andersson, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Svensson, Per-Olof
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Kugler, Thomas
    Acreo AB, Norrköping.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Organic Electrochemical Transistors, Based on Electrolytes-Conducting Polymer Bilayers2001In: Material Reseach Socity Fall Meeting,2001, 2001Conference paper (Refereed)
  • 6.
    Nilsson, David
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Chen, Miaoxiang
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Svensson, Per-Olof
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Robinson, Nathaniel D
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Kugler, Thomas
    Acreo AB, Norrköping.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    All-organic electrochemical device with bi-stable and dynamic functionality2003In: SPIE,2003, Bellingham: SPIE Publication Service , 2003, p. 468-Conference paper (Refereed)
  • 7.
    Nilsson, David
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Chen, Miaoxiang
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Svensson, Per-Olof
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Robinson, Nathaniel D
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    Kugler, Thomas
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    All-organic electrochemical device with bi-stable and dynamic functionality2003Conference paper (Other academic)
    Abstract [en]

    We will present organic electrochemical transistors that show both bi-stable and dynamic current modulation. In electrochemical devices, both ions and electrons are used as charge carriers. The device is all-organic and has been realized using common printing techniques, such as screen-printing. As the substrate, both cellulose-based paper and polyester foil have been used. PEDOT:PSS (poly(3,4-ethylenedioxythiophene):Poly(styrene sulphonic acid)) is used as the conducting and electrochemical active material. PEDOT:PSS is switched between different redox states, corresponding to semi-conducting and conducting states. Operating voltages is below 2V and on/off ratios up to 105 have been reached (typical value is 5000). The operation of these devices does not depend on any critical dimensions, typical dimensions used are around 200 microns. With a certain geometrical design the dynamic transistor can be employed for frequency doubling. For the bi-stable transistor the modulation of the current is done by direct electronic contact, compared to the dynamic transistor that is modulated by induction of electrochemistry. The electrolyte in these devices can either be solidified or a liquid. The bi-stable device in combination with a layer of Nafion® as electrolyte demonstrates humidity sensor functionality. Since substrates based on paper and common printing techniques can be used for fabrication, this give rise to an environmental friendly and non-expensive device setup.

  • 8.
    Nilsson, David
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Kugler, Thomas
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Svensson, Per-Olof
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Bergren, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper2002In: Sensors and Actuators B: Chemical, ISSN 0925-4005, Vol. 86, no 2-3, p. 193-197Article in journal (Refereed)
    Abstract [en]

    A novel transducer concept based on an organic electrochemical transistor is described. Its function as an integral part of an air humidity sensor, in which the proton conductor Nafion acts as sensitivity layer has been realised. The resulting electrochemical sensor–transistor, based on the conducting polymer PEDOT:PSS, operates at low voltages, on the order of 1 V. The sensor response, measured as the drain–source current of the electrochemical transistor, versus air humidity, has a close to exponential behaviour. The sensor can be realised using exclusively printing and coating fabrication techniques. Here, we demonstrate devices realised on plastic foils and on ordinary coated fine paper substrates. This organic electrochemical transducer promise future applications such as all-integrated low-cost sensor tags for single-use chemical sensors.

  • 9.
    Robinson, Nathaniel D
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Svensson, Per-Olof
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Nilsson, David
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Electrochromism as a tool for understanding the electrochemical polymer transistor2005In: MRS Fall Meeting,2005, 2005Conference paper (Refereed)
  • 10.
    Robinson, Nathaniel D
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Svensson, Per-Olof
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Nilsson, David
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    On the Current Saturation Observed in Electrochemical Polymer Transistors2006In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 153, p. 39-44Article in journal (Refereed)
    Abstract [en]

    Electrochemical transistors based on conjugated polymers are proposed as a path to printed electronics on paper. The electrochemical doping/dedoping of conjugated polymers clearly plays a role in the current vs potential (I-V) characteristics of these devices, however, the mechanism of current saturation (often referred to as pinch-off) is not clearly understood, and the relationship between electrochemical devices and field-effect transistors is unclear. This paper offers a semiempirical model of the steady-state behavior of electrochemical transistors and compares this model with experimental observations of potential and electrochromic measurements within a device to illustrate the science behind the functionality observed. ©2006 The Electrochemical Society

  • 11.
    Said, Elias
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Robinson, Nathaniel D.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nilsson, David
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Svensson, Per-Olof
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Visualizing the Electric Field in Electrolytes Using Electrochromism from a Conjugated Polymer2005In: Electrochemical and solid-state letters, ISSN 1099-0062, E-ISSN 1944-8775, Vol. 8, no 2, p. H12-H16Article in journal (Refereed)
    Abstract [en]

    Electrochromic polymer films, employed as display elements, smart windows, and the base material for electrochemical electronic devices, can be addressed solely through ionic transport via an electrolyte, without direct electronic connection as typically employed in the above examples. We present a demonstration of induced electrochromism to quantify the direction and magnitude of the electric field in an electrolyte using poly(3,4-ethylenedioxythiophene) doped with polystyrene-sulfonate. After further development, this simple yet effective technique will be potentially applicable for optimizing batteries and fuel cells, as the active detection element in electrochemical sensors and as a detector in ionic separation in electrolytes (electrophoresis).

  • 12.
    Svensson, Per-Olof
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nilsson, David
    Acreo AB.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering. Linköping University, The Institute of Technology.
    Berggren , Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    A sensor circuit using reference-based conductance switching in organic electrochemical transistors2008In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 93, no 20, p. 203301-Article in journal (Refereed)
    Abstract [en]

    Using organic electrochemical transistors as sensors, the sample-receptor reaction often induces moderate changes only in the drain current dynamics as the gate voltage level is switched. Here, we report an electrochemical sensor circuit including electrochemical transistors based on poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate that puts out a static sensor response signal. The circuit includes a sample and a reference transistor that are both driven in the resistive mode at 0.1 V. Measurements were performed on aqueous salt electrolytes ranging from 100 to 500 mM concentrations. The signal-ON sensor circuit provides a tenfold increase in the sensitivity as compared to single transistor sensors.

  • 13.
    Svensson, Per-Olof
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Nilsson, David
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Robinson, Nathaniel D
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Häll, Jessica
    ITN Fysik och elektroteknik.
    Electrical characterisation of an organic electrochemical transistor2003In: Polytronic,2003, 2003Conference paper (Refereed)
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf