liu.seSearch for publications in DiVA
Change search
Refine search result
12345 1 - 50 of 249
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Aalto, Anne
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Jaworski, M
    Gustavsson, M
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Östergötlands Läns Landsting, Sinnescentrum, Department of Neurosurgery UHL. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Effects of Betainterferon treatment in Multiple Sclerosis Studied by Quantitative 1H MRS2009Conference paper (Other academic)
  • 2.
    Abrahamsson, Annelie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Rzepecka, Anna
    Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Romu, Thobias
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Borga, Magnus
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dahlqvist Leinhard, Olof
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Dabrosin, Charlotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment in vivo2016In: Oncoimmunology, ISSN 2162-4011, E-ISSN 2162-402X, Vol. 5, no 10, e1229723Article in journal (Refereed)
    Abstract [en]

    Inflammation is one of the hallmarks of carcinogenesis. High mammographic density has been associated with increased risk of breast cancer but the mechanisms behind are poorly understood. We evaluated whether breasts with different mammographic densities exhibited differences in the inflammatory microenvironment.Postmenopausal women attending the mammography-screening program were assessed having extreme dense, n = 20, or entirely fatty breasts (nondense), n = 19, on their regular mammograms. Thereafter, the women were invited for magnetic resonance imaging (MRI), microdialysis for the collection of extracellular molecules in situ and a core tissue biopsy for research purposes. On the MRI, lean tissue fraction (LTF) was calculated for a continuous measurement of breast density. LTF confirmed the selection from the mammograms and gave a continuous measurement of breast density. Microdialysis revealed significantly increased extracellular in vivo levels of IL-6, IL-8, vascular endothelial growth factor, and CCL5 in dense breast tissue as compared with nondense breasts. Moreover, the ratio IL-1Ra/IL-1 was decreased in dense breasts. No differences were found in levels of IL-1, IL-1Ra, CCL2, leptin, adiponectin, or leptin:adiponectin ratio between the two breast tissue types. Significant positive correlations between LTF and the pro-inflammatory cytokines as well as between the cytokines were detected. Stainings of the core biopsies exhibited increased levels of immune cells in dense breast tissue.Our data show that dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment and, if confirmed in a larger cohort, suggests novel targets for prevention therapies for women with dense breast tissue.

  • 3.
    Ahlman, Gustav
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Magnusson, Maria
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Increased temporal resolution in radial-Cartesian sampling of k-space by implementation of parallel imaging2011Conference paper (Refereed)
  • 4. Andersson, A
    et al.
    Carlsson, J
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Hansson, T
    Söderfeldt, B
    Comparison of sign language production and meaningless hand movements by fMRI1998Conference paper (Other academic)
  • 5.
    Andersson, Thord
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Romu, Thobias
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Karlsson, Anette
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Norén, Bengt
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Forsgren, Mikael
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Kechagias, Stergios
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Almer, Sven
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Borga, Magnus
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dahlqvist Leinhard, Olof
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Consistent intensity inhomogeneity correction in water–fat MRI2015In: Journal of Magnetic Resonance Imaging, ISSN 1053-1807, E-ISSN 1522-2586, Vol. 42, no 2, 468-476 p.Article in journal (Refereed)
    Abstract [en]

    PURPOSE:

    To quantitatively and qualitatively evaluate the water-signal performance of the consistent intensity inhomogeneity correction (CIIC) method to correct for intensity inhomogeneities METHODS: Water-fat volumes were acquired using 1.5 Tesla (T) and 3.0T symmetrically sampled 2-point Dixon three-dimensional MRI. Two datasets: (i) 10 muscle tissue regions of interest (ROIs) from 10 subjects acquired with both 1.5T and 3.0T whole-body MRI. (ii) Seven liver tissue ROIs from 36 patients imaged using 1.5T MRI at six time points after Gd-EOB-DTPA injection. The performance of CIIC was evaluated quantitatively by analyzing its impact on the dispersion and bias of the water image ROI intensities, and qualitatively using side-by-side image comparisons.

    RESULTS:

    CIIC significantly ( P1.5T≤2.3×10-4,P3.0T≤1.0×10-6) decreased the nonphysiological intensity variance while preserving the average intensity levels. The side-by-side comparisons showed improved intensity consistency ( Pint⁡≤10-6) while not introducing artifacts ( Part=0.024) nor changed appearances ( Papp≤10-6).

    CONCLUSION:

    CIIC improves the spatiotemporal intensity consistency in regions of a homogenous tissue type. J. Magn. Reson. Imaging 2014.

  • 6.
    Andersson, Thord
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Romu, Thobias
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Norén, Bengt
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Forsgren, Mikael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Almer, Sven
    Linköping University, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Endocrinology.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Borga, Magnus
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Self-calibrated DCE MRI using Multi Scale Adaptive Normalized Averaging (MANA)2012In: Proceedings of the annual meeting of the International Society for Magnetic Resonance in Medicine (ISMRM 2012), 2012, 2012Conference paper (Other academic)
  • 7.
    Andersson-Engels, Stefan
    et al.
    Inst för fysik Lunds Tekniska Högskola.
    Pålsson, S
    Backlund, Erik Olof
    IMT LiU.
    Sturnegk, Patrik
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Östergötlands Läns Landsting, Reconstruction Centre, Department of Neurosurgery UHL.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Svanberg, K
    Eriksson, Ola
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Wårdell, Karin
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    ALA-PpIX Fluorescence and spectroscopy in connection with stereotactic biopsy of human glioblastomas2005In: European Conference on Biomedical Optics,2005, 2005Conference paper (Refereed)
  • 8.
    Antonsson, Johan
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Eriksson, Ola
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Optical measurements during experimental stereotactic radiofrequency lesioning2006In: Stereotactic and Functional Neurosurgery, ISSN 1011-6125, E-ISSN 1423-0372, Vol. 84, no 2-3, 118-124 p.Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to evaluate in vivo a laser Doppler measurement system in porcine brain tissue during thermal lesioning. A 2-mm monopolar radiofrequency lesioning electrode was equipped with optical fibers in order to monitor the lesioning procedure. Laser Doppler and backscattered light intensity signals were measured along the electrode trajectory and during bilateral lesioning in the central gray (70, 80 and 90°C, n = 14). The time course of the coagulation process could be followed by optical recordings. Two separate groups of tissue were identified from the intensity signals. The changes in the perfusion levels in both groups displayed significant changes (p < 0.05, n = 48) at all temperature settings, while backscattered light intensity was significant for only one group at the different temperatures (p < 0.05, n = 39). These results indicate that optical measurements correlate with lesion development in vivo. The study also indicates that it is possible to follow the lesioning process intra-operatively.

  • 9. Bagh, K
    et al.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Vogel, HJ
    Characterization of the cell-wall associated acid phosphatases of catharanthus roseus1990Conference paper (Other academic)
  • 10.
    Bednarska, Olga
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Tapper, Sofie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lowén, Mats
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Walter, Susanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Neurotransmittor Concentration in Pregenual ACC in Stool Consistency Patient Subgroups With IBS2014Conference paper (Refereed)
    Abstract [en]

    Introduction

    The Anterior Cingulate Cortex (ACC) is a key region of the central autonomic brain network. Irritable Bowel Syndrome (IBS) is characterized abdominal pain and bowel habit disturbances. Autonomic dysregulation has been reported in IBS as well as altered ACC activation in pregenual ACC during visceral stimulation 1 2. Glutamate is the major excitatory and Gamma-aminobutyric acid (GABA) the major inhibitory neurotransmitter in the brain.

    Aim & Methods

    We aimed to measure neurotransmitter concentration in the pregenual ACC, in stool consistency subgroups with IBS by using quantitative neurotransmitter Magnetic Resonance Spectroscopy (qMRS)Seven patients with IBS-mixed (6 women) and five patients with IBS -diarrhea (4 women) according to Rome 3 were included. Mean age was 34.2 years (SD 5.3) with no significant difference between subgroups.  Patients completed symptom severity score (IBS-SSS). Quantitative MRS was measured in a 3T MRI scanner. A water-suppressed MEGA-PRESS sequence (TR 2.0 s, TE 68 ms) was used with the editing pulses placed at 1.90 ppm (‘ON-dynamics’) and at 7.46 ppm (‘OFF-dynamics’) with a voxel (3x3x3 cm3) placed in the pACC. Each MEGA-PRESS measurement resulted in a sequence of 40 OFF- and ON-dynamics, where each was computed by 8 phase cycles. Directly after each water-suppressed MEGA-PRESS measurement, a shorter 2-dynamic unsuppressed water MEGA-PRESS measurement was performed within the same voxel, which was used to obtain the concentrations in physically well-defined units of [mM]. The GABA concentrations were computed by averaging the difference spectra obtained by subtracting each OFF-dynamic from subsequent ON-dynamic and using LCModel (Version 6.3) for the final quantification. The Glutamate concentrations were obtained by only averaging the OFF-dynamics, which were not affected by the editing pulses. Additionally, all dynamics were phase and frequency corrected prior to the averaging. For group comparison unpaired T-tests were used.

    Results

    Patients had moderate to severe symptoms with IBS-SSS of 367 (SD 79.7). There was no significant difference between IBS subgroups in terms of IBS-SSS. Mean pACC GABA concentration was 1.66 (SD 0.17) mM in IBS-M and 1.65 (SD 0.27) mM in IBS-D. There was no significant difference between groups (p=0.9). Mean pACC Glutamate concentration was 4.54 (0.35) mM in IBS-M and 5.13 (SD 0.64) mM in IBS-D. There was no significant difference between groups, although a trend with p=0.06 was observed.

    Conclusion

    Further qMRS data have to be collected in IBS patients as well as healthy controls to evaluate if IBS subgroups demonstrate alterations in pACC glutamate and GABA concentrations

  • 11. Bergman, I
    et al.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL.
    Nilsson, M
    Microbial carbon mineralisation in an acid surface peat: effects of environmental factors in laboratory incubations.1999In: Soil Biology and Biochemistry, ISSN 0038-0717, E-ISSN 1879-3428, Vol. 31, 1867-1877 p.Article in journal (Refereed)
  • 12. Bergman, I
    et al.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Preston, Caroline M
    Nilsson, Mats
    Degradiation of [U-13C] glucose in sphagnum majus litter: responses to redox, pH and temperature.2000In: Soil Science Society of America Journal, ISSN 0361-5995, E-ISSN 1435-0661, Vol. 64, 1368-1381 p.Article in journal (Refereed)
  • 13.
    Bertus Warntjes, Marcel Jan
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Blystad, Ida
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Obtaining Double Inversion Recovery and Phase Sensitive Inversion Recovery Images without additional Scan Time2014Conference paper (Other academic)
  • 14.
    Blystad, Ida
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Håkansson, I
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Ernerudh, J
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Larsson, EM
    Quantitative MRI for the evaluation of active MS-lesions without gadolinium based contrast agent.2014Conference paper (Other academic)
  • 15.
    Blystad, Ida
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Håkansson, Irene
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Tisell, Anders
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Larsson, Elna-Marie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Uppsala University, Sweden.
    Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent2016In: American Journal of Neuroradiology, ISSN 0195-6108, E-ISSN 1936-959X, Vol. 37, no 1, 94-100 p.Article in journal (Refereed)
    Abstract [en]

    BACKGROUND AND PURPOSE: Contrast-enhancing MS lesions are important markers of active inflammation in the diagnostic work-up of MS and in disease monitoring with MR imaging. Because intravenous contrast agents involve an expense and a potential risk of adverse events, it would be desirable to identify active lesions without using a contrast agent. The purpose of this study was to evaluate whether pre-contrast injection tissue-relaxation rates and proton density of MS lesions, by using a new quantitative MR imaging sequence, can identify active lesions. MATERIALS AND METHODS: Forty-four patients with a clinical suspicion of MS were studied. MR imaging with a standard clinical MS protocol and a quantitative MR imaging sequence was performed at inclusion (baseline) and after 1 year. ROIs were placed in MS lesions, classified as nonenhancing or enhancing. Longitudinal and transverse relaxation rates, as well as proton density were obtained from the quantitative MR imaging sequence. Statistical analyses of ROI values were performed by using a mixed linear model, logistic regression, and receiver operating characteristic analysis. RESULTS: Enhancing lesions had a significantly (P &lt; .001) higher mean longitudinal relaxation rate (1.22 0.36 versus 0.89 +/- 0.24), a higher mean transverse relaxation rate (9.8 +/- 2.6 versus 7.4 +/- 1.9), and a lower mean proton density (77 +/- 11.2 versus 90 +/- 8.4) than nonenhancing lesions. An area under the receiver operating characteristic curve value of 0.832 was obtained. CONCLUSIONS: Contrast-enhancing MS lesions often have proton density and relaxation times that differ from those in nonenhancing lesions, with lower proton density and shorter relaxation times in enhancing lesions compared with nonenhancing lesions.

  • 16.
    Blystad, Ida
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Warntjes, Jan Bertus Marcel
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    SyntheticMRI compared with conventional MRI of the brain in a clinical setting: a pilot study, ESMRMB 2012, Lisbon, Portugal.2012Conference paper (Other academic)
  • 17.
    Blystad, Ida
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Warntjes, Jan Bertus Marcel
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Larsson, Elna-Marie
    Uppsala University, Sweden .
    Synthetic MRI of the brain in a clinical setting2012In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 53, no 10, 1158-1163 p.Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    Conventional magnetic resonance imaging (MRI) has relatively long scan times for routine examinations, and the signal intensity of the images is related to the specific MR scanner settings. Due to scanner imperfections and automatic optimizations, it is impossible to compare images in terms of absolute image intensity. Synthetic MRI, a method to generate conventional images based on MR quantification, potentially both decreases examination time and enables quantitative measurements.

    PURPOSE:

    To evaluate synthetic MRI of the brain in a clinical setting by assessment of the contrast, the contrast-to-noise ratio (CNR), and the diagnostic quality compared with conventional MR images.

    MATERIAL AND METHODS:

    Twenty-two patients had synthetic imaging added to their clinical MR examination. In each patient, 12 regions of interest were placed in the brain images to measure contrast and CNR. Furthermore, general image quality, probable diagnosis, and lesion conspicuity were investigated.

    RESULTS:

    Synthetic T1-weighted turbo spin echo and T2-weighted turbo spin echo images had higher contrast but also a higher level of noise, resulting in a similar CNR compared with conventional images. Synthetic T2-weighted FLAIR images had lower contrast and a higher level of noise, which led to a lower CNR. Synthetic images were generally assessed to be of inferior image quality, but agreed with the clinical diagnosis to the same extent as the conventional images. Lesion conspicuity was higher in the synthetic T1-weighted images, which also had a better agreement with the clinical diagnoses than the conventional T1-weighted images.

    CONCLUSION:

    Synthetic MR can potentially shorten the MR examination time. Even though the image quality is perceived to be inferior, synthetic images agreed with the clinical diagnosis to the same extent as the conventional images in this study.

  • 18.
    Blystad, Ida
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Department of Medical and Health Sciences, Radiology.
    Warntjes, Marcel
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Helmersson, Teresa
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Contrast assessment of Synthetic Magnetic Resonance Imaging in clinical practice2011Conference paper (Refereed)
  • 19.
    Blystad, Ida
    et al.
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Warntjes, Marcel Jan Bertus
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). KTH Royal Institute Technology, Sweden.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Larsson, Elna-Marie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Uppsala University, Sweden.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Quantitative MRI for analysis of peritumoral edema in malignant gliomas2017In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 5, e0177135Article in journal (Refereed)
    Abstract [en]

    Background and purpose Damage to the blood-brain barrier with subsequent contrast enhancement is a hallmark of glioblastoma. Non-enhancing tumor invasion into the peritumoral edema is, however, not usually visible on conventional magnetic resonance imaging. New quantitative techniques using relaxometry offer additional information about tissue properties. The aim of this study was to evaluate longitudinal relaxation R-1, transverse relaxation R-2, and proton density in the peritumoral edema in a group of patients with malignant glioma before surgery to assess whether relaxometry can detect changes not visible on conventional images. Methods In a prospective study, 24 patients with suspected malignant glioma were examined before surgery. A standard MRI protocol was used with the addition of a quantitative MR method (MAGIC), which measured R-1, R-2, and proton density. The diagnosis of malignant glioma was confirmed after biopsy/surgery. In 19 patients synthetic MR images were then created from the MAGIC scan, and ROIs were placed in the peritumoral edema to obtain the quantitative values. Dynamic susceptibility contrast perfusion was used to obtain cerebral blood volume (rCBV) data of the peritumoral edema. Voxel-based statistical analysis was performed using a mixed linear model. Results R-1, R-2, and rCBV decrease with increasing distance from the contrast-enhancing part of the tumor. There is a significant increase in R1 gradient after contrast agent injection (Pamp;lt;.0001). There is a heterogeneous pattern of relaxation values in the peritumoral edema adjacent to the contrast-enhancing part of the tumor. Conclusion Quantitative analysis with relaxometry of peritumoral edema in malignant gliomas detects tissue changes not visualized on conventional MR images. The finding of decreasing R-1 and R-2 means shorter relaxation times closer to the tumor, which could reflect tumor invasion into the peritumoral edema. However, these findings need to be validated in the future.

  • 20.
    Borga, Magnus
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dahlqvist, Leinhard Olof
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Improvement in Magnetic Resonance Imaging Relating to Correction of Chemical Shift Artifact and Intensity Inhomogeneity2011Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    Present invention discloses systems and methods for improvement of magnetic resonance images. Correction of a chemical shift artefact in an image acquired from a magnetic resonance imaging system is obtained by a system and a method involving iterative - compensation for the misregistration effect in an image domain. Correction of an intensity inhomogeneity in such images is obtained by a system and a method involving locating voxels corresponding to pure adipose tissue and estimating correction field from these points.

  • 21.
    Borga, Magnus
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Friman, Ola
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    A canonical correlation approach to exploratory data analysis in fMRI2002Conference paper (Other academic)
    Abstract [en]

    A computationally efficient data-driven method for exploratory analysis of functional MRI data is presented. The basic idea is to reveal underlying components in the fMRI data that have maximum autocorrelation. The tool for accomplishing this task is Canonical Correlation Analysis. The proposed method is more robust and much more computationally efficient than independent component analysis, which previously has been applied in fMRI.

  • 22.
    Borga, Magnus
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Friman, Ola
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Blind Source Separation of Functional MRI Data2002Conference paper (Other academic)
  • 23.
    Brandejsky, Vaclav
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lund, Eva
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    A novel method for RF coil magnetic field mapping2008Conference paper (Other academic)
  • 24.
    Brandejsky, Vaclav
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lund, Eva
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    New MR-scanner independent B1 field mapping technique2009Conference paper (Other academic)
  • 25.
    Börjesson, L.
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Stockhaus, J.
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Gauffin, Helena
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Ragnehed, Mattias
    Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Söderfeldt, Birgitta
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Comparison between fMRI and Wada test2004In: Epilepsia, ISSN 0013-9580, E-ISSN 1528-1167, Vol. 45, no Suppl. 3, 84-84 p.Article in journal (Refereed)
    Abstract [en]

    Purpose: Language lateralisation in patients with epilepsy is more often atypical compared to a normal population. The Wada procedure for testing language and memory has some shortcomings; it is invasive and there is always a risk that the patient becomes too sedated, leading to difficulties in performing the tests. fMR1have shown promising results, showing good correlation to the Wadaprocedure concerning language-lateralisation. The aim of this studywas to investigate if fMRI could be used to determine which hemisphere was language dominant and compare the fMR1 results with the Wada-tests with a focus on patients with a complicated lateralisation.

    Method: 4 subjects were tested and they had a heterogeneous (I left handed, I ambidexter and 2 right handed) lateralisation and one had a severe dyslexia. A standard Wada procedure was used and compared with a fMRl investigation using a language paradigm.

    Results: The patients studied showed different language lateralisation patterns (2 left hemisphere and 2 bilateral). In two patients the two tests were fully concordant, in the others the fMRI showed a more bilateral pattern.

    Conclusion: fMR1 adds valuable information in the pre-surgical investigation for patients with a complex language lateralisation.

  • 26. Cedefamn, J
    et al.
    Friman, O
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Borga, M
    Knutsson, H
    Novel method for true spatio-temporal analysis of fMRI data2000Conference paper (Other academic)
  • 27.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Cohen, L
    Lund, Eva
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Absolute quantification of 31P muscle MRS using B1-field mapping2005Conference paper (Other academic)
  • 28.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Dahlström, Nils
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Brismar, T
    Sandström, Per
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Surgery . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Kihlberg, Johan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Smedby, Örjan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology UHL. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    A liver function test based on measurement of liver-specific contrast agent uptake2008In: Proceedings 16th Scientific meeting, ISMRM,2008, 2008Conference paper (Other academic)
    Abstract [en]

      

  • 29.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Sandström, Per
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Surgery.
    Brismar, Torkel
    Department of Clinical Science, Intervention and Technology at Karolinska Institutet, Division of Medical Imaging and Technology, Karolinska University Hospital in Huddinge, Stockholm, Sweden.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study2012In: European Radiology, ISSN 0938-7994, E-ISSN 1432-1084, Vol. 22, no 3, 642-653 p.Article in journal (Refereed)
    Abstract [en]

    Objectives   To develop and evaluate a procedure for quantifying the hepatocyte-specific uptake of Gd-BOPTA and Gd-EOB-DTPA using dynamic contrast-enhanced (DCE) MRI. Methods   Ten healthy volunteers were prospectively recruited and 21 patients with suspected hepatobiliary disease were retrospectively evaluated. All subjects were examined with DCE-MRI using 0.025 mmol/kg of Gd-EOB-DTPA. The healthy volunteers underwent an additional examination using 0.05 mmol/kg of Gd-BOPTA. The signal intensities (SI) of liver and spleen parenchyma were obtained from unenhanced and enhanced acquisitions. Using pharmacokinetic models of the liver and spleen, and an SI rescaling procedure, a hepatic uptake rate, K Hep, estimate was derived. The K Hep values for Gd-EOB-DTPA were then studied in relation to those for Gd-BOPTA and to a clinical classification of the patient’s hepatobiliary dysfunction. Results   K Hep estimated using Gd-EOB-DTPA showed a significant Pearson correlation with K Hep estimated using Gd-BOPTA (r = 0.64; P < 0.05) in healthy subjects. Patients with impaired hepatobiliary function had significantly lower K Hep than patients with normal hepatobiliary function (K Hep = 0.09 ± 0.05 min-1 versus K Hep = 0.24 ± 0.10 min−1; P < 0.01). Conclusions   A new procedure for quantifying the hepatocyte-specific uptake of T 1-enhancing contrast agent was demonstrated and used to show that impaired hepatobiliary function severely influences the hepatic uptake of Gd-EOB-DTPA. Key Points   • The liver uptake of contrast agents may be measured with standard clinical MRI.Calculation of liver contrast agent uptake is improved by considering splenic uptake.Liver function affects the uptake of the liver-specific contrast agent Gd-EOB-DTPA.Hepatic uptake of two contrast agents (Gd-EOB-DTPA, Gd-BOPTA) is correlated in healthy individuals.This method can be useful for determining liver function, e.g. before hepatic surgery

  • 30.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Sandström, P
    Brismar, Torkel
    Karolinska institutet.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    A liver function test based on measurement of liver specific contrast agent uptake2008Conference paper (Other academic)
  • 31.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Sandström, P
    Freij, Anna
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Brismar, Torkel
    Karolinska institutet.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    The hepatic uptake of Gd-EOB-DTPA is strongly affected by the hepatobiliary function2009Conference paper (Other academic)
  • 32.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Sandström, P
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Brismar, Torkel
    Karolinska institutet.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    The hepatic uptake of Gd-EOB-DTPA is strongly correlated with the uptake of Gd-BOPTA2010Conference paper (Other academic)
  • 33.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Jacek, J.
    Aalto, Anne
    Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging.
    Grönqvist, A.
    Smedby, Örjan
    Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Lundberg, Peter
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Is Increased Normal White Matter Glutamate Concentration a Precursor of Gliosis and Disease Progression in Multiple Sclerosis?Manuscript (preprint) (Other academic)
    Abstract [en]

    Background: The multiple sclerosis (MS) severity scale (MSSS) is a new scoring procedure to clinically characterize the rate of disease progression in MS, rather than the disability of the patient. The latter is often characterized using the expanded disability status score (EDSS). The progress rate of the disease, magnetic resonance imaging (MRI)-based measures of ‘black hole lesions’, and atrophy have all been shown to be predicted well by MSSS. In this study we investigated possible relationships between brain metabolite concentrations, measured using proton (1H) magnetic resonance spectroscopy (MRS), and MSSS.

    Purpose: Our aims were to quantitatively investigate the metabolite concentrations in normal appearing white matter (NAWM) in MS-patients, and also to investigate possible correlations between disease subtype, EDSS and MSSS and metabolite concentrations. To minimize the interference from lesion contamination in the MRS measurement, a refined novel analysis procedure had to be developed in order to correct for partial volume effects in tissues near plaques.

    Materials and Methods: Forty eight patients with Clinically Definite MS (CDMS), and 18 normal control subjects (NC) were included retrospectively from several MRS studies. T1, T2, and proton density MRI, and four white matter 1H MRS single voxel PRESS (Point-REsolved SpectroScopy) spectra were acquired in each subject using echo time 35 ms and repetition time 6000 ms on a 1.5 T MR-scanner. A total of 108 examinations were acquired from patients and 18 from NC. Absolutely quantified NAWM metabolite concentrations were determined using a mixed linear model (MLM) analysis that included the degree of T2 lesion contamination in each voxel. The T2 lesion contamination of the MRS voxels was also used as an estimate of ‘lesion load’ at each exam. The corrected metabolite concentrations were then correlated with clinical measures of the patients’ status, including EDSS and MSSS.

    Results: The axonal marker N-acetyl aspartate (NAA) did not correlate with either EDSS or MSSS. The glial cell markers creatine and myo-inositol correlated positively with EDSS. Creatine and glutamate correlated positively with MSSS. The ‘estimated lesion load’ correlated positively not only with EDSS, but also with the number of bouts since disease onset. Importantly, it did not correlate with MSSS.

    Conclusion: The most interesting findings were the unchanged concentrations of NAA, and the concomitant increase of creatine and myo-inositol during the course of disease progression in MSpatients. These not only indicated a constant axonal density, but also that a simultaneous development of gliosis occurred. These processes are most likely linked to demyelination, as well as development of white matter atrophy, a process in which the demyelinated volume is replaced by the surrounding tissue leading to a net loss of white matter. As a consequence of this process, axons in NAWM are probably damaged, which leads to a higher concentration of glia cells relative to the axonal volume. The positive correlation that was found between MSSS, and the glutamate and creatine concentrations in NAWM, in combination with a complete lack of correlation between lesion load and MSSS, suggests that altered glutamate metabolism, and subsequent demyelination and gliosis, is an important pathophysiological mechanism in MS.

  • 34.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Jarowski, J
    Gustavsson, M
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Gladigau, D
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Östergötlands Läns Landsting, Sinnescentrum, Department of Neurosurgery UHL.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Betainterferon treatment: Absolute quantification of white matter metabolites in patients with multiple sclerosis2008Conference paper (Other academic)
  • 35.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Jaworski, J,
    Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Aalto, Anne
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Grönkvist, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in West Östergötland, Department of Medical Specialist in Motala.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Is Increased normal White Matter Glutamate Concentrations a Precursor of Gliosis and Disease Progression in Multiple Sclerosis?2011In: Internationell Society for Magnetic Resonance in Medicin, 2011, 2011, 4089-4089 p.Conference paper (Refereed)
  • 36.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Johansson, A
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Water-fat shift displacement artifact correction in two-point Dixon imaging2008Conference paper (Other academic)
  • 37.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Johansson, Andreas
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Rydell, Joakim
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Nyström, Fredrik H.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Borga, Magnus
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Quantification of abdominal fat accumulation during hyperalimentation using MRI2009In: Proceedings of the ISMRM Annual Meeting (ISMRM'09), 2009, Berkeley, CA, USA: International Society for Magnetic Resonance in Medicine , 2009, 206- p.Conference paper (Other academic)
    Abstract [en]

    There is an increasing demand for imaging methods that can be used for automatic, accurate and quantitative determination of the amounts of abdominal fat. Such methods are important as they will allow the evaluation of some of the risk factors underlying the ’metabolic syndrome’. The metabolic syndrome is becoming common in large parts of the world, and it appears that a dominant risk factor for developing this syndrome is abdominal obesity. Subjects that are afflicted with the metabolic syndrome are exposed to a high risk for developing a large range of diseases such as type 2 diabetes, cardiac failure, and stroke. The aim of this work

  • 38.
    Dahlqvist Leinhard, Olof
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Warntjes, Marcel
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Whole volume three dimensional B1 mapping in 10 second2008Conference paper (Other academic)
  • 39.
    Dahlström, Nils
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Brismar, Torkel
    Karolinska institutet.
    Sandström, P
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Leverfunktionsundersökning med leverspecifikt MR-kontrastmedel2008Conference paper (Other academic)
  • 40.
    Dahlström, Nils
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Quick, Petter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Forsgren, Mikael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Persson, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Dual-Energy CT Detects Standard-Dose Gd-EOB-DTPA in the Hepatobiliary and Renal Systems of Patients Having Undergone Liver MRI2012Conference paper (Other academic)
  • 41.
    Dahlström, Nils
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Sandström, Per
    Linköping University, Department of Clinical and Experimental Medicine, Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Brismar, Torkel
    Karolinska Huddinge.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Quantified hepatobiliary Gd-EOB-DTPA uptake rate reflects hepatobiliary function in patients2011Conference paper (Refereed)
  • 42.
    Dudman, N. P. B.
    et al.
    Department of Medicine, University of New South Wales, Prince Henry Hospital, Uttle Bay, UK.
    Wilcken, D. E.
    Department of Medicine, University of New South Wales, Prince Henry Hospital, Uttle Bay, UK.
    Wang, J.
    Department of Medicine, University of New South Wales, Prince Henry Hospital, Uttle Bay, UK.
    Lynch, J. F.
    Department of Medicine, University of New South Wales, Prince Henry Hospital, Uttle Bay, UK.
    Macey, D.
    Department of Medicine, University of New South Wales, Prince Henry Hospital, Uttle Bay, UK.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Department of Biochemistry, University of Sydney, Sydney (P.L.), Australia.
    Disordered methionine/homocysteine metabolism in premature vascular disease. Its occurrence, cofactor therapy, and enzymology1993In: Arteriosclerosis, Thrombosis and Vascular Biology, ISSN 1079-5642, E-ISSN 1524-4636, Vol. 13, no 9, 1253-1260 p.Article in journal (Refereed)
    Abstract [en]

    Mild homocysteinemia occurs surprisingly often in patients with premature vascular disease. We studied the possible enzymatic sources of this mild hyperhomocysteinemia and the control of homocysteine levels in plasma by treatment of patients with the cofactors and cosubstrates of homocysteine catabolism. We assessed homocysteine metabolism in 131 patients who had premature disease in their coronary, peripheral, or cerebrovascular circulation by using a standard oral methionine-load test. Impaired homocysteine metabolism occurred in 28 patients. We assayed levels of the primary enzymes of homocysteine catabolism in cultured skin fibroblast extracts from 15 of these 28 patients. The patients' cystathionine beta-synthase levels (3.68 +/- 2.52 nmol/h per milligram of cell protein, mean +/- SD) were markedly depressed compared with those from 31 healthy adult control subjects (7.61 +/- 4.49, P < .001). The patients' levels of 5-methyltetrahydrofolate: homocysteine methyltransferase were normal. While betaine: homocysteine methyltransferase was not expressed in skin fibroblasts, 24-hour urinary betaine and N,N-dimethylglycine measurements were consistent with normal or enhanced remethylation of homocysteine by betaine: homocysteine methyltransferase in the 13 patients tested. When treated daily with choline and betaine, pyridoxine, or folic acid, there was a normalization of the postmethionine plasma homocysteine level in 16 of 19 patients. Our results indicate that mild homocysteinemia in premature vascular disease may be caused by either a folate deficiency or deficiencies in cystathionine beta-synthase activity. It does not necessarily involve deficiencies of either 5-methyltetrahydrofolate:homocysteine methyltransferase or betaine:homocysteine methyltransferase. Effective treatment regimens are also defined.

  • 43.
    Engström, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Bertus Warntjes, Marcel, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping. SyntheticMR AB, Linkoping, Sweden.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in West Östergötland, Department of Medical Specialist in Motala.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Multi-Parametric Representation of Voxel-Based Quantitative Magnetic Resonance Imaging2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 11, e111688- p.Article in journal (Refereed)
    Abstract [en]

    The aim of the study was to explore the possibilities of multi-parametric representations of voxel-wise quantitative MRI data to objectively discriminate pathological cerebral tissue in patients with brain disorders. For this purpose, we recruited 19 patients with Multiple Sclerosis (MS) as benchmark samples and 19 age and gender matched healthy subjects as a reference group. The subjects were examined using quantitative Magnetic Resonance Imaging (MRI) measuring the tissue structure parameters: relaxation rates, R-1 and R-2, and proton density. The resulting parameter images were normalized to a standard template. Tissue structure in MS patients was assessed by voxel-wise comparisons with the reference group and with correlation to a clinical measure, the Expanded Disability Status Scale (EDSS). The results were visualized by conventional geometric representations and also by multi-parametric representations. Data showed that MS patients had lower R-1 and R-2, and higher proton density in periventricular white matter and in wide-spread areas encompassing central and sub-cortical white matter structures. MS-related tissue abnormality was highlighted in posterior white matter whereas EDSS correlation appeared especially in the frontal cortex. The multi-parameter representation highlighted disease-specific features. In conclusion, the proposed method has the potential to visualize both high-probability focal anomalies and diffuse tissue changes. Results from voxel-based statistical analysis, as exemplified in the present work, may guide radiologists where in the image to inspect for signs of disease. Future clinical studies must validate the usability of the method in clinical practice.

  • 44.
    Engström, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Jan Bertus Warntje, Marcel
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Multi-Parametric Representation of Voxel-Based Quantitative Magnetic Resonance Imaging2014Conference paper (Other academic)
    Abstract [en]

    The aim of the study was to explore the possibilities of multi-parametric representations of voxel-wise quantitative MRI data to objectively discriminate pathological cerebral tissue in patients with brain disorders. For this purpose, we recruited 19 patients with Multiple Sclerosis (MS) as benchmark samples and 19 age and gender matched healthy subjects as a reference group. The subjects were examined using quantitative Magnetic Resonance Imaging (MRI) measuring the tissue structure parameters: relaxation rates, R and R, and proton density. The resulting parameter images were normalized to a standard template. Tissue structure in MS patients was assessed by voxel-wise comparisons with the reference group and with correlation to a clinical measure, the Expanded Disability Status Scale (EDSS). The results were visualized by conventional geometric representations and also by multi-parametric representations. Data showed that MS patients had lower R and R, and higher proton density in periventricular white matter and in wide-spread areas encompassing central and sub-cortical white matter structures. MS-related tissue abnormality was highlighted in posterior white matter whereas EDSS correlation appeared especially in the frontal cortex. The multi-parameter representation highlighted disease-specific features. In conclusion, the proposed method has the potential to visualize both high-probability focal anomalies and diffuse tissue changes. Results from voxel-based statistical analysis, as exemplified in the present work, may guide radiologists where in the image to inspect for signs of disease. Future clinical studies must validate the usability of the method in clinical practice.

  • 45.
    Engström, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Karlsson, Marie
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Crone, Marie
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, The Institute of Technology.
    Ragnehed, Mattias
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Antepohl, Wolfram
    Linköping University, Department of Clinical and Experimental Medicine, Rehabilitation Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Rehabilitation Medicine UHL.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in the West of Östergötland, Department of Medical Specialist.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Clinical fMRI of language function in aphasic patients: Reading paradigm successful, while word generation paradigm fails2010In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 51, no 6, 679-686 p.Article in journal (Refereed)
    Abstract [en]

    Background: In fMRI examinations, it is very important to select appropriate paradigms assessing the brain function of interest. In addition, the patients ability to perform the required cognitive tasks during fMRI must be taken into account. Purpose: To evaluate two language paradigms, word generation and sentence reading for their usefulness in examinations of aphasic patients and to make suggestions for improvements of clinical fMRI. Material and Methods: Five patients with aphasia after stroke or trauma sequelae were examined by fMRI. The patients language ability was screened by neurolinguistic tests and elementary pre-fMRI language tests. Results: The sentence-reading paradigm succeeded to elicit adequate language-related activation in perilesional areas whereas the word generation paradigm failed. These findings were consistent with results on the behavioral tests in that all patients showed very poor performance in phonemic fluency, but scored well above mean at a reading comprehension task. Conclusion: The sentence-reading paradigm is appropriate to assess language function in this patient group, while the word-generation paradigm seems to be inadequate. In addition, it is crucial to use elementary pre-fMRI language tests to guide the fMRI paradigm decision.

  • 46.
    Engström, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Pihlsgård, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Axelsson Söderfeldt, Birgitta
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Functional Magnetic Resonance Imaging of Hippocampal Activation During Silent Mantra Meditation2010In: Journal of Alternative and Complementary Medicine, ISSN 1075-5535, E-ISSN 1557-7708, Vol. 16, no 12, 1253-1258 p.Article in journal (Refereed)
    Abstract [en]

    Objectives: The objective of the present study was to investigate whether moderately experienced meditators activate hippocampus and the prefrontal cortex during silent mantra meditation, as has been observed in earlier studies on subjects with several years of practice. Methods: Subjects with less than 2 years of meditation practice according to the Kundalini yoga or Acem tradition were examined by functional magnetic resonance imaging during silent mantra meditation, using an on-off block design. Whole-brain as well as region-of-interest analyses were performed. Results: The most significant activation was found in the bilateral hippocampus/parahippocampal formations. Other areas with significant activation were the bilateral middle cingulate cortex and the bilateral precentral cortex. No activation in the anterior cingulate cortex was found, and only small activation clusters were observed in the prefrontal cortex. Conclusions: In conclusion, the main finding in this study was the significant activation in the hippocampi, which also has been correlated with meditation in several previous studies on very experienced meditators. We propose that the hippocampus is activated already after moderate meditation practice and also during different modes of meditation, including relaxation. The role of hippocampal activity during meditation should be further clarified in future studies, especially by investigating whether the meditation-correlated hippocampal activity is related to memory consolidation.

  • 47.
    Engström, Maria
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Ragnehed, Mattias
    Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    On the Advantage of Data Driven Analysis in Aphasic Patients with Severe Language Latncy2010Conference paper (Other academic)
  • 48.
    Engström, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Ragnehed, Mattias
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Projection screen or video goggles as stimulus modality in functional magnetic resonance imaging2005In: Magnetic Resonance Imaging, ISSN 0730-725X, E-ISSN 1873-5894, Vol. 23, no 5, 695-699 p.Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to investigate the reliability of functional magnetic resonance imaging (fMRI) by using either a projection screen or video goggles as stimulus modality. A sequence of visual stimuli were presented to the same subject at different occasions. The sequence was optimized with a genetic algorithm. In five sessions the stimuli were presented using a projection screen viewed through a mirror in the head coil and in five sessions using video goggles. Failure to detect visual activation in the medial left hemisphere was observed in sessions using the projection screen as stimulus modality. Decreased thresholds for P values and cluster size resulted in activation outside the occipital lobe and did not significantly increase activated areas in this region. Results in this study indicate that presentation of fMRI tasks with visual routes is more reliable with direct input through video goggles than with the conventional use of projection screens. Failure to detect crucial visual areas has severe consequences for tumor surgery in the visual cortex. Inferior visual impression might also have negative consequences for cognitive tests with high demand on attention and perception.

  • 49.
    Engström, Maria
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ragnehed, Mattias
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Axelsson Söderfeldt, Birgitta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurology. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Paradigm design of sensory–motor and language tests in clinical fMRI2004In: Neurophysiologie clinique, ISSN 0987-7053, E-ISSN 1769-7131, Vol. 34, no 6, 267-277 p.Article in journal (Refereed)
    Abstract [en]

    Functional magnetic resonance imaging (fMRI) paradigms on sensory–motor and language functions are reviewed from a clinical user’s perspective. The objective was to identify special requirements regarding the design of fMRI paradigms for clinical applications. A wide range of methods for setting up fMRI examinations were found in the literature. It was concluded that there is a need for standardised procedures adapted for clinical settings. Sensory–motor activation patterns do not vary much at different hand motion tasks. Nevertheless it is one of the most important clinical tests. In contrast, the language system is much more complex. In several studies it has been observed that word production tasks are preferable in determination of language lateralisation. Broca’s area is activated by most tasks, whereas sentence processing and semantic decision also involve activation in temporoparietal and frontal areas. However, combined task analysis (CTA) of several different tasks has been found to be more robust and reliable for clinical fMRI compared to separate task analysis.

  • 50.
    Engström, Maria
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Karlsson, T
    Vigren, P
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Östergötlands Läns Landsting, Sinnescentrum, Department of Neurosurgery UHL. Linköping University, Faculty of Health Sciences.
    Kleine-Levin Syndrom (KLS) – A bipolar disorder?2009Conference paper (Other academic)
12345 1 - 50 of 249
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf