liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    GAD65 An Immunomodulator in Type 1 Diabetes2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Type 1 diabetes (T1D) is caused by a deficiency of insulin as a result of an autoimmune destruction of the pancreatic ² -cells. A possibility to preserve remaining ² -cells in children with newly diagnosed T1D is of great importance since sustained ² -cell function is recognized to result in reduced end-organ complications. Glutamic acid decarboxylase 65 (GAD65) is one of the major antigens targeted by self-reactive T cells in T1D, and immunomodulation with GAD65 formulated in aluminum (GAD-alum) has been considered both in prevention and treatment of T1D. Results from a Phase II trial have shown clinical effect of subcutaneous injections with GAD-alum, this was unfortunately not fully confirmed in the following larger Phase III trial which therefore was closed after 15 months. The general aim of this thesis was to study the immunomodulatory effect of GAD-alum-treatment in children with T1D participating in the Phase II and Phase III trials. We hypothesized that treatment with GAD-alum contributes to the preservation of residual insulin secretion through deviation of the GAD65-specific immune response from a destructive to a protective process, accompanied by a shift from T helper (Th) 1 towards a predominant Th2 profile. In the Phase II trial, GAD-alum-treated patients responded with an early GAD65-specific Th2 skewed cytokine secretion, with highest IL-5 and IL-13 secretion in clinical responders. Also, the CCR4/CCR5 ratio indicating balance between Th2/Tc2 and Th1/Tc1 responses, increased in treated patients. The recall response to GAD65 was characterized by a wide range of cytokines, but the relative contribution of each cytokine suggests a shift towards a more pronounced Th2-associated profile over time. Induction of a CD4+ cell subset upon GAD65-stimulation 4 years after treatment, suggesting clonal expansion of the memory T-cell compartment upon antigen re-challenge, was seen in parallel to a persistent GAD65-specific cytokine response. Finally, even if the phase III trial failed to reach the primary endpoint at 15 months, a subgroup analysis showed that the treatment had an effect on preservation of residual insulin secretion, but the effect was not seen until after 30 months. Taken together, these results suggest that GAD-alum treatment might exert its effect through induction of an early Th2 skewed immune response which tends to deviate away from a destructive Th1/Tc1 response upon GAD65 re-challenge, and generation of GAD65-specific memory T cells that produce cytokines and exert effector responses which may be important for regulating GAD65 immunity. Continued research to better understand how immunomodulation with autoantigen modifies T-cell responses and also which patients are suitable for treatment, is crucial for optimizing future intervention trials using ² -cell antigens.

    List of papers
    1. Early induction of GAD(65)-reactive Th2 response in type 1 diabetic children treated with alum-formulated GAD(65)
    Open this publication in new window or tab >>Early induction of GAD(65)-reactive Th2 response in type 1 diabetic children treated with alum-formulated GAD(65)
    Show others...
    2010 (English)In: Diabetes/Metabolism Research Reviews, ISSN 1520-7552, E-ISSN 1520-7560, Vol. 26, no 7, p. 559-568Article in journal (Refereed) Published
    Abstract [en]

    Background We have previously shown that two injections of 20 mu g alum-formulated glutamic acid decarboxylase 65 (GAD(65)) (GAD-alum; Diamyd (R)) in children with recent-onset type 1 diabetes lead to preservation of residual insulin secretion. In vitro cytokine production at the 15 months follow-up indicated immunomodulation. In the present study, we took advantage of peripheral blood mononuclear cells, cryopreserved during early follow-ups, to investigate whether the immunomodulatory effect of GAD-alum was apparent earlier after treatment, preceding the changes previously reported at 15 months.<p>Methods Peripheral blood mononuclear cells from 70 type 1 diabetic children, randomly assigned GAD-alum (n = 35) or placebo (n = 35), that had been frozen at baseline (n = 27) and after 1 (n = 58), 3 (n = 67) and 9 (n = 66) months, were stimulated in vitro with GAD(65), tyrosine phosphatase-like protein IA-2 peptide, insulin peptide, GAD-alum, alum formulation or phytohaemagglutinin. Interleukin (IL)-5, -6, -10, -12, -13, -17, tumour necrosis factor and interferon-gamma were measured in cell supernatants and serum samples using Luminex. Expression of FOXP3 and transforming growth factor-beta was determined by real-time reverse transcription polymerase chain reaction.</p><p>Results Already 1 month after the first injection, GAD(65)-induced IL-5 and IL-13 together with FOXP3 were enhanced in GAD-alum-treated patients compared to those with placebo. The in vitro response at 3 and 9 months was characterized by a broader range of cytokines in the treated group. Notably, only the T-helper 2-associated cytokines IL-5 and IL-13 together with FOXP3 increased continuously over time.</p><p>Conclusions Treatment with GAD-alum in type 1 diabetic children induced an early T-helper 2 immune enhanced response to GAD(65), followed by a wider spectrum of cytokines at 3 and 9 months. Copyright (C) 2010 John Wiley &amp; Sons, Ltd.</p>

    Place, publisher, year, edition, pages
    John Wiley and Sons, 2010
    Keywords
    GAD65, Immunotherapy, Th1/Th2 Immune Response, Immunomodulation, Cytokines
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-52141 (URN)10.1002/dmrr.1126 (DOI)000283399000007 ()
    Available from: 2009-12-07 Created: 2009-12-07 Last updated: 2017-12-12
    2. Decreased GAD(65) -specific Th1/Tc1 phenotype in children with Type 1 diabetes treated with GAD-alum.
    Open this publication in new window or tab >>Decreased GAD(65) -specific Th1/Tc1 phenotype in children with Type 1 diabetes treated with GAD-alum.
    2012 (English)In: Diabetic Medicine, ISSN 0742-3071, E-ISSN 1464-5491, Vol. 29, no 10, p. 1272-1278Article in journal (Refereed) Published
    Abstract [en]

    Aim  The balance between T helper cell subsets is an important regulator of the immune system and is often examined after immune therapies. We aimed to study the immunomodulatory effect of glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) in children with Type 1 diabetes, focusing on chemokines and their receptors. Methods  Blood samples were collected from 70 children with Type 1 diabetes included in a phase II clinical trial with GAD-alum. Expression of CC chemokine receptor 5 (CCR5) and CCR4 was analysed on CD4+ and CD8+ lymphocytes after in vitro stimulation with GAD(65) using flow cytometry, and secretion of the chemokines CCL2, CCL3 and CCL4 was detected in peripheral blood mononuclear cell supernatants with Luminex. Results  Expression of Th1-associated CCR5 was down-regulated following antigen challenge, together with an increased CCR4/CCR5 ratio and CCL2 secretion in GAD-alum-treated patients, but not in the placebo group. Conclusion  Our results suggest that GAD-alum treatment has induced a favourable immune modulation associated with decreased Th1/Tc1 phenotypes upon antigen re-challenge, which may be of importance for regulating GAD(65) immunity. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

    Place, publisher, year, edition, pages
    Wiley-Blackwell, 2012
    Keywords
    Type 1 diabetes, GAD(65), immunomodulation, chemokines, chemokine receptors
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-77745 (URN)10.1111/j.1464-5491.2012.03710.x (DOI)000308960400014 ()22587593 (PubMedID)
    Note

    funding agencies|Swedish Research Council|K2008-55x-20652-01-3|Swedish Child Diabetes Foundation (Barndiabetesfonden) Diamyd Medical||Medical Research Council of Southeast Sweden||

    Available from: 2012-05-28 Created: 2012-05-28 Last updated: 2017-12-07
    3. Long-Lasting Immune Responses 4 Years after GAD-Alum Treatment in Children with Type 1 Diabetes
    Open this publication in new window or tab >>Long-Lasting Immune Responses 4 Years after GAD-Alum Treatment in Children with Type 1 Diabetes
    Show others...
    2011 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 12Article in journal (Refereed) Published
    Abstract [en]

    A phase II clinical trial with glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) has shown efficacy in preserving residual insulin secretion in children and adolescents with recent-onset type 1 diabetes (T1D). We have performed a 4-year follow-up study of 59 of the original 70 patients to investigate long-term cellular and humoral immune responses after GAD-alum-treatment. Peripheral blood mononuclear cells (PBMC) were stimulated in vitro with GAD(65). Frequencies of naive, central and effector memory CD4+ and CD8+ T cells were measured, together with cytokine secretion, proliferation, gene expression and serum GAD(65) autoantibody (GADA) levels. We here show that GAD-alum-treated patients display increased memory T-cell frequencies and prompt T-cell activation upon in vitro stimulation with GAD(65), but not with control antigens, compared with placebo subjects. GAD(65)-induced T-cell activation was accompanied by secretion of T helper (Th) 1, Th2 and T regulatory cytokines and by induction of T-cell inhibitory pathways. Moreover, post-treatment serum GADA titres remained persistently increased in the GAD-alum arm, but did not inhibit GAD(65) enzymatic activity. In conclusion, memory T- and B-cell responses persist 4 years after GAD-alum-treatment. In parallel to a GAD(65)-induced T-cell activation, our results show induction of T-cell inhibitory pathways important for regulating the GAD(65) immunity.

    Place, publisher, year, edition, pages
    Public Library of Science, 2011
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-74156 (URN)10.1371/journal.pone.0029008 (DOI)000298366600057 ()
    Note
    Funding Agencies|Swedish Research Council|K2008-55x-20652-01-3|Swedish Child Diabetes Foundation (Barndiabetesfonden)||Medical Research Council of Southeast Sweden||Juvenile Diabetes Research Foundation (JDRF)|1-2008-106|Ile-de-France CODDIM||Inserm Avenir Program||Available from: 2012-01-20 Created: 2012-01-20 Last updated: 2017-12-08
    4. Preserved C-peptide 30 months after GAD-alum treatment of children and adolescents with recent-onset type 1 diabetes, and its relation to immune markers
    Open this publication in new window or tab >>Preserved C-peptide 30 months after GAD-alum treatment of children and adolescents with recent-onset type 1 diabetes, and its relation to immune markers
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Glutamic acid decarboxylase 65 kDa isoform (GAD65) is a major autoantigen in type 1 diabetes (T1D). Although alum-formulated GAD65 (GAD-alum) induced preservation of residual insulin secretion in a previous clinical Phase II trial, recent Phase II and Phase III trials failed to reach their primary end-points. The European Phase III trial was therefore closed after 15 months, and the 30 months follow-up period was completed only for a minority of the patients. This study aimed to assess whether GAD-alum preserved β-cell function in those recent-onset T1D patients who completed their 30 months visit in the European Phase III trial, and to characterize their GAD65-induced cytokine secretion and proliferation. Peripheral blood mononuclear cells (PBMC) were isolated at baseline and after 1, 3, 9, 15 and 21 months from the 148 Swedish subjects included in the Phase III GAD-alum trial, and also at 30 months from 45 patients who had reached the final visit before the trial was closed. Patients had been randomly assigned into three arms: 4 doses of GAD-alum (4D), 2 doses of GAD-alum followed by two doses of placebo (2D), or 4 doses of placebo. Cytokine secretion was detected in cell culture supernatants by Luminex, after 7 days of in vitro culture. Cell proliferation was determined by 3H thymidine incorporation assay. Fasting and stimulated C-peptide was analysed in serum.

    Patients treated with 2 doses of GAD-alum had less decline of both fasting (p=0.040) and stimulated C-peptide (p=0.012) after 30 months, and a larger proportion of these patients preserved >25% of their initial stimulated C-peptide AUC compared to placebo (p=0.012). Both 2D and 4D patients showed increased PBMC proliferation to GAD65 and a cytokine profile that tended to switch towards a more predominant Th2 associated profile over time.

    The results support the concept of GAD-alum treatment, but no specific immune markers have been identified.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-77746 (URN)
    Available from: 2012-05-28 Created: 2012-05-28 Last updated: 2012-05-28Bibliographically approved
  • 2.
    Axelsson, Stina
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Cheramy, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Åkerman, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Pihl, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center of Paediatrics and Gynaecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Cellular and Humoral Immune responses in Type 1 Diabetic patients participating in a Phase III GAD-alum Intervention Trial2013In: Diabetes Care, ISSN 0149-5992, E-ISSN 1935-5548, Vol. 36, no 11, p. 3418-3424Article in journal (Refereed)
    Abstract [en]

    OBJECTIVEGAD formulated in aluminum hydroxide (GAD-alum) has previously been shown to induce preservation of residual insulin secretion in recent-onset type 1 diabetes, but recent phase II and III GAD-alum trials failed to reach primary outcomes. The European phase III study was therefore closed after 15 months, and only a minority of patients completed the 30 months of follow-up.RESEARCH DESIGN AND METHODSThis study aimed to characterize cellular and humoral responses in the Swedish patients (n = 148) participating in the phase III trial, receiving four (4D) or two (2D) GAD-alum doses or placebo. Serum GAD(65) antibody (GADA) levels, GADA IgG1-4 subclass distribution, cytokine secretion, and proliferative responses in peripheral blood mononuclear cells (PBMCs) were analyzed.RESULTSThe GAD(65)-induced cytokine profile tended to switch toward a predominant Th2-associated profile over time both in the 2D and 4D group. The groups also displayed increased GADA levels and PBMC proliferation compared with placebo, whereas GADA IgG subclass distribution changed in 4D patients.CONCLUSIONSBoth 2D and 4D patients displayed GAD(65)-specifc cellular and humoral effects after GAD-alum treatment, but at different time points and magnitudes. No specific immune markers could be associated with treatment efficacy.

  • 3.
    Axelsson, Stina
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Chéramy, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Hjorth, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Pihl, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Åkerman, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Martinuzzi, Emanuela
    St Vincent de Paul Hospital.
    Mallone, Roberto
    St Vincent de Paul Hospital.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Long-Lasting Immune Responses 4 Years after GAD-Alum Treatment in Children with Type 1 Diabetes2011In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 12Article in journal (Refereed)
    Abstract [en]

    A phase II clinical trial with glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) has shown efficacy in preserving residual insulin secretion in children and adolescents with recent-onset type 1 diabetes (T1D). We have performed a 4-year follow-up study of 59 of the original 70 patients to investigate long-term cellular and humoral immune responses after GAD-alum-treatment. Peripheral blood mononuclear cells (PBMC) were stimulated in vitro with GAD(65). Frequencies of naive, central and effector memory CD4+ and CD8+ T cells were measured, together with cytokine secretion, proliferation, gene expression and serum GAD(65) autoantibody (GADA) levels. We here show that GAD-alum-treated patients display increased memory T-cell frequencies and prompt T-cell activation upon in vitro stimulation with GAD(65), but not with control antigens, compared with placebo subjects. GAD(65)-induced T-cell activation was accompanied by secretion of T helper (Th) 1, Th2 and T regulatory cytokines and by induction of T-cell inhibitory pathways. Moreover, post-treatment serum GADA titres remained persistently increased in the GAD-alum arm, but did not inhibit GAD(65) enzymatic activity. In conclusion, memory T- and B-cell responses persist 4 years after GAD-alum-treatment. In parallel to a GAD(65)-induced T-cell activation, our results show induction of T-cell inhibitory pathways important for regulating the GAD(65) immunity.

  • 4.
    Axelsson, Stina
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Chéramy, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Åkerman, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Pihl, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Preserved C-peptide 30 months after GAD-alum treatment of children and adolescents with recent-onset type 1 diabetes, and its relation to immune markersManuscript (preprint) (Other academic)
    Abstract [en]

    Glutamic acid decarboxylase 65 kDa isoform (GAD65) is a major autoantigen in type 1 diabetes (T1D). Although alum-formulated GAD65 (GAD-alum) induced preservation of residual insulin secretion in a previous clinical Phase II trial, recent Phase II and Phase III trials failed to reach their primary end-points. The European Phase III trial was therefore closed after 15 months, and the 30 months follow-up period was completed only for a minority of the patients. This study aimed to assess whether GAD-alum preserved β-cell function in those recent-onset T1D patients who completed their 30 months visit in the European Phase III trial, and to characterize their GAD65-induced cytokine secretion and proliferation. Peripheral blood mononuclear cells (PBMC) were isolated at baseline and after 1, 3, 9, 15 and 21 months from the 148 Swedish subjects included in the Phase III GAD-alum trial, and also at 30 months from 45 patients who had reached the final visit before the trial was closed. Patients had been randomly assigned into three arms: 4 doses of GAD-alum (4D), 2 doses of GAD-alum followed by two doses of placebo (2D), or 4 doses of placebo. Cytokine secretion was detected in cell culture supernatants by Luminex, after 7 days of in vitro culture. Cell proliferation was determined by 3H thymidine incorporation assay. Fasting and stimulated C-peptide was analysed in serum.

    Patients treated with 2 doses of GAD-alum had less decline of both fasting (p=0.040) and stimulated C-peptide (p=0.012) after 30 months, and a larger proportion of these patients preserved >25% of their initial stimulated C-peptide AUC compared to placebo (p=0.012). Both 2D and 4D patients showed increased PBMC proliferation to GAD65 and a cytokine profile that tended to switch towards a more predominant Th2 associated profile over time.

    The results support the concept of GAD-alum treatment, but no specific immune markers have been identified.

  • 5.
    Axelsson, Stina
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    Faresjö, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    Hedman, Maria
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    Cryopreserved peripheral blood mononuclear cells are suitable for the assessment of immunological markers in type 1 diabetic children2008In: Cryobiology, ISSN 0011-2240, E-ISSN 1090-2392, Vol. 57, no 3, p. 201-208Article in journal (Refereed)
    Abstract [en]

    Cryopreserved peripheral blood mononuclear cells (PBMC) are commonly used when assessing immune responses in clinical trials, both for practical reasons and to minimize interassay variation, as samples are often collected and studied over time. This study investigated the effect of cryopreservation on cytokine and chemokine secretion, and on expression of regulatory T-cell associated markers, in samples from children with type 1 diabetes. PBMC were cultured before and after cryopreservation either with GAD(65) or PHA. Secretion of cytokines (IL-5, -6, -10, -12, -13 -17, IFN-gamma and TNF-alpha) and chemokines (IP-10, MCP-1, MIP-1 alpha, MIP-1 beta and RANTES) was analysed in cell supernatants using multiplex fluorochrome technique (Luminex). Expression of FOXP3 and TGF-beta mRNA was detected by multiplex real-time RT-PCR. Increased spontaneous secretion of IL-6, -10, -12, -13, IFN-gamma and MCP-1, and mRNA expression of FOXP3 and TGF-beta, was detected after cryopreservation. Stimulation with GAD65 induced higher levels of IL-6, IFN-gamma, TNF-alpha and MIP-1 alpha, whereas lower secretion was found for IL-10 and IL-13 in cryopreserved PBMC. Stimulation with PHA induced lower secretion of IP-10, MCPA and RANTES and FOXP3 mRNA expression after cryopreservation. Thus, cryopreserved PBMC were suitable to assess the immunological markers included in this study, even though their expression could differ from freshly handled cells.

  • 6.
    Axelsson, Stina
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Hjorth, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Akerman, L
    Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Treatment with alum-formulated GAD65 in type 1 diabetic children results in early induction of Th2 responses2009In: in DIABETOLOGIA, vol 52, 2009, Vol. 52, p. S193-S193Conference paper (Refereed)
    Abstract [en]

    n/a

  • 7.
    Axelsson, Stina
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Hjorth, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Decreased GAD(65) -specific Th1/Tc1 phenotype in children with Type 1 diabetes treated with GAD-alum.2012In: Diabetic Medicine, ISSN 0742-3071, E-ISSN 1464-5491, Vol. 29, no 10, p. 1272-1278Article in journal (Refereed)
    Abstract [en]

    Aim  The balance between T helper cell subsets is an important regulator of the immune system and is often examined after immune therapies. We aimed to study the immunomodulatory effect of glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) in children with Type 1 diabetes, focusing on chemokines and their receptors. Methods  Blood samples were collected from 70 children with Type 1 diabetes included in a phase II clinical trial with GAD-alum. Expression of CC chemokine receptor 5 (CCR5) and CCR4 was analysed on CD4+ and CD8+ lymphocytes after in vitro stimulation with GAD(65) using flow cytometry, and secretion of the chemokines CCL2, CCL3 and CCL4 was detected in peripheral blood mononuclear cell supernatants with Luminex. Results  Expression of Th1-associated CCR5 was down-regulated following antigen challenge, together with an increased CCR4/CCR5 ratio and CCL2 secretion in GAD-alum-treated patients, but not in the placebo group. Conclusion  Our results suggest that GAD-alum treatment has induced a favourable immune modulation associated with decreased Th1/Tc1 phenotypes upon antigen re-challenge, which may be of importance for regulating GAD(65) immunity. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  • 8.
    Axelsson, Stina
    et al.
    Linköping University, Department of Molecular and Clinical Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Hjorth, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Åkerman, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Molecular and Clinical Medicine, Pediatrics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Molecular and Clinical Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Early induction of GAD(65)-reactive Th2 response in type 1 diabetic children treated with alum-formulated GAD(65)2010In: Diabetes/Metabolism Research Reviews, ISSN 1520-7552, E-ISSN 1520-7560, Vol. 26, no 7, p. 559-568Article in journal (Refereed)
    Abstract [en]

    Background We have previously shown that two injections of 20 mu g alum-formulated glutamic acid decarboxylase 65 (GAD(65)) (GAD-alum; Diamyd (R)) in children with recent-onset type 1 diabetes lead to preservation of residual insulin secretion. In vitro cytokine production at the 15 months follow-up indicated immunomodulation. In the present study, we took advantage of peripheral blood mononuclear cells, cryopreserved during early follow-ups, to investigate whether the immunomodulatory effect of GAD-alum was apparent earlier after treatment, preceding the changes previously reported at 15 months.<p>Methods Peripheral blood mononuclear cells from 70 type 1 diabetic children, randomly assigned GAD-alum (n = 35) or placebo (n = 35), that had been frozen at baseline (n = 27) and after 1 (n = 58), 3 (n = 67) and 9 (n = 66) months, were stimulated in vitro with GAD(65), tyrosine phosphatase-like protein IA-2 peptide, insulin peptide, GAD-alum, alum formulation or phytohaemagglutinin. Interleukin (IL)-5, -6, -10, -12, -13, -17, tumour necrosis factor and interferon-gamma were measured in cell supernatants and serum samples using Luminex. Expression of FOXP3 and transforming growth factor-beta was determined by real-time reverse transcription polymerase chain reaction.</p><p>Results Already 1 month after the first injection, GAD(65)-induced IL-5 and IL-13 together with FOXP3 were enhanced in GAD-alum-treated patients compared to those with placebo. The in vitro response at 3 and 9 months was characterized by a broader range of cytokines in the treated group. Notably, only the T-helper 2-associated cytokines IL-5 and IL-13 together with FOXP3 increased continuously over time.</p><p>Conclusions Treatment with GAD-alum in type 1 diabetic children induced an early T-helper 2 immune enhanced response to GAD(65), followed by a wider spectrum of cytokines at 3 and 9 months. Copyright (C) 2010 John Wiley &amp; Sons, Ltd.</p>

  • 9.
    Casas, Rosaura
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Hjorth, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Chéramy, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Pihl, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Specific immunomodulatory effect of GAD(65) in type 1 diabetics2009In: in DIABETOLOGIA, vol 52, 2009, Vol. 52, p. S194-S194Conference paper (Refereed)
    Abstract [en]

    n/a

  • 10.
    Chéramy, Mikael
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Åkerman, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Pihl, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    GAD65 autoantibody (GADA) responses in Type 1 diabetes patients participating in a phase III GAD-alum intervention trialManuscript (preprint) (Other academic)
    Abstract [en]

    Glutamic acid decarboxylase 65 kDa isoform (GAD65) is a major autoantigen in type 1 diabetes (T1D). Although aluminum-formulated GAD65 (GAD-alum) induced preservation of residual insulin secretion in a previous clinical phase II trial, recent phase II and III trials failed to reach their primary end-points. The European phase III trial was therefore closed after 15 months, and the entire study period was completed only for a minority of the patients. This study aimed to characterize GAD65 autoantibodies (GADA) and Tyrosine phosphatase IA-2 autoantibody (IA-2A) levels, GADA IgG1-4 subclass distribution, B-cell frequencies/phenotypes and cytokine secretion. We also assessed whether GAD-alum preserved β-cell function in the small subgroup of Swedish patients who completed the 30 months visit. Serum samples and peripheral blood mononuclear cells (PBMC) were collected at baseline and after 1, 3, 9, 15 and 21 months from the 148 Swedish subjects included in the trial, and also at 30 months from the 45 patients who reached the final visit. Patients were randomly assigned to; i) 4 doses of GAD-alum (4D), ii) 2 doses of GAD-alum followed by two doses of placebo (2D), or iii) 4 doses of placebo.

    GADA titers were induced both in the 4D and 2D group compared to placebo, and 4D patients also displayed a higher GADA fold-change after receiving the  two additional injections compared to the 2D group. The 4D group switched to a higher frequency of GADA IgG4, associated to a Th2 type response at 9 months, whereas an association between GADA fold-change and GAD65-induced in vitro cytokine secretion was observed in the 2D group. These findings suggest that the humoral response, induced by the 2D treatment,  seems to be associated with a GAD65-specific cellular response, while 4D induces a distinct humoral response. Even though GADA titers were elevated, no changes in B-cell frequencies or phenotype were observed in any group. IA-2A levels declined at a similar rate in all groups during the trial.The subgroup of patients who completed the 30 month visit receiving 2 doses of GAD-alum had less decline of both fasting and stimulated C-peptide after 30 months compared to placebo. These results support the concept of GAD-alum treatment, but no specific immune markers have been identified.

  • 11.
    Hedman Hjorth, Maria
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Faresjö, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Impaired CD4+ and CD8+ T cell phenotype and reduced chemokine secretion in recent-onset type 1 diabetic children2008In: Clinical and Experimental Immunology, ISSN 0009-9104, E-ISSN 1365-2249, Vol. 153, no 3, p. 360-368Article in journal (Refereed)
    Abstract [en]

    Although the role of the T cell-mediated autoimmune reaction in type 1 diabetes (T1D) is conclusive, studies including data from human circulating CD4+ and CD8+ lymphocytes subsets during the disease onset and posterior development are scarce. Further, chemokines and chemokine receptors are key players in the migration of pathogenic T cells into the islets of NOD mice developing T1D, but few studies have investigated these markers in human T1D patients. We studied the expression of T helper 1 (Th1) and Th2 associated chemokine receptors, and the two isoforms of CD45 leukocyte antigen on CD4+ and CD8+ lymphocytes from T1D and healthy children, as well as the secretion of chemokines in cell supernatants in peripheral blood mononuclear cells. Our results showed increased expression of CCR7 and CD45RA, and reduced CD45RO on CD8+ cells among recent-onset T1D patients. The percentages of CD4+ cells expressing CXC chemokine receptor 3 (CXCR3), CXCR6 and CCR5, and the secretion of interferon-γ-induced protein-10, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1a and MIP-1β was lower among diabetics. Low expression of Th1-associated receptors and secretion of chemokines, together with an increased amount of CD8+ cells expressing CD45RA and CCR7 in T1D patients therefore might represent suboptimal Th function in T1D, leading to impaired T cytotoxic (Tc) responses or alternatively reflect a selective recruitment of Th1 cells into the pancreas.

  • 12.
    Hjorth, Maria
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Linköping University, Faculty of Health Sciences.
    GAD-alum treatment induces GAD-specific FOXP3+ cells in type 1 diabetic children2009In: in DIABETOLOGIA, vol 52, 2009, Vol. 52, p. S193-S193Conference paper (Refereed)
    Abstract [en]

    n/a

  • 13.
    Hjorth, Maria
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Ryden, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Faresjo, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    GAD-alum treatment induces GAD(65)-specific CD4(+)CD25(high)FOXP3(+) cells in type 1 diabetic patients2011In: CLINICAL IMMUNOLOGY, ISSN 1521-6616, Vol. 138, no 1, p. 117-126Article in journal (Refereed)
    Abstract [en]

    Type 1 diabetes results from autoimmune destruction of insulin producing pancreatic beta-cells. We have shown that treatment with alum-formulated glutamic acid decarboxylase 65 (GAD-alum) preserved residual insulin secretion and induced antigen-specific responses in children with recent onset type 1 diabetes. The aim of this study was to further investigate the immunomodulatory effect of GAD-alum, focusing on CD4(+)CD25(high) cells and their association to cytokine secretion. Samples obtained 21 and 30 months after the initial injection of GAD-alum or placebo were included in the present study. GAD(65)-stimulation enhanced the percentage of CD4(+)CD25(high)FOXP3(+) cells, but reduced the percentage of CD4(+)CD25(+) cells, in samples from the GAD-alum treated group. Further, the GAD(65)-induced secretion of IL-5, -10, and -13 correlated with the expression of CD4(+)CD25(high)FOXP3(+) cells, but inversely with CD4(+)CD25(+) cells. These new data suggest that GAD-alum treatment induced GAD(65)-specific T cells with regulatory features.

  • 14.
    Ludvigsson, Johnny
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center of Paediatrics and Gynaecology and Obstetrics, Department of Paediatrics in Linköping.
    Chéramy, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Pihl, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Åkerman, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    GAD-treatment of children and adolescents with recent-onset Type 1 diabetes preserves residual insulin secretion after 30 months2014In: Diabetes/Metabolism Research Reviews, ISSN 1520-7552, E-ISSN 1520-7560, Vol. 30, no 5, p. 405-414Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: This study aimed to analyse data from two different studies (Phase II and Phase III) regarding the safety and efficacy of treatment with alum formulated glutamic acid decarboxylase GAD65 (GAD-alum), 30 months after administration to children and adolescents with Type 1 diabetes (T1D).

    METHODS: The Phase II trial was a double-blind, randomized placebo-controlled study, including 70 children and adolescents which were followed for 30 months. Participants received a subcutaneous injection of either 20 µg of GAD-alum or placebo at baseline and one month later. During a subsequent larger European Phase III trial including three treatment arms, participants received two or four subcutaneous injections of either 20 µg of GAD-alum and/or placebo at baseline, 1, 3 and 9 months. The Phase III trial was prematurely interrupted at 15 months, but of the 148 Swedish patients, a majority completed the 21 months follow-up and 45 patients completed the trial at 30 months. Both studies included GADA-positive patients with fasting C-peptide ≥0.10 nmol/l. We have now combined the results of these two trials.

    RESULTS: There were no treatment related adverse events. In patients treated with 2 GAD-alum doses, stimulated C-peptide AUC had decreased significantly less (9 m: p < 0.037; 15 m p < 0.032; 21 m p < 0.003 and 30 m p < 0.004) and a larger proportion of these patients were also able to achieve a peak stimulated C-peptide >0.2 nmol/l (p < 0.05), as compared to placebo.

    CONCLUSION: Treatment with two doses of GAD-alum in children and adolescents with recent-onset T1D shows no adverse events and preserves residual insulin secretion. This article is protected by copyright. All rights reserved.

  • 15.
    Ludvigsson, Johnny
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics . Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Faresjö, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    Hjorth, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    Axelsson, Stina
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    Chéramy, Mikael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    Pihl, Mikael
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    Vaarala, Outi
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    Forsander, Gun
    Ivarsson, Sten
    Johansson, Calle
    Lindh, Agne
    Nilsson, NO
    Åman, Jan
    Örtqvist, Eva
    Zerhouni, Peter
    Casas, Rosaura
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Pediatrics .
    GAD treatment and insulin secretion in recent-onset type 1 diabetes2008In: New England Journal of Medicine, ISSN 0028-4793, E-ISSN 1533-4406, Vol. 359, no 18, p. 1909-1920Article in journal (Refereed)
    Abstract [en]

    Background: The 65-kD isoform of glutamic acid decarboxylase (GAD) is a major autoantigen in patients with type 1 diabetes mellitus. This trial assessed the ability of alum-formulated GAD (GAD-alum) to reverse recent-onset type 1 diabetes in patients 10 to 18 years of age. Methods: We randomly assigned 70 patients with type 1 diabetes who had fasting C-peptide levels above 0.1 nmol per liter (0.3 ng per milliliter) and GAD autoantibodies, recruited within 18 months after receiving the diagnosis of diabetes, to receive subcutaneous injections of 20 μg of GAD-alum (35 patients) or placebo (alum alone, 35 patients) on study days 1 and 30. At day 1 and months 3, 9, 15, 21, and 30, patients underwent a mixed-meal tolerance test to stimulate residual insulin secretion (measured as the C-peptide level). The effect of GAD-alum on the immune system was also studied. Results: Insulin secretion gradually decreased in both study groups. The study treatment had no significant effect on change in fasting C-peptide level after 15 months (the primary end point). Fasting C-peptide levels declined from baseline levels significantly less over 30 months in the GAD-alum group than in the placebo group (-0.21 vs. -0.27 nmol per liter [-0.62 vs. -0.81 ng per milliliter], P = 0.045), as did stimulated secretion measured as the area under the curve (-0.72 vs. -1.02 nmol per liter per 2 hours [-2.20 vs. -3.08 ng per milliliter per 2 hours], P = 0.04). No protective effect was seen in patients treated 6 months or more after receiving the diagnosis. Adverse events appeared to be mild and similar in frequency between the two groups. The GAD-alum treatment induced a GAD-specific immune response. Conclusions: GAD-alum may contribute to the preservation of residual insulin secretion in patients with recent-onset type 1 diabetes, although it did not change the insulin requirement. (ClinicalTrials.gov number, NCT00435981.) Copyright © 2008 Massachusetts Medical Society. All rights reserved.

  • 16.
    Ludvigsson, Johnny
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Hjorth, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Chéramy, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Pihl, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Forsander, G
    Queen Silvia Childrens Hospital.
    Nilsson, N-O
    Halmstad County Hospital.
    Samuelsson, B-O
    Boras Hospital.
    Wood, T
    Diamyd Therapeut.
    Aman, J
    Orebro University Hospital.
    Ortqvist, E
    Karolinska University Hospital.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Extended evaluation of the safety and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes: a randomised controlled trial2011In: DIABETOLOGIA, ISSN 0012-186X, Vol. 54, no 3, p. 634-640Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to investigate the safety and efficacy of alum formulated glutamic acid decarboxylase GAD(65) (GAD-alum) treatment of children and adolescents with type 1 diabetes after 4 years of follow-up. Seventy children and adolescents aged 10-18 years with recent onset type 1 diabetes participated in a phase II, double-blind, randomised placebo-controlled clinical trial. Patients identified as possible participants attended one of eight clinics in Sweden to receive information about the study and for an eligibility check, including a medical history. Participants were randomised to one of the two treatment groups and received either a subcutaneous injection of 20 mu g of GAD-alum or placebo at baseline and 1 month later. The study was blinded to participants and investigators until month 30. The study was unblinded at 15 months to the sponsor and statistician in order to evaluate the data. At follow-up after 30 months there was a significant preservation of residual insulin secretion, as measured by C-peptide, in the group receiving GAD-alum compared with placebo. This was particularly evident in patients with andlt; 6 months disease duration at baseline. There were no treatment-related serious adverse events. We have now followed these patients for 4 years. Overall, 59 patients, 29 who had been treated with GAD-alum and 30 who had received placebo, gave their informed consent. One patient in each treatment group experienced an episode of keto-acidosis between months 30 and 48. There were no treatment-related adverse events. The primary efficacy endpoint was the change in fasting C-peptide concentration from baseline to 15 months after the prime injection for all participants per protocol set. In the GAD-alum group fasting C-peptide was 0.332 +/- 0.032 nmol/l at day 1 and 0.215 +/- 0.031 nmol/l at month 15. The corresponding figures for the placebo group were 0.354 +/- 0.039 and 0.184 +/- 0.033 nmol/l, respectively. The decline in fasting C-peptide levels between day 1 and month 1, was smaller in the GAD-alum group than the placebo group. The difference between the treatment groups was not statistically significant. In those patients who were treated within 6 months of diabetes diagnosis, fasting C-peptide had decreased significantly less in the GAD-alum group than in the placebo-treated group after 4 years. Four years after treatment with GAD-alum, children and adolescents with recent-onset type 1 diabetes continue to show no adverse events and possibly to show clinically relevant preservation of C-peptide. ClinicalTrials.gov NCT00435981 The study was funded by The Swedish Research Council K2008-55X-20652-01-3, Barndiabetesfonden (The Swedish Child Diabetes Foundation), the Research Council of Southeast Sweden, and an unrestricted grant from Diamyd Medical AB.

  • 17.
    Martinuzzi, E
    et al.
    Inserm U986 DeAR Lab Avenir.
    Gagnerault, M C
    Inserm U986 DeAR Lab Avenir.
    Fourlanos, S
    Walter and Eliza Hall Institute Medical Research.
    Harrison, L
    Walter and Eliza Hall Institute Medical Research.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Chéramy, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Mallone, R
    Inserm U986 DeAR Lab Avenir.
    Why are the benefits of vaccinations in the helping of beta-cellular antigenes in type 1 diabetes so limited? An analysis of linked immunological biomarkers in DIABETES and METABOLISM, vol 38, issue 2, pp A5-A52012In: DIABETES and METABOLISM, Elsevier Masson , 2012, Vol. 38, no 2, p. A5-A5Conference paper (Refereed)
    Abstract [en]

    n/a

  • 18.
    Pihl, Mikael
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Cheramy, Mikael
    Benaroya Research Institute at Virginia Mason, Seattle, USA.
    Reijonen, Helena
    Benaroya Research Institute at Virginia Mason, Seattle, USA.
    Ludvgisson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center of Paediatrics and Gynaecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    GAD-alum treatment induces GAD-specific CD4 T cells in a phase III clinical trial2013Manuscript (preprint) (Other academic)
    Abstract [en]

    Glutamic Acid Decarboxylase (GAD)65 formulated in aluminium hydroxide (GAD-alum preserved insulin secretion in a phase II clinical trial in recent onset type 1 diabetes. GADalum treated patients up-regulated FOXP3 upon antigen recall at 21 and 30 months after treatment. A 4-year follow-up of the study revealed increased frequencies of both CD25+CD127+ and CD25hiCD127lo cells in treated patients after antigen recall. A subsequent european phase III trial was closed after 15 months after failing to reach primary outcome. We monitored antigen recall induced frequencies of memory, effector and regulatory T cells throughout the phase III trial. Antigen recall induced mainly CD25+CD127+, CD45RO+ and non-suppressive FOXP3loCD45RA- cells in GAD-alum treated patients. In addition, a population of activated FSChiSSChi cells was observed, enriched in CD25+CD127+, CD45RO+ and proliferating cells. GAD65-specific T cells determined by tetramer staining were induced by antigen recall in GAD-alum treated patients and were more frequent in the FSChiSSChi population. Additional doses of GAD-alum increased frequencies of CD25+CD127+, CD45RO+ and FSChiSSChi cells but had no effect on frequencies of CD25hiCD127lo. Our findings indicate that antigen recall after GAD-alum treatment primarily induces memory and activated T cells. In particular, GAD65-specific cells were mainly of a memory or activated phenotype. Additional doses of GAD-alum mainly affect memory T cell frequency and T cell activation.

  • 19.
    Pihl, Mikael
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Åkerman, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Axelsson, Stina
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Chéramy, Mikael
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Hjorth, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Mallone, R.
    St Vincent Paul Hospital, France.
    Ludvigsson, Johnny
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center of Paediatrics and Gynaecology and Obstetrics, Department of Paediatrics in Linköping.
    Casas, Rosaura
    Linköping University, Department of Clinical and Experimental Medicine, Pediatrics. Linköping University, Faculty of Health Sciences.
    Regulatory T cell phenotype and function 4 years after GAD–alum treatment in children with type 1 diabetes2013In: Clinical and Experimental Immunology, ISSN 0009-9104, E-ISSN 1365-2249, Vol. 172, no 3, p. 394-402Article in journal (Refereed)
    Abstract [en]

    Glutamic acid decarboxylase (GAD)65 formulated with aluminium hydroxide (GAD-alum) was effective in preserving insulin secretion in a Phase II clinical trial in children and adolescents with recent-onset type 1 diabetes. In addition, GAD-alum treated patients increased CD4+CD25hi forkhead box protein 3+ (FoxP3+) cell numbers in response to in-vitro GAD65 stimulation. We have carried out a 4-year follow-up study of 59 of the original 70 patients to investigate long-term effects on the frequency and function of regulatory T cells after GAD-alum treatment. Peripheral blood mononuclear cells were stimulated in vitro with GAD65 for 7 days and expression of regulatory T cell markers was measured by flow cytometry. Regulatory T cells (CD4+CD25hiCD127lo) and effector T cells (CD4+CD25CD127+) were further sorted, expanded and used in suppression assays to assess regulatory T cell function after GAD-alum treatment. GAD-alum-treated patients displayed higher frequencies of in-vitro GAD65-induced CD4+CD25+CD127+ as well as CD4+CD25hiCD127lo and CD4+FoxP3+ cells compared to placebo. Moreover, GAD65 stimulation induced a population of CD4hi cells consisting mainly of CD25+CD127+, which was specific of GAD-alum-treated patients (16 of 25 versus one of 25 in placebo). Assessment of suppressive function in expanded regulatory T cells revealed no difference between GAD-alum- and placebo-treated individuals. Regulatory T cell frequency did not correlate with C-peptide secretion throughout the study. In conclusion, GAD-alum treatment induced both GAD65-reactive CD25+CD127+ and CD25hiCD127lo cells, but no difference in regulatory T cell function 4 years after GAD-alum treatment.

1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf