liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 60
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Appelqvist, Hanna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Johansson, Ann-Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Linderoth, Emma
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Antonsson, Bruno
    Geneva Research Centre, Switzerland .
    Steinfeld, Robert
    University of Medical Centre Gottingen, Germany .
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Lysosome-Mediated Apoptosis is Associated with Cathepsin D-Specific Processing of Bid at Phe24,Trp48, and Phe1832012In: Annals of Clinical and Laboratory Science, ISSN 0091-7370, E-ISSN 1550-8080, Vol. 42, no 3, p. 231-242Article in journal (Refereed)
    Abstract [en]

    Bax-mediated permeabilization of the outer mitochondrial membrane and release of apoptogenic factors into the cytosol are key events that occur during apoptosis. Likewise, apoptosis is associated with permeabilization of the lysosomal membrane and release of lysosomal cathepsins into the cytosol. This report identifies proteolytically active cathepsin D as an important component of apoptotic signaling following lysosomal membrane permeabilization in fibroblasts. Lysosome-mediated cell death is associated with degradation of Bax sequestering 14-3-3 proteins, cleavage of the Box activator Bid, and translocation of Box to mitochondria, all of which were cathepsin D-dependent. Processing of Bid could be reproduced by enforced lysosomal membrane permeabilization, using the lysosomotropic detergent O-methyl-serine dodecylamine hydrochloride (MSDH). We identified three cathepsin D-specific cleavage sites in Bid, Phe24, Trp48, and Phe183. Cathepsin D-cleaved Bid induced Bax-mediated release of cytochrome c from purified mitochondria, indicating that the fragments generated are functionally active. Moreover, apoptosis was associated with cytosolic acidification, thereby providing a more favorable environment for the cathepsin D-mediated cleavage of Bid. Our study suggests that cytosolic cathepsin D triggers Bax-mediated cytochrome c release by proteolytic activation of Bid.

  • 2.
    Appelqvist, Hanna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Nilsson, Cathrine
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Garner, Brett
    University of Wollongong.
    Brown, Andrew J
    University of New South Wales.
    Kågedal, Katarina
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Attenuation of the Lysosomal Death Pathway by Lysosomal Cholesterol Accumulation2011In: American Journal of Pathology, ISSN 0002-9440, E-ISSN 1525-2191, Vol. 178, no 2, p. 629-639Article in journal (Refereed)
    Abstract [en]

    In the past decade, lysosomal membrane permeabilization (LMP) has emerged as a significant component of cell death signaling. The mechanisms by which lysosomal stability is regulated are not yet fully understood, but changes in the lysosomal membrane lipid composition have been suggested to be involved. Our aim was to investigate the importance of cholesterol in the regulation of lysosomal membrane permeability and its potential impact on apoptosis. Treatment of normal human fibroblasts with U18666A, an amphiphilic drug that inhibits cholesterol transport and causes accumulation of cholesterol in lysosomes, rescued cells from lysosome-dependent cell death induced by the lysosomotropic detergent 0-methyl-serine dodecylamide hydrochloride (MSDH), staurosporine (STS), or cisplatin. LMP was decreased by pretreating cells with U18666A, and there was a linear relationship between the cholesterol content of lysosomes and their resistance to permeabilization induced by MSDH. U18666A did not induce changes in expression or localization of 70-kDa heat shock proteins (Hsp70) or antiapoptotic Bcl-2 proteins known to protect the lysosomal membrane. Induction of autophagy also was excluded as a contributor to the protective mechanism. By using Chinese hamster ovary (CHO) cells with lysosomal cholesterol overload due to a mutation in the cholesterol transporting protein Niemann-Pick type C1 (NPC1), the relationship between lysosomal cholesterol accumulation and protection from lysosome-dependent cell death was confirmed. Cholesterol accumulation in lysosomes attenuates apoptosis by increasing lysosomal membrane stability.

  • 3.
    Appelqvist, Hanna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Sandin, Linnea
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Björnström, Karin
    Linköping University, Department of Medical and Health Sciences, Anesthesiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Intensive Care.
    Saftig, Paul
    Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany.
    Garner, Brett
    Illawarra Health and Medical Research Institute, University of Wollongong, Australia.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Kågedal, Katarina
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Sensitivity to Lysosome-Dependent Cell Death is Directly Regulated by Lysosomal Cholesterol Content2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 11Article in journal (Refereed)
    Abstract [en]

    Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1) protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2), which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determined the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

  • 4.
    Appelqvist, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Wäster, Petra
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Eriksson, Ida
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Rosdahl, Inger
    Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Dermatology and Venerology.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Lysosomal exocytosis and caspase-8-mediated apoptosis in UVA-irradiated keratinocytes2013In: Journal of Cell Science, ISSN 0021-9533, E-ISSN 1477-9137, Vol. 126, no 24, p. 5578-5584Article in journal (Refereed)
    Abstract [en]

    Ultraviolet (UV) irradiation is a major environmental carcinogen involved in the development of skin cancer. To elucidate the initial signaling during UV-induced damage in human keratinocytes, we investigated lysosomal exocytosis and apoptosis induction. UVA, but not UVB, induced plasma membrane damage, which was repaired by Ca2+-dependent lysosomal exocytosis. The lysosomal exocytosis resulted in extracellular release of cathepsin D and acid sphingomyelinase (aSMase). Two hours after UVA irradiation, we detected activation of caspase-8, which was reduced by addition of anti-aSMAse. Furthermore, caspase-8 activation and apoptosis was reduced by prevention of endocytosis and by the use of cathepsin inhibitors. We conclude that lysosomal exocytosis is part of the keratinocyte response to UVA and is followed by cathepsin-dependent activation of caspase-8. The findings have implications for the understanding of UV-induced skin damage and emphasize that UVA and UVB initiate apoptosis through different signaling pathways in keratinocytes.

  • 5.
    Appelqvist, Hanna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Wäster, Petra
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    The lysosome: from waste bag to potential therapeutic target2013In: Journal of Molecular Cell Biology, ISSN 1674-2788, E-ISSN 1759-4685, Vol. 5, no 4, p. 214-226Article, review/survey (Refereed)
    Abstract [en]

    Lysosomes are ubiquitous membrane-bound intracellular organelles with an acidic interior. They are central for degradation and recycling of macromolecules delivered by endocytosis, phagocytosis, and autophagy. In contrast to the rather simplified view of lysosomes as waste bags, nowadays lysosomes are recognized as advanced organelles involved in many cellular processes and are considered crucial regulators of cell homeostasis. The function of lysosomes is critically dependent on soluble lysosomal hydrolases (e.g. cathepsins) as well as lysosomal membrane proteins (e.g. lysosome-associated membrane proteins). This review focuses on lysosomal involvement in digestion of intra- and extracellular material, plasma membrane repair, cholesterol homeostasis, and cell death. Regulation of lysosomal biogenesis and function via the transcription factor EB (TFEB) will also be discussed. In addition, lysosomal contribution to diseases, including lysosomal storage disorders, neurodegenerative disorders, cancer, and cardiovascular diseases, is presented.

  • 6.
    Bivik, Cecilia
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Rosdahl, Inger
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Hsp70 protects against UVB induced apoptosis by preventing release of cathepsins and cytochrome c in human melanocytes2007In: Carcinogenesis, ISSN 0143-3334, E-ISSN 1460-2180, Vol. 28, no 3, p. 537-544Article in journal (Refereed)
    Abstract [en]

    Stress-induced heat shock protein 70 (Hsp70) effectively protects cells against apoptosis, although the anti-apoptotic mechanism is still undefined. Exposure of human melanocytes to heat and subsequent UVB irradiation increased the level of Hsp70 and pre-heating reduced UVB induced apoptosis. Immunofluorescence staining of Hsp70 in combination with staining of lysosomes (Lamp2) or mitochondria (Mitotracker®) in pre-heated UVB exposed cells showed co-localization of Hsp70 with both lysosomes and mitochondria in the surviving cell population. Furthermore, UVB induced apoptosis was accompanied by lysosomal and mitochondrial membrane permeabilization, detected as release of cathepsin D and cytochrome c, respectively, which were prevented by heat pre-treatment. In purified fractions of lysosomes and mitochondria, recombinant Hsp70 attached to both lysosomal and mitochondrial membranes. Moreover, in apoptotic cells Bax was translocated from a diffuse cytosolic location into punctate mitochondrial-like structures, which was inhibited by Hsp70 induction. Such inhibition of Bax translocation was abolished by transfection with Hsp70 siRNA. Furthermore, Hsp70 siRNA eliminated the apoptosis preventive effect observed after pre-heating. These findings show Hsp70 to rescue melanocytes from UVB induced apoptosis by preventing release of cathepsins from lysosomes, Bax translocation and cytochrome c release from mitochondria.

     

    Abbreviations: AIF, apoptosis-inducing factor; Hsp, heat shock protein; NAG, ß-N-acetylglucosaminidase; tBid, truncated Bid; UV, ultraviolet

  • 7.
    Bivik, Cecilia
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Wäster, Petra
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Rosdahl, Inger
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    UVA/B induced apoptosis in human melanocytes involves translocation of cathepsins and Bcl-2 family members2006In: Journal of Investigative Dermatology, ISSN 0022-202X, Vol. 126, no 5, p. 1119-1127Article in journal (Refereed)
    Abstract [en]

    We demonstrate UVA/B to induce apoptosis in human melanocytes through the mitochondrial pathway, displaying cytochrome c release, caspase-3 activation, and fragmentation of nuclei. The outcome of a death signal depends on the balance between positive and negative apoptotic regulators, such as members of the Bcl-2 protein family. Apoptotic melanocytes, containing fragmented nucleus, show translocation of the proapoptotic proteins Bax and Bid from the cytosol to punctate mitochondrial-like structures. Bcl-2, generally thought to be attached only to membranes, was in melanocytes localized in the cytosol as well. In the fraction of surviving melanocytes, that is, cells with morphologically unchanged nucleus, the antiapoptotic proteins Bcl-2 and Bcl-XL were translocated to mitochondria following UVA/B. The lysosomal proteases, cathepsin B and D, which may act as proapoptotic mediators, were released from lysosomes to the cytosol after UVA/B exposure. Proapoptotic action of the cytosolic cathepsins was confirmed by microinjection of cathepsin B, which induced nuclear fragmentation. Bax translocation and apoptosis were markedly reduced in melanocytes after pretreatment with either cysteine or aspartic cathepsin inhibitors. No initial caspase-8 activity was detected, excluding involvement of the death receptor pathway. Altogether, our results emphasize translocation of Bcl-2 family proteins to have central regulatory functions of UV-induced apoptosis in melanocytes and suggest cathepsins to be proapoptotic mediators operating upstream of Bax.

  • 8.
    Bivik, Cecilia
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    JNK mediates UVB-induced apoptosis upstream lysosomal membrane permeabilization and Bcl-2 family proteins2008In: Apoptosis (London), ISSN 1360-8185, E-ISSN 1573-675X, Vol. 13, no 9, p. 1111-1120Article in journal (Refereed)
    Abstract [en]

    UVB irradiation induced phosphorylation of JNK and subsequent apoptosis in human melanocytes. Depletion of both JNK1 and JNK2 expression using siRNA transfection, protected against apoptosis, as detected by decreased nuclear fragmentation and caspase-3 activity, as well as reduced translocation of Bax to mitochondria. Moreover, release of cathepsin B and D from lysosomes to the cytosol was reduced when JNK expression was suppressed by siRNA, demonstrating a JNK dependent regulation of lysosomal membrane permeabilization. In unirradiated control melanocytes, coimmunoprecipitation showed that Bim was sequestered by Mcl-1, which had a pro-survival function. After UVB irradiation, a significant decrease in Mcl-1 protein level was found, which was prevented by addition of a proteasome inhibitor. The interaction between Bim and Mcl-1 was reduced in response to UVB irradiation and Bim was phosphorylated in a JNK dependent manner. In conclusion, these findings Suggest JNK to have an important pro-apoptotic function following UVB irradiation in human melanocytes, by acting upstream of lysosomal membrane permeabilization and Bim phosphorylation.

  • 9.
    Bivik Eding, Cecilia
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Domer, Jakob
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Wäster, Petra
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Jerhammar, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Rosdahl, Inger
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Melanoma Growth and Progression After Ultraviolet A Irradiation: Impact of Lysosomal Exocytosis and Cathepsin Proteases2015In: Acta Dermato-Venereologica, ISSN 0001-5555, E-ISSN 1651-2057, Vol. 95, no 7, p. 792-797Article in journal (Refereed)
    Abstract [en]

    Ultraviolet (UV) irradiation is a risk factor for development of malignant melanoma. UVA-induced lysosomal exocytosis and subsequent cell growth enhancement was studied in malignant melanoma cell lines and human skin melanocytes. UVA irradiation caused plasma membrane damage that was rapidly repaired by calcium-dependent lysosomal exocytosis. Lysosomal content was released into the culture medium directly after irradiation and such conditioned media stimulated the growth of non-irradiated cell cultures. By comparing melanocytes and melanoma cells, it was found that only the melanoma cells spontaneously secreted cathepsins into the surrounding medium. Melanoma cells from a primary tumour showed pronounced invasion ability, which was prevented by addition of inhibitors of cathepsins B, D and L. Proliferation was reduced by cathepsin L inhibition in all melanoma cell lines, but did not affect melanocyte growth. In conclusion, UVA-induced release of cathepsins outside cells may be an important factor that promotes melanoma growth and progression.

  • 10.
    Dabrosin, Charlotta
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Oncology. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Oncology UHL.
    Johansson, Ann-Charlotte
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology.
    Öllinger, Karin
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Decreased secretion of Cathepsin D in breast cancer in vivo by tamoxifen: Mediated by the mannose-6-phosphate/IGF-II receptor?2004In: Breast Cancer Research and Treatment, ISSN 0167-6806, E-ISSN 1573-7217, Vol. 85, no 3, p. 229-238Article in journal (Refereed)
    Abstract [en]

    The lysosomal protease Catliepsin D (Cath D) is associated with increased invasiveness and metastasis in breast cancer. Both estrogen and tamoxifen have been reported to increase Cath D, which seems to contradict the efficacy of tamoxifen as an adjuvant for estrogen dependent breast cancer. Cath D is bioactive in the extracellular space but very little is known about hormonal regulation of secreted Cath D in vivo. In this study we used microdialysis to sample the extracellular fluid in estrogen receptor positive MCF-7 tumors in nude mice. We show that tamoxifen in combination with estradiol decreased secreted Cath D compared with estradiol treatment only in solid tumors in situ. Cell culture of MCF-7 cells revealed that estradiol and tamoxifen increased intracellular proteolytic activity of Cath D in a similar fashion whereas secretion of Cath D was increased by estradiol and inhibited by tamoxifen. Immunofluorescence showed that estradiol located Cath D to the cell surface, while tamoxifen accumulated Cath D to dense lysosomes in perinuclear regions. Moreover, tamoxifen increased the intracellular transporter of Cath D, the mannose 6-phosphate/IGF-II receptor (M6P/IGF2R). In contrast, estradiol decreased the levels of this receptor. Thus, secretion of Cath D is hormone dependent and may be mediated by altered expression of the M6P/IGF2R. Our results highlight the importance of measurements of proteins in all compartments where they are biological active and show that microdialysis is a viable technique for sampling of Cath D in vivo.

  • 11.
    Dabrosin, Charlotta
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Oncology. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Oncology UHL.
    Öllinger, Karin
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Variability of glutathione during the menstrual cycle - Due to estrogen effects on hepatocytes?2004In: Free Radical Biology & Medicine, ISSN 0891-5849, E-ISSN 1873-4596, Vol. 36, no 2, p. 145-151Article in journal (Refereed)
    Abstract [en]

    Oxidative stress and alterations in the antioxidative defense system may be involved in carcinogenesis. We have previously shown that the levels of glutathione (GSH) in vivo in both breast tissue and subcutaneous fat were higher in the luteal phase compared with the follicular phase, suggesting an overall increase in GSH. This result was confirmed in the present study. Moreover, we exposed normal breast tissue in vivo, breast epithelial cells in vitro, and hepatocytes in culture to ovarian hormones. We found that local perfusion with estradiol, using microdialysis, in normal human breast tissue did not alter the local GSH levels in vivo. In vitro, treatment with estradiol and progesterone of normal human breast epithelial cells did not alter GSH levels. However, levels of GSH in hepatocytes were after 8 h estradiol exposure initially decreased, 76.6 ± 5% of control cells, p < .05, whereas 20 h exposure more than doubled GSH, 209 ± 26% compared with control cells, p < .01. Progesterone had no additional effect. Exposure of hepatocytes to estradiol increased the cellular content of γ-glutamylcysteine synthetase, the rate-limiting enzyme in GSH synthesis. In conclusion we suggest that estradiol affects the GSH homeostasis mainly by effects on hepatocytes, whereas local production in the breast is unaffected by estradiol.

  • 12.
    Eriksson, Ida
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Joosten, M.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    The histone deacetylase inhibitor trichostatin A reduces lysosomal pH and enhances cisplatin-induced apoptosis2013In: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 319, no 1, p. 12-20Article in journal (Refereed)
    Abstract [en]

    High activity of histone deacetylases (HDACs) has been documented in several types of cancer and may be associated with survival advantage. In a head and neck squamous cell carcinoma cell line, cisplatin-induced apoptosis was augmented by pretreatment with the HDAC inhibitor trichostatin Apoptosis was accompanied by lysosomal membrane permeabilization (LMP), as shown by immunoblotting of the lysosomal marker protease cathepsin B in extracted cytosol and by immunofluorescence. Moreover, LAMP-2 (lysosomal associated membrane protein-2) was translocated from lysosomal membranes and found in a digitonin extractable fraction together with cytosolic proteins and pretreatment with trichostatin A potentiated the release. Overall, protein level of LAMP-2 was decreased during cell death and, interestingly, inhibition of cysteine cathepsins, by the pan-cysteine cathepsin inhibitor zFA-FMK, prevented loss of LAMP-2. The importance of LAMP-2 for lysosomal membrane stability, was confirmed by showing that LAMP-2 knockout MEFs (mouse embryonic fibroblasts) were more sensitive to cisplatin as compared to the corresponding wildtype cells. Trichostatin A reduced lysosomal pH from 4.46 to 4.25 and cell death was prevented when lysosomal pH was increased by NH4Cl, or when inhibiting the activity of lysosomal proteases. We conclude that trichostatin A enhances cisplatin induced cell death by decreasing lysosomal pH, which augments cathepsin activity resulting in reduced LAMP-2 level, and might promote LMP.

  • 13.
    Eriksson, Ida
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Nath, Sangeeta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Bornefall, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Villamil Giraldo, Ana Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Impact of high cholesterol in a Parkinsons disease model: Prevention of lysosomal leakage versus stimulation of alpha-synuclein aggregation2017In: European Journal of Cell Biology, ISSN 0171-9335, E-ISSN 1618-1298, Vol. 96, no 2, p. 99-109Article in journal (Refereed)
    Abstract [en]

    Parkinsons disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated alpha-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), we found that MPP+-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of alpha-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP+-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect alpha-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinsons disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of alpha-synuclein accumulation. (C) 2017 Elsevier GmbH. All rights reserved.

  • 14.
    Eriksson, Ida
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Analysis of Lysosomal pH by Flow Cytometry Using FITC-Dextran Loaded Cells2017In: Lysosomes: Methods and Protocols / [ed] Karin Öllinger;Hanna Appelqvist, Humana Press, 2017, Vol. 1594, p. 179-189Chapter in book (Refereed)
    Abstract [en]

    The acidic environment of the lysosomal lumen provides an optimal milieu for the acid hydrolases and is also essential for fusion/fission of endo-lysosomal compartments and sorting of cargo. Evidence suggests that maintaining lysosomal acidity is essential to avoid disease. In this chapter, we describe a protocol for analyzing the lysosomal pH in cultured cells using the fluorescent probe fluorescein isothiocyanate (FITC)-dextran together with a dual-emission ratiometric technique suitable for flow cytometry. Fluorescence-labeled dextran is endocytosed and accumulated in the lysosomal compartment. FITC shows a pH-dependent variation in fluorescence when analyzed at maximum emission wavelength and no variation when analyzing at the isosbestic point, thereby the ratio can be used to determine the lysosomal pH. A standard curve is obtained by equilibrating intralysosomal pH with extracellular pH using the ionophore nigericin. The protocol also includes information regarding procedures to induce lysosomal alkalinization and lysosomal membrane permeabilization.

  • 15.
    Garvin, Stina
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Oncology.
    Öllinger, Karin
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Dabrosin, Charlotta
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Oncology. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Oncology UHL.
    Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo2006In: Cancer Letters, ISSN 0304-3835, E-ISSN 1872-7980, Vol. 231, no 1, p. 113-122Article in journal (Refereed)
    Abstract [en]

    Resveratrol, a polyphenol found in grapes and wine, is considered a potential cancer chemopreventive agent. Resveratrol has been shown to induce transcription via both ERα and ERβ. We observed significantly lower tumor growth, decreased angiogenesis, and increased apoptotic index in ERα- ERβ+ MDA-MB-231 tumors in resveratrol-treated nude mice compared with controls. In vitro we found a significant increase in apoptosis in resveratrol-treated MDA-MB-231 cells in addition to significantly reduced extracellular levels of VEGF. This study supports the potential use of resveratrol as a chemotherapeutic agent in breast cancers. © 2005 Elsevier Ireland Ltd. All rights reserved.

  • 16.
    Gati, Istvan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences.
    Danielsson, Olof
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences.
    Betmark, T.
    Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Dizdar (Dizdar Segrell), Nil
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Culturing of diagnostic muscle biopsies as spheroid-like structures: a pilot study of morphology and viability2010In: Neurological Research, ISSN 0161-6412, E-ISSN 1743-1328, Vol. 32, no 6, p. 650-655Article in journal (Refereed)
    Abstract [en]

    Objective: The aim of this study was to establish three-dimensional cultures originating from muscle biopsies and evaluate the viability and morphology. Method: Muscle biopsies from patients with suspected neuromuscular disorders were obtained and established as primary muscle tissue cultures. Tissue pieces, 1-2 mm of diameters, were placed in culture medium and subjected to sporadic stirring to prevent attachment and outgrowth as monolayer cells. Morphology and ability to attach to the surface were investigated by light microscopy. Viability was evaluated by Tc-99m-tetrofosmin uptake. After 1 month, histology was evaluated by light microscopy and immunocytochemistry. The findings of a healthy muscle and a dystrophic muscle were compared. Results: Initially, the tissue pieces were unshaped but formed spheroid-like structures during the culture period. For dystrophic muscle, attachment capacity to the surface was initially potent and decreased during the culture period, whereas control muscle showed weak attachment from the start that increased during the culture period. The uptake of Tc-99m-tetrofosmin increased in control muscle, while it decreased in dystrophic muscle, during the culture period. The histological investigation demonstrated larger destruction of myofiber, weaker satellite cell activation and reduced myofiber regeneration in the dystrophic muscle as compared to the control muscle. Conclusion: The cellular components of the muscle tissue can survive and proliferate as spheroid-like primary cultures. The cellular composition resembles the in vivo condition, which allows studies of degeneration of the original fibers, and activation and proliferation of the satellite cells. The culture system may provide better understanding of the degeneration and regeneration processes in different muscle disorders and allow investigations of pharmacological interventions.

  • 17.
    Gati, Istvan
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Danielsson, Olof
    Linköping University, Department of Neuroscience and Locomotion, Neurology. Linköping University, Faculty of Health Sciences.
    Betmark, T
    Ernerudh, Jan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Molecular and Clinical Medicine, Clinical Immunology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Immunology and Transfusion Medicine.
    Öllinger, Karin
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Dizdar Segrell, Nil
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Neurology. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Effects of inhibitors of the arachidonic acid cascade on primary muscle culture from a Duchenne muscular dystrophy patient2007In: Prostaglandins, Leukotrienes and Essential Fatty Acids, ISSN 0952-3278, E-ISSN 1532-2823, Vol. 77, no 3-4, p. 217-223Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to elucidate the mechanisms of action for potential targets of therapeutic intervention related to the arachidonic acid cascade in muscular dystrophy. Primary cultures from a Duchenne patient were used to study the expression of dystrophin-1, utrophin, desmin, neonatal myosin heavy chain (MHCn) and Bcl-2 during inhibition of phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX). Hypo-osmotic treatment was applied in order to trigger Ca2+ influx and PLA2 activity. Inhibition of PLA2 and LOX with prednisolone and nordihydroguaiaretic acid (NDGA) caused a semi-quantitative increase of utrophin and Bcl-2-, and a dose-dependent, quantitative increase of desmin expression, an effect that was augmented by hypo-osmotic treatment. Our results indicate that LOX inhibitors, similarly to corticosteroids, can be beneficial in the treatment of muscular dystrophies. © 2007 Elsevier Ltd. All rights reserved.

  • 18.
    Gréen,, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Lönn, Anita
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Holmgren Peterson, Kajsa
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Rundquist, Ingemar
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Translocation of Histone H1 Subtypes Between Chromatin and Cytoplasm During Mitosis in Normal Human Fibroblasts2010In: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 77A, no 5, p. 478-484Article in journal (Refereed)
    Abstract [en]

    Histone H1 is an important constituent of chromatin which undergoes major structural rearrangements during mitosis. However, the role of H1, multiple H1 subtypes and H1 phosphorylation is still unclear. In normal human fibroblasts, phosphorylated H1 was found located in nuclei during prophase and in both cytoplasm and condensed chromosomes during metaphase, anaphase and telophase as detected by immunocytochemistry. Moreover, we detected remarkable differences in the distribution of the histone H1 subtypes H1.2, H1.3 and H1.5 during mitosis. H1.2 was found in chromatin during prophase, and almost solely in the cytoplasm of metaphase and early anaphase cells. In late anaphase it appeared in both chromatin and cytoplasm, and again in chromatin during telophase. H1.5 distribution pattern resembled that of H1.2, but some H1.5 remained situated in chromatin during metaphase and early anaphase. H1.3 was detected in chromatin in all cell cycle phases. We propose therefore, that H1 subtype translocation during mitosis is controlled by phosphorylation, in combination with H1 subtype inherent affinity. We conclude that H1 subtypes, or their phosphorylated variants, may be signalling molecules in mitosis or that they leave chromatin in a regulated way to give access for chromatin condensing factors or transcriptional regulators during mitosis.

  • 19.
    Johansson, Ann-Charlotte
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Appelqvist, Hanna
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Nilsson, Cathrine
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Kågedal, Katarina
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of ENT - Head and Neck Surgery UHL.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Regulation of apoptosis-associated lysosomal membrane permeabilization2010In: APOPTOSIS, ISSN 1360-8185, Vol. 15, no 5, p. 527-540Article in journal (Refereed)
    Abstract [en]

    Lysosomal membrane permeabilization (LMP) occurs in response to a large variety of cell death stimuli causing release of cathepsins from the lysosomal lumen into the cytosol where they participate in apoptosis signaling. In some settings, apoptosis induction is dependent on an early release of cathepsins, while under other circumstances LMP occurs late in the cell death process and contributes to amplification of the death signal. The mechanism underlying LMP is still incompletely understood; however, a growing body of evidence suggests that LMP may be governed by several distinct mechanisms that are likely engaged in a death stimulus- and cell-type-dependent fashion. In this review, factors contributing to permeabilization of the lysosomal membrane including reactive oxygen species, lysosomal membrane lipid composition, proteases, p53, and Bcl-2 family proteins, are described. Potential mechanisms to safeguard lysosomal integrity and confer resistance to lysosome-dependent cell death are also discussed.

  • 20.
    Johansson, Ann-Charlotte
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Mild, Hanna
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Nilsson, Cathrine
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Antonsson, Bruno
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Cathepsin D-mediated processing of Bid at Phe24, Trp48, and Phe1832008In: International Journal of Experimental PathologyArticle in journal (Refereed)
  • 21.
    Johansson, Ann-Charlotte
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Steen, Håkan
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of ENT - Head and Neck Surgery UHL.
    Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine2003In: Cell Death and Differentiation, ISSN 1350-9047, Vol. 10, no 11, p. 1253-1259Article in journal (Refereed)
    Abstract [en]

    There is increasing evidence that proteases other than caspases, for example, the lysosomal cathepsins B, D and L, are involved in apoptotic cell death. In the present study, we present data that suggest a role for cathepsin D in staurosporine-induced apoptosis in human foreskin fibroblasts. Cathepsin D and cytochrome c were detected partially released to the cytosol after exposure to 0.1 µM staurosporine for 1 h. After 4 h, activation of caspase-9 and -3 was initiated and later caspase-8 activation and a decrease in full-length Bid were detected. Pretreatment of cells with the cathepsin D inhibitor, pepstatin A, prevented cytochrome c release and caspase activation, and delayed cell death. These results imply that cytosolic cathepsin D is a key mediator in staurosporine-induced apoptosis. Analysis of the relative sequence of apoptotic events indicates that, in this cell type, cathepsin D acts upstream of cytochrome c release and caspase activation.

  • 22.
    Kishwar, Sultana
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Siddique, M.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Israr, Muhammad Qadir
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells2014In: Laser Physics Letters, ISSN 1612-2011, E-ISSN 1612-202X, Vol. 11, no 11, article id 115606Article in journal (Refereed)
    Abstract [en]

    Photo-cytotoxicity of zinc oxide (ZnO) nanowires (NWs) either bare or conjugated with photosensitizers was studied in dark and after ultraviolet light exposure, in human melanoma and foreskin fibroblast cells. ZnO NWs were grown on the capillary tip and then coated with photosensitizer. This coated tip was used as pointer for intracellular insertion of ZnO NWs and photosensitizer. ZnO NWs pointer was inserted into a specific cell and then irradiated with ultraviolet (UVA), which led to loss of mitochondrial membrane potential, as estimated by loss of the Mitotracker Red staining. Dissolved ZnO NWs showed cytotoxicity as detected by MTT viability assay and morphological evaluation. UVA-irradiation enhanced the toxicity and caused the production of reactive oxygen species (ROS) resulting in cell necrosis. ZnO NWs were photo-toxic for both normal and cancer cells, questioning their bio-safety.

  • 23.
    Klionsky, Daniel J.
    et al.
    University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI, USA; University of Michigan, Life Sciences Institute, Ann Arbor, MI, USA .
    Boman, Andrea
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Kurz, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Mohseni, Simin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Zughaier, Susu M.
    Emory University, School of Medicine, Department of Microbiology and Immunology, Atlanta, GA, USA.
    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)2016In: Autophagy, ISSN 1554-8627, E-ISSN 1554-8635, Vol. 2, no 1, p. 1-222Article, review/survey (Refereed)
  • 24.
    Kågedal, Katarina
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Bironaite, D
    Öllinger, Karin
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Anthraquinone toxicity and apoptosis in primary cultures of rat hepatocytes.1999In: Free radical research, ISSN 1071-5762, E-ISSN 1029-2470, Vol. 31, p. 419-428Article in journal (Refereed)
  • 25.
    Kågedal, Katarina
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Johansson, Ann-Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Heimlich, Gerd
    Institute for Medical Microbiology, Immunology and Hygiene, University of Köln, Köln, Germany.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences.
    Wang, Nancy S.
    Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
    Jürgensmeier, Juliane M.
    Institute for Medical Microbiology, Immunology and Hygiene, University of Köln, Köln, Germany.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Lysosomal membrane permeabilization during apoptosis: Involvement of Bax?2005In: International journal of experimental pathology (Print), ISSN 0959-9673, E-ISSN 1365-2613, Vol. 86, no 5, p. 309-321Article in journal (Refereed)
    Abstract [en]

    Bcl-2 family members have long been known to control permeabilization of the mitochondrial membrane during apoptosis, but involvement of these proteins in lysosomal membrane permeabilization (LMP) was not considered until recently. The aim of this study was to investigate the mechanism underlying the release of lysosomal proteases to the cytosol seen during apoptosis, with special emphasis on the role of Bax. In human fibroblasts, exposed to the apoptosis-inducing drug staurosporine (STS), the release of the lysosomal protease cathepsin D to the cytosol was observed by immunocytochemistry. In response to STS treatment, there was a shift in Bax immunostaining from a diffuse to a punctate pattern. Confocal microscopy showed co-localization of Bax with both lysosomes and mitochondria in dying cells. Presence of Bax at the lysosomal membrane was confirmed by immuno-electron microscopy. Furthermore, when recombinant Bax was incubated with pure lysosomal fractions, Bax inserted into the lysosomal membrane and induced the release of lysosomal enzymes. Thus, we suggest that Bax is a mediator of LMP, possibly promoting the release of lysosomal enzymes to the cytosol during apoptosis.

  • 26.
    Kågedal, Katarina
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress2001In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 15, no 7, p. 1592-1594Article in journal (Refereed)
    Abstract [en]

    No abstract available.

  • 27.
    Larsson (Wäster), Petra
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Andersson, Eva
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Rosdahl, Inger
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Ultraviolet A and B affect human melanocytes and keratinocytes differently. A study of oxidative alterations and apoptosis2005In: Experimental Dermatology, ISSN 0906-6705, Vol. 14, no 2, p. 117-123Article in journal (Refereed)
    Abstract [en]

    Ultraviolet (UV) radiation is an etiologic agent for malignant melanoma and non-melanoma skin cancer, but the spectral range responsible for tumor induction is still to be elucidated. In this study, we compared effects of UVA and UVB irradiation on normal human melanocytes (MCs) and keratinocytes (KCs) in vitro. We demonstrate that UVA irradiation induces immediate loss of reduced glutathione (GSH) in both MCs and KCs. Exposure to UVA also causes reduced plasma membrane stability, in both cell types, as estimated by fluorescein diacetate retention and flow cytometry. Furthermore, we noted reduction in proliferation and higher apoptosis frequency 24 h after UVA irradiation. UVB irradiation of KCs caused instant reduction of reduced GSH and impaired plasma membrane stability. We also found decline in proliferation and increased apoptosis after 24 h. In MCs, on the other hand, UVB had no effect on GSH level or plasma membrane stability, although increased apoptotic cell death and reduced proliferation was detected. In summary, MCs and KCs showed similar response towards UVA, while UVB had more pronounced effects on KCs as compared to MCs. These results might have implications for the induction of malignant melanoma and non-melanoma skin cancer.

  • 28.
    Larsson Wäster, Petra
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Rosdahl, Inger
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Ultraviolet (UV) A- and UVB-induced redox alterations and activation of nuclear factor-kappaB in human melanocytes - protective effects of alpha-tocopherol2006In: British Journal of Dermatology, ISSN 0007-0963, Vol. 155, no 2, p. 292-300Article in journal (Refereed)
    Abstract [en]

    Background Despite compelling evidence that ultraviolet (UV) irradiation causes melanoma the knowledge concerning reaction pathways and signalling transduction in melanocytes is still limited.

    Objectives To evaluate the protective capacity of α-tocopherol and β-carotene during UVA and UVB irradiation of human melanocytes in vitro.

    Methods Primary cultures of normal human melanocytes were irradiated by different wavelengths within the UV spectrum (UVA 6 J cm−2, UVB 60 mJ cm−2). Redox alterations and apoptosis were studied and the protective potential of α-tocopherol and β-carotene was evaluated.

    Results UVA and UVB irradiation decreased the intracellular concentration of reduced glutathione and activated the transcription factor nuclear factor (NF)-κB, detected as the increased level of the p65 subunit and translocation to the nucleus. This coincided with a rise in the level of γ-glutamyl-cysteine-synthetase, the rate-limiting enzyme of the glutathione synthesis. UVA and UVB caused apoptotic cell death as detected by nuclear fragmentation and caspase activation 24 h postirradiation. Pretreatment with α-tocopherol prevented UVA- and UVB-induced glutathione loss, NF-κB translocation and diminished apoptosis, but β-carotene did not show a similar protective capacity. Further, exposure to α-tocopherol by itself reduced cell proliferation rate.

    Conclusions UVA and UVB irradiation affected the intracellular redox state and increased the frequency of apoptosis in human melanocytes in vitro. α-Tocopherol might be a useful substance in protecting melanocytes from UV-induced damage.

  • 29.
    Lundqvist, Helen
    et al.
    Department of Molecular and Clinical Medicine Linköping University.
    Dånmark, Staffan
    Department of Neuroscience and Locomotion Linköping University.
    Johansson, Uno
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology .
    Gustafsson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics .
    Öllinger, Karin
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Evaluation of electron spin resonance for studies of superoxide anion production by human neutrophils interacting with Staphylococcus aureus and Staphylococcus epidermidis.2008In: Journal of Biochemical and Biophysical Methods, ISSN 0165-022X, E-ISSN 1872-857X, Vol. 70, no 6, p. 1059-1065Article in journal (Refereed)
    Abstract [en]

    The present study evaluates electron spin resonance (ESR) and the spin trapper 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) for analysis of superoxide radical production by human neutrophils interacting with viable Staphylococcus aureus and Staphylococcus epidermidis bacteria. To avoid auto-activation due to interaction with glass surfaces, neutrophils were preincubated in plastic tubes until the peak response was reached, and then transferred to a quartz flat cell to record the ESR spectra. The time point for peak response was identified by parallel analysis of the bacteria-neutrophil interaction using luminol amplified chemiluminescence. We found detectable ESR spectra from neutrophils interacting with as few as five bacteria of the weak activating S. epidermidis per neutrophil. Addition of the NADPH oxidase inhibitor diphenylene iodonium totally abolished spectra. Catalase, DMSO or an iron chelator had no impact on the produced spectra and ionomycin, a selective activator of intracellular NADPH oxidase, gave significant ESR spectra. Taken together, our results indicate that DEPMPO is cell permeable and detects NADPH oxidase derived superoxide anions formed in phagosomes or released by human neutrophils phagocytosing viable S. aureus and S. epidermidis. The technique may be used as a sensitive tool to evaluate superoxide anion production in human neutrophils.

  • 30.
    Nilsson, Cathrine
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Johansson, Ann-Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Cytosolic acidification and lysosomal alkalinization during TNF-α induced apoptosis in U937 cells2006In: Apoptosis (London), ISSN 1360-8185, E-ISSN 1573-675X, Vol. 11, no 7, p. 1149-1159Article in journal (Refereed)
    Abstract [en]

    Apoptosis is often associated with acidification of the cytosol and since loss of lysosomal proton gradient and release of lysosomal content are early events during apoptosis, we investigated if the lysosomal compartment could contribute to cytosolic acidification. After exposure of U937 cells to tumor necrosis factor-α, three populations; healthy, pre-apoptotic, and apoptotic cells, were identified by flow cytometry. These populations were investigated regarding intra-cellular pH and apoptosis-associated events. There was a drop in cytosolic pH from 7.2 ± 0.1 in healthy cells to 6.8 ± 0.1 in pre-apoptotic, caspase-negative cells. In apoptotic, caspase-positive cells, the pH was further decreased to 5.7 ± 0.04. The cytosolic acidification was not affected by addition of specific inhibitors towards caspases or the mitochondrial F0F1-ATPase. In parallel to the cytosolic acidification, a rise in lysosomal pH from 4.3 ± 0.3, in the healthy population, to 4.8 ± 0.3 and 5.5 ± 0.3 in the pre-apoptotic- and apoptotic populations, respectively, was detected. In addition, lysosomal membrane permeability increased as detected as release of cathepsin D from lysosomes to the cytosol in pre-apoptotic and apoptotic cells. We, thus, suggest that lysosomal proton release is the cause of the cytosolic acidification of U937 cells exposed to TNF-α.

  • 31.
    Nilsson, Cathrine
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry2004In: Methods in Cell Science, ISSN 1381-5741, Vol. 25, no 3-4, p. 185-194Article in journal (Refereed)
    Abstract [en]

    Several reports indicate that the cytosol is acidified during apoptosis although the mechanism is not yet fully elucidated. The most acidic organelle found in the cell is the lysosome, raising the possibility that lysosomal proton release may contribute to the cytosolic acidification. We here describe methods for measurement of the cytosolic and lysosomal pH in U937 cells by a dual-emission ratiometric technique suitable for flow cytometry. Cytosolic pH was analysed in cells loaded with the fluorescent probe BCECF, while lysosomal pH was determined after endocytosis of FITC-dextran. Standard curves were obtained by incubating cells in buffers with different pH in the presence of the proton ionophore nigericin. Apoptosis was induced by exposure of cells to 10ng/ml TNF- for 4h, and apoptotic cells were identified using a fluorescent marker for active caspases. By gating of control and apoptotic cells, the cytosolic and lysosomal pH were calculated in each population. The cytosolic pH was found to decrease from 7.2 ± 0.1 to 5.8s±0.1 and the lysosomal increased from 4.3±0.4 to 5.2±0.3. These methods will be useful in future attempts to evaluate the involvement of lysosomes in the acidification of the cytosol during apoptosis.

  • 32.
    Nilsson, Cathrine
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of ENT - Head and Neck Surgery UHL.
    Grafström, Roland C.
    Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Intrinsic differences in cisplatin sensitivity of head and neck cancer celllines correlates to lysosomal pH2010In: Head and Neck, ISSN 1043-3074, E-ISSN 1097-0347, Vol. 32, no 9, p. 1185-1194Article in journal (Refereed)
    Abstract [en]

    Cisplatin is part of the treatment regime of head and neck squamous cell carcinomas (HNSCC). In order to predict the clinical outcome of the treatment, markers for evaluation of the intrinsic cisplatin sensitivity are inquired. In this study we characterize the lysosomal compartment and compare cisplatin sensitivity in five HNSCC lines and normal oral keratinocytes (NOKs). Cisplatin sensitivity differed 3-fold between the least and most sensitive cell lines, and the cisplatin LD50 correlated significantly to lysosomal pH, which varied from 4.3 in NOKs to 4.9 in the most resistant HNSCC line. Lysosomes are acidified by the V0V1-ATPase complex located in the lysosomal membrane. Interestingly, in cell lines exhibiting high lysosomal pH, we found decreased expression of the V0V1-ATPase B2 subunit, possibly explaining the defective acidification. In all cell lines, exposure to cisplatin caused activation of caspase-3. Cisplatin exposure was accompanied by lysosomal membrane permeabilization and inhibition of the llysosomal cathepsins B, D and L partly prevented cell death. No correlation between cisplatin sensitivity and expression of cathepsins B, D and L or secretion of their respective proforms into the culture medium was found in the cell lines studied. We conclude that lysosomal pH and expression of V0V1-ATPase subunits are possible future markers of intrinsic cisplatin sensitivity.

  • 33.
    Orfanidis, Kyriakos
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    Wäster, Petra
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Lundmark, Katarzyna
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Rosdahl, Inger
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Evaluation of tubulin β-3 as a novel senescence-associated gene in melanocytic malignant transformation.2017In: Pigment Cell & Melanoma Research, ISSN 1755-1471, E-ISSN 1755-148X, Vol. 30, no 2, p. 243-254Article in journal (Refereed)
    Abstract [en]

    Malignant melanoma might develop from melanocytic nevi in which the growth-arrested state has been broken. We analyzed the gene expression of young and senescent human melanocytes in culture and compared the gene expression data with a dataset from nevi and melanomas. A concordant altered gene expression was identified in 84 genes when comparing the growth-arrested samples with proliferating samples. TUBB3, which encodes the microtubule protein tubulin β-3, showed a decreased expression in senescent melanocytes and nevi and was selected for further studies. Depletion of tubulin β-3 caused accumulation of cells in the G2/M phase and decreased proliferation and migration. Immunohistochemical assessment of tubulin β-3 in benign lesions revealed strong staining in the superficial part of the intradermal components, which faded with depth. In contrast, primary melanomas exhibited staining without gradient in a disordered pattern and strong staining of the invasive front. Our results describe an approach to find clinically useful diagnostic biomarkers to more precisely identify cutaneous malignant melanoma and present tubulin β-3 as a candidate marker. This article is protected by copyright. All rights reserved.

  • 34.
    Roberg, Karin
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Lysosomal release of Cathepsin D precedes relocation of Cytochrome C and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress1999In: Free Radical Biology & Medicine, ISSN 0891-5849, E-ISSN 1873-4596, Vol. 27, no 11-12, p. 1228-1237Article in journal (Refereed)
    Abstract [en]

    Apoptosis was induced in human foreskin fibroblasts by the redox-cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Most of the cells displayed ultrastructure typical of apoptosis after 8 h of exposure to naphthazarin. Apoptosis was inhibited in fibroblasts pretreated with the cathepsin D inhibitor pepstatin A. Immunofluorescence analysis of the intracellular distribution of cathepsin D revealed a distinct granular pattern in control cells, whereas cells treated with naphthazarin for 30 min exhibited more diffuse staining that corresponded to release of the enzyme from lysosomes to the cytosol. After 2 h, release of cytochrome c from mitochondria to the cytosol was indicated by immunofluorescence. The membrane-potential–sensitive probe JC-1 and flow cytometry did not detect a permanent decrease in mitochondrial transmembrane potential (ΔΨm) until after 5 h of naphthazarin treatment. Our findings show that, during naphthazarin-induced apoptosis, lysosomal destabilization (measured as release of cathepsin D) precedes release of cytochrome c, loss of ΔΨm, and morphologic alterations. Moreover, apoptosis could be inhibited by pretreatment with pepstatin A.

  • 35.
    Roberg, Karin
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Kågedal, Katarina
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Microinjection of cathepsin D induces caspase-dependent apoptosis in fibroblasts2002In: American Journal of Pathology, ISSN 0002-9440, E-ISSN 1525-2191, Vol. 161, no 1, p. 89-96Article in journal (Refereed)
    Abstract [en]

    Recent reports have indicated that enzymes such as cathepsins D and B are translocated from lysosomal compartments to the cytosol early during apoptosis. We have previously noted that a translocation of cathepsins D and B occur before cytochrome c release and caspase activation in cardiomyocytes and human fibroblasts during oxidative stress-induced apoptosis. In the present report, we use a microinjection technique to investigate if cytosolic location of the cathepsins D and B are important for induction of apoptosis. We found that microinjection of cathepsin D into the cytosol of human fibroblasts caused apoptosis, which was detected as changes in distribution of cytochrome c, cell shrinkage, activation of caspases, chromatin condensation, and formation of pycnotic nuclei. No apoptosis was, however, induced by microinjection of cathepsin B. Moreover, apoptosis was prevented in fibroblasts pretreated with a caspase-3-like inhibitor, and also when microinjected with cathepsin D mixed with the cathepsin D inhibitor, pepstatin A. These results show that cytosolic cathepsin D can act as a proapoptotic mediator upstream of cytochrome c release and caspase activation in human fibroblasts.

  • 36.
    Roberg, Karin
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    A Pre-embedding Technique for Immunocytochemical Visualization of Cathepsin D in Cultured Cells Subjected to Oxidative Stress1998In: Journal of Histochemistry and Cytochemistry, ISSN 0022-1554, E-ISSN 1551-5044, Vol. 46, no 3, p. 411-418Article in journal (Refereed)
    Abstract [en]

    We describe a pre-embedding immunocytochemical method for visualization of the lysosomal enzyme cathepsin D in cultured cells. The protein was demonstrated at both light and electron microscopic levels by neutral-pH silver enhancement of ultrasmall (0.8-nm) gold particles conjugated to the antibodies. The best morphological preservation and the highest labeling density were achieved by initial fixation for 20 min at 4C in 4% paraformaldehyde (PFA) and 0.05% glutaraldehyde (GA) in 0.15 M sodium cacodylate buffer, followed by permeabilization in sodium borohydride. Three cell types were used: human foreskin fibroblasts, histocytic lymphoma (J-774) cells, and primary rat heart myocytes. In all three, cathepsin D was demonstrated in lysosome-like structures. The rat heart myocytes were also exposed to the redox cycling substance naphthazarin (5,8-dihydroxy-1,4-naph-thoquinone) to induce oxidative stress. This was done for such a short period of time that the cells initially did not show any signs of morphological damage and retained normal plasma membrane stability, although an early and clear redistribution of cathepsin D from membrane-bound structures to the cytosol was apparent. This redistribution was followed by cell degeneration and, eventually, by cell death.

  • 37.
    Roberg, Karin
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes1998In: American Journal of Pathology, ISSN 0002-9440, E-ISSN 1525-2191, Vol. 152, no 5, p. 1151-1156Article in journal (Refereed)
    Abstract [en]

    Exposing neonatal rat heart myocytes to the redox cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) for 15 to 45 minutes led to a time-dependent release of cathepsin D from many secondary lysosomes to the cytosol, as analyzed by morphometry. Cathepsin D was detected electron microscopically using a pre-embedding immunostaining technique that utilizes antibodies conjugated to ultra-small (0.8-nm) gold particles and subsequent silver enhancement. The exposure to naphthazarin also caused a decrease in both the pH and the ATP level of the cells within the same time frame. Lipid peroxidation was, however, not detected. Pretreatment of the cultures with alpha-tocopherol succinate prevented cathepsin D relocation, as shown by immunofluorescence. After exposure to naphthazarin, cells were washed, and normal culture conditions were re-established for 18 hours. Many cells then showed apoptotic morphology (ie, cellular shrinkage and chromatin condensation) as analyzed by Giemsa staining. Also, 41% of the cells stained positive with the TUNEL technique, and DNA fragmentation was detected by separation of intact and fragmented DNA. Apoptosis was significantly decreased in cultures pretreated with alpha-tocopherol succinate.

  • 38.
    Samuelsson, Martin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    Gerdin, George
    Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Vrethem, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Taurine and glutathione levels in plasma before and after ECT treatment2012In: Psychiatry Research, ISSN 0165-1781, E-ISSN 1872-7123, Vol. 198, no 1, p. 53-57Article in journal (Refereed)
    Abstract [en]

    Taurine has been shown to be elevated in plasma and lymphocytes of depressed patients, but the level normalises after successful drug therapy. During depression, levels of glutathione (GSH) are decreased in the plasma and blood. This study was performed to examine taurine and GSH levels in depressed patients before and after electroconvulsive therapy (ECT). Fasting blood samples were collected from 23 patients before the first and after the third ECT treatment. The severity of depression was estimated with the Montgomery–Åsberg Depression Rating Scale (MADRS). We analysed GSH in blood and the levels of taurine and total GSH in plasma. After three ECTs, a significant decrease in MADRS scores was found for the entire group. Simultaneously, the decrease in the plasma taurine levels was significant for the seven responders but not for the sixteen non-responders. We observed no differences in blood or plasma GSH levels after three ECT treatments when compared to values before the therapy. Plasma taurine levels decrease significantly after three ECT treatments in patients who respond to treatment. GSH levels were not affected by ECT treatment. The results indicate that taurine may play a role in the pathophysiology of depression.

  • 39.
    Samuelsson, Martin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    Skogh, Elisabeth
    Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    Lundberg, Kristina
    Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Linköping University, Faculty of Health Sciences.
    Vrethem, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Taurine and glutathione in plasma and cerebrospinal fluid in olanzapine treated patients with schizophrenia2013In: Psychiatry Research, ISSN 0165-1781, E-ISSN 1872-7123, Vol. 210, no 3, p. 819-824Article in journal (Refereed)
    Abstract [en]

    Objectives: Oxidative stress has been implicated in the pathophysiology of schizophrenia. Taurine and glutathione (GSH) have antioxidant and central nervous system protective properties and are proposed to be involved in the pathology of schizophrenia. The aim of this study was to compare the blood and cerebrospinal fluid (CSF) levels of taurine and GSH in patients with schizophrenia medicated with oral olanzapine compared with controls.

    Methods: In total, 37 patients with schizophrenia being medicated with olanzapine and 45 healthy volunteers were recruited. Taurine and GSH levels were analysed in plasma and CSF and correlated to symptoms and level of function.

    Results: Plasma taurine levels were elevated in patients compared with controls (p=0.000003). No differences were found between patients and controls regarding taurine in CSF or GSH concentrations in plasma and CSF.

    Conclusion: The significantly higher levels of plasma but not CSF taurine in patients with schizophrenia treated with olanzapine compared with controls may implicate the involvement of taurine in the pathophysiology of the disease. The absence of GSH differences in plasma and CSF between patients and controls is interesting in the perspective of earlier research proposing a dysregulation of GSH metabolism as a vulnerability factor for the development of schizophrenia.

  • 40.
    Samuelsson, Martin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Linköping University, Faculty of Health Sciences.
    Vainikka, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Nordin, Conny
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Glutathione In Blood And Cerebrospinal Fluid2008Conference paper (Refereed)
  • 41.
    Samuelsson, Martin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    Vainikka, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Glutathione in the blood and cerebrospinal fluid: A study in healthy male volunteers2011In: Neuropeptides, ISSN 0143-4179, E-ISSN 1532-2785, Vol. 45, no 4, p. 287-292Article in journal (Refereed)
    Abstract [en]

    Glutathione (GSH) is an important regulator of intracellular redox homeostasis. In the brain, glutathione is considered a major antioxidant, which is also found at high concentrations in the extracellular environment. Altered GSH balance in plasma, blood and cerebrospinal fluid (CSF) has been observed in several disorders suggesting that an impaired antioxidant function is part of the pathophysiology. The aim of the present study was to investigate a possible relationship between glutathione in plasma and CSF. Blood samples were collected from 26 healthy male volunteers at 8 a.m., noon, 4 p.m. and 8 p.m. At 8 a.m. the following morning, blood was drawn and three 6-ml fractions of CSF were collected by lumbar puncture. In CSF, a disrupted gradient was found showing the highest glutathione concentration in the second compared to the first and third fraction (P andlt; 0.002). Moreover, correlation and regression analyses between glutathione in plasma and CSF revealed an association between the third fraction CSF and plasma glutathione 8 p.m. the day before lumbar puncture. Thus, if carefully standardised due to the disrupted gradient in CSF, it might be possible to estimate glutathione levels in CSF by analysing plasma in healthy males.

  • 42.
    Sardar Sinha, Maitrayee
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Villamil Giraldo, Ana Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Civitelli, Livia
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Lipid vesicles affect the aggregation of 4-hydroxy-2-nonenal-modified alpha-synuclein oligomers2018In: Biochimica et Biophysica Acta - Molecular Basis of Disease, ISSN 0925-4439, E-ISSN 1879-260X, Vol. 1864, no 9, p. 3060-3068Article in journal (Refereed)
    Abstract [en]

    Parkinsons disease (PD) and other synucleinopathies are characterized by accumulation of misfolded aggregates of alpha-synuclein (alpha-syn). The normal function of alpha-syn is still under investigation, but it has been generally linked to synaptic plasticity, neurotransmitter release and the maintenance of the synaptic pool. alpha-Syn localizes at synaptic terminals where it can bind to synaptic vesicles as well as to other cellular membranes. It has become clear that these interactions have an impact on both alpha-syn functional role and its propensity to aggregate. In this study, we investigated the aggregation process of alpha-syn covalently modified with 4-hydroxy-2-nonenal (HNE). HNE is a product of lipid peroxidation and has been implicated in the pathogenesis of different neurodegenerative diseases by modifying the kinetics of soluble toxic oligomers. Although HNE-modified alpha-syn has been reported to assemble into stable oligomers, we found that slightly acidic conditions promoted further protein aggregation. Lipid vesicles delayed the aggregation process in a concentration-dependent manner, an effect that was observed only when they were added at the beginning of the aggregation process. Co-aggregation of lipid vesicles with HNE-modified alpha-syn also induced cytotoxic effects on differentiated SHSY-SY cells. Under conditions in which the aggregation process was delayed cell viability was reduced. By exploring the behavior and potential cytotoxic effects of HNE-alpha-syn under acidic conditions in relation to protein-lipid interactions our study gives a framework to examine a possible pathway leading from a physiological setting to the pathological outcome of PD.

  • 43.
    Schöier, Johan
    et al.
    Linköping University, Department of Molecular and Clinical Medicine, Clinical Microbiology. Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
    Kvarnström, Maria
    Linköping University, Department of Molecular and Clinical Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences.
    Söderlund, Gustaf
    Linköping University, Department of Biomedicine and Surgery, Oncology. Linköping University, Faculty of Health Sciences.
    Kihlström, Erik
    Linköping University, Department of Molecular and Clinical Medicine, Clinical Microbiology. Linköping University, Faculty of Health Sciences.
    Chlamydia trachomatis -induced apoptosis occurs in uninfected McCoy cells late in the developmental cycle and is regulated by the intracellular redox state2001In: Microbial Pathogenesis, ISSN 0882-4010, E-ISSN 1096-1208, Vol. 31, no 4, p. 173-184Article in journal (Refereed)
    Abstract [en]

    Infections with the obligate intracellular bacterium Chlamydia trachomatis are characterized by avoidance of fusion between chlamydia-containing endosomes and lysosomes, bacterial persistence and development of post-infectious sequelae. In this report we show that C. trachomatis induces apoptosis in McCoy and HeLa cells. Apoptosis was monitored by three different techniques; enzyme-linked immunoassay (EIA) of fragmented nucleosomes, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) and flow cytometry of propidium iodide-stained cells. Apoptosis occurred in uninfected cells, was induced late in the chlamydial developmental cycle, beyond 24 h post-infection and was dependent on bacterial protein synthesis. Apoptosis was not significantly increased in infected, inclusion-containing cells. Treatment of cells with the antioxidants ascorbic acid (10 μM) and α-tocopherol (10 μM) reduced the degree of apoptosis. These results suggest that host cells infected with C. trachomatis generate proapoptotic stimuli that induce apoptosis in uninfected, neighbouring cells and that the redox state of the cell is a regulator in chlamydia-induced apoptosis.

  • 44.
    Shariatpanahi, Aida
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hultman, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Westermark, Gunilla T.
    Uppsala Univ, Sweden.
    Lundmark, Katarzyna
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Lipid membranes accelerate amyloid formation in the mouse model of AA amyloidosis2019In: Amyloid: Journal of Protein Folding Disorders, ISSN 1350-6129, E-ISSN 1744-2818, Vol. 26, no 1, p. 34-44Article in journal (Refereed)
    Abstract [en]

    Introduction: AA amyloidosis develops as a result of prolonged inflammation and is characterized by deposits of N-terminal proteolytic fragments of the acute phase reactant serum amyloid A (SAA). Macrophages are usually found adjacent to amyloid, suggesting their involvement in the formation and/or degradation of the amyloid fibrils. Furthermore, accumulating evidence suggests that lipid membranes accelerate the fibrillation of different amyloid proteins.

    Methods: Using an experimental mouse model of AA amyloidosis, we compared the amyloidogenic effect of liposomes and/or amyloid-enhancing factor (AEF). Inflammation was induced by subcutaneous injection of silver nitrate followed by intravenous injection of liposomes and/or AEF to accelerate amyloid formation.

    Results: We showed that liposomes accelerate amyloid formation in inflamed mice, but the amyloidogenic effect of liposomes was weaker compared with AEF. Regardless of the induction method, amyloid deposits were mainly found in the marginal zones of the spleen and coincided with the depletion of marginal zone macrophages, while red pulp macrophages and metallophilic marginal zone macrophages proved insensitive to amyloid deposition.

    Conclusions: We conclude that increased intracellular lipid content facilitates AA amyloid fibril formation and show that the mouse model of AA amyloidosis is a suitable system for further mechanistic studies.

  • 45.
    Stroikin, Yuri
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Asplund, Sofia
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
    Increased resistance of lipofuscin-loaded prematurely senescent fibroblasts to starvation-induced programmed cell death2007In: Biogerontology (Dordrecht), ISSN 1389-5729, E-ISSN 1573-6768, Vol. 8, no 1, p. 43-53Article in journal (Refereed)
    Abstract [en]

    Alterations of cellular structures often found in ageing cells is mainly the result of production of reactive oxygen species and a consequence of aerobic life. Both oxidative stress and decreased degradative capacity of lysosomal system cause accumulation of intralysosomal age-related pigment called lipofuscin. To investigate the influence of lipofuscin on cell function, we compared survival of lipofuscin-loaded and control human fibroblasts following complete starvation induced by exposure to phosphate-buffered saline (PBS). Starving of control fibroblasts resulted in lysosomal alkalinisation, relocation of cathepsin D to the cytosol, caspase-3 activation and, finally, cell death, which became evident 72 h after the start of exposure to PBS. Increase of lysosomal pH was significantly less prominent in lipofuscin-loaded cells than in controls and was accompanied neither by leakage of cathepsin D nor by caspase-3 activation even 96 h after the initiation of starvation. Suppression of autophagy by 3-methyladenine (3-MA) accelerated cell death, while inhibition of cathepsin D delayed it, implying an important role of autophagy in cell survival during starvation and showing the involvement of lysosomes in starvation-induced cell death. Disturbed apoptotic response found in lipofuscin-loaded cells can be interpreted as an example of hormesis—an adaptation to low doses of otherwise harmful agents, in this case of lipofuscin, which has a protective effect at moderate amounts but becomes toxic at large quantities.

  • 46.
    Stroikin, Yuri
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Mild, Hanna
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Johansson, Uno
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Roberg, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of ENT - Head and Neck Surgery UHL.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Lysosome-targeted stress reveals increased stability of lipofuscin-containing lysosomes2008In: Age (Omaha), ISSN 0161-9152, E-ISSN 1574-4647, Vol. 30, no 1, p. 31-42Article in journal (Refereed)
    Abstract [en]

    Cellular ageing is associated with accumulation of undegradable intralysosomal material, called lipofuscin. In order to accelerate the lipofuscin-accumulation, confluent, growth arrested human fibroblasts were cultured under hyperoxic conditions. To provide a better insight into the effects of lipofuscin on cellular functions, we compared lysosomal stability in control and lipofuscin-loaded human fibroblasts under conditions of lysosome-targeted stress induced by exposure to either the lysosomotropic detergent MSDH or the redox-cycling quinone naphthazarin. We show that lysosomal damage, assessed by acridine-orange relocation, translocation of cathepsin D to the cytosol, and alkalinization of lysosomes is more pronounced in control than in lipofuscin-loaded fibroblasts. Finding that lysosomal integrity was less affected or even preserved in case of lipofuscin-loaded cells enables us to suggest that lipofuscin exerts lysosome-stabilizing properties.

  • 47.
    Svensson Holm, Ann-Charlotte
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Grenegård, Magnus
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences. Örebro University, Sweden.
    Ollinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Lindström, Eva
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Health Sciences.
    Inhibition of 12-lipoxygenase reduces platelet activation and prevents their mitogenic function2014In: Platelets, ISSN 0953-7104, E-ISSN 1369-1635, Vol. 25, no 2, p. 111-117Article in journal (Refereed)
    Abstract [en]

    The aim of the present study was to investigate the role of 12-lipoxygenase (12-LOX) on platelet-induced airway smooth muscle cell (ASMC) proliferation. Co-incubation of platelets and ASMC caused platelet activation as determined by morphological changes. Simultaneously, reactive oxygen species (ROS)-generation was detected and ASMC proliferation (measured by using the MTS assay) increased significantly. Furthermore, we found that the 12-LOX inhibitors cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC) and Baicalein prevented platelet activation in a co-cultures of platelets and ASMC. The inhibitory effect of CDC and Baicalein on platelets was also registered in a pure platelet preparation. Specifically, the 12-LOX inhibitors reduced collagen-induced platelet aggregation both in the presence and absence of external added fibrinogen. Importantly, platelet-induced ASMC proliferation and ROS production generated during the platelet/ASMC interaction was significantly inhibited in the presence of 12-LOX inhibitors. In conclusion, our findings reveal that 12-LOX is crucial for the observed enhancement of ASMC proliferation in co-cultures of platelets and ASMC. The present result suggests that 12-LOX activity is important in the initial step of platelet/ASMC interaction and platelet activation. Such action of 12-LOX represents a potential important mechanism that may contribute to platelet-induced airway remodelling.

  • 48.
    Södergren, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Svensson Holm, Ann-Charlotte
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Ramström, Sofia
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Lindström, Eva
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Grenegård, Magnus
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. University of Örebro, Sweden.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Thrombin-induced lysosomal exocytosis in human platelets is dependent on secondary activation by ADP and regulated by endothelial-derived substances2016In: Platelets, ISSN 0953-7104, E-ISSN 1369-1635, Vol. 27, no 1, p. 86-92Article in journal (Refereed)
    Abstract [en]

    Exocytosis of lysosomal contents from platelets has been speculated to participate in clearance of thrombi and vessel wall remodelling. The mechanisms that regulate lysosomal exocytosis in platelets are, however, still unclear. The aim of this study was to identify the pathways underlying platelet lysosomal secretion and elucidate how this process is controlled by platelet inhibitors. We found that high concentrations of thrombin induced partial lysosomal exocytosis as assessed by analysis of the activity of released N-acetyl--glucosaminidase (NAG) and by identifying the fraction of platelets exposing the lysosomal-associated membrane protein (LAMP)-1 on the cell surface by flow cytometry. Stimulation of thrombin receptors PAR1 or PAR4 with specific peptides was equally effective in inducing LAMP-1 surface expression. Notably, lysosomal exocytosis in response to thrombin was significantly reduced if the secondary activation by ADP was inhibited by the P2Y(12) antagonist cangrelor, while inhibition of thromboxane A(2) formation by treatment with acetylsalicylic acid was of minor importance in this regard. Moreover, the NO-releasing drug S-nitroso-N-acetyl penicillamine (SNAP) or the cyclic AMP-elevating eicosanoid prostaglandin I-2 (PGI(2)) significantly suppressed lysosomal exocytosis. We conclude that platelet inhibitors that mimic functional endothelium such as PGI(2) or NO efficiently counteract lysosomal exocytosis. Furthermore, we suggest that secondary release of ADP and concomitant signaling via PAR1/4- and P2Y(12) receptors is important for efficient platelet lysosomal exocytosis by thrombin.

  • 49.
    Terman, Alexei
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology.
    Neuzil, Jiri
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology.
    Kågedal, Katarina
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology.
    Öllinger, Karin
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Brunk, Ulf
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Decreased apoptotic response of inclusion-cell disease fibroblasts: A consequence of lysosomal enzyme missorting?2002In: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 274, no 1Article in journal (Refereed)
    Abstract [en]

    To better understand the role of lysosomes in apoptosis, we compared the responses to apoptotic stimuli of normal fibroblasts with those of inclusion cells (I-cells), i.e., fibroblasts with impaired function of lysosomal enzymes due to their missorting and ensuing nonlysosomal localization. Although both cell types did undergo apoptosis when exposed to the lysosomotropic detergent MSDH, the redox-cycling quinone naphthazarin, or the protein kinase inhibitor staurosporine, I-cells exerted a markedly decreased response to these agonists than did normal fibroblasts. Furthermore, leupeptin and pepstatin A (inhibitors of cysteine and aspartic proteases, respectively) suppressed staurosporine-induced apoptosis of normal fibroblasts, whereas survival of I-cells was unaffected. These findings give further support for the involvement of lysosomal enzymes in apoptosis and suggest I-cells as a suitable model for studying the role of lysosomes in programmed cell death.

  • 50.
    Villamil Giraldo, Ana M.
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Lysosomotropic agents: impact on lysosomal membrane permeabilization and cell death2014In: Biochemical Society Transactions, ISSN 0300-5127, E-ISSN 1470-8752, Vol. 42, p. 1460-1464Article in journal (Refereed)
    Abstract [en]

    Lysosomes are acidic organelles essential for degradation, signalling and cell homoeostasis. In addition, they play a key role in cell death. Permeabilization of the lysosomal membrane and release of hydrolytic enzymes to the cytosol accompanies apoptosis signalling in several systems. The regulatory mechanism of lysosomal stability is, however, poorly understood. Lipophilic or amphiphilic compounds with a basic moiety will become protonated and trapped within lysosomes, and such lysosomotropic behaviour is also found in many pharmacological drugs. The natural sphingolipid sphingosine exhibits lysosomotropic detergent ability and is an endogenous candidate for controlling lysosomal membrane permeabilization. The lysosomotropic properties of certain detergents might be of use in lysosome-targeting anticancer drugs and drug delivery system in the future. The present review summarizes the current knowledge on the targeting and permeabilizing properties of lysosomotropic detergents from a cellular and physicochemical perspective.

12 1 - 50 of 60
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf